

About This eBook

ePUB is an open, industry-standard format for eBooks. However, support of ePUB
and its many features varies across reading devices and applications. Use your device
or app settings to customize the presentation to your liking. Settings that you can
customize often include font, font size, single or double column, landscape or portrait
mode, and figures that you can click or tap to enlarge. For additional information about
the settings and features on your reading device or app, visit the device manufacturer’s
Web site.

Many titles include programming code or configuration examples. To optimize the
presentation of these elements, view the eBook in single-column, landscape mode and
adjust the font size to the smallest setting. In addition to presenting code and
configurations in the reflowable text format, we have included images of the code that
mimic the presentation found in the print book; therefore, where the reflowable format
may compromise the presentation of the code listing, you will see a “Click here to view
code image” link. Click the link to view the print-fidelity code image. To return to the
previous page viewed, click the Back button on your device or app.

Sams Teach Yourself
AngularJS, JavaScript, and

jQuery All in One in 24 Hours

Brad Dayley
Brendan Dayley

 800 East 96th Street Indianapolis, IN 46240 USA

Sams Teach Yourself AngularJS, JavaScript, and jQuery All in One
Copyright © 2016 by Pearson Education, Inc.
All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33742-0
ISBN-10: 0-672-33742-8

Library of Congress Control Number: 2015907445

Printed in the United States of America

First Printing August 2015

Acquisitions Editor
Mark Taber

Managing Editor
Kristy Hart

Project Editor
Andy Beaster

Copy Editor
Barbara Hacha

Indexer
Brad Herriman

Proofreader
Sarah Kearns

Technical Editor
Jesse Smith

Publishing Coordinator
Vanessa Evans

Interior Designer
Gary Adair

Cover Designer

Mark Shirar

Compositor
Nonie Ratcliff

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity
of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis.
The authors and the publisher shall have neither liability nor responsibility to any
person or entity with respect to any loss or damages arising from the information
contained in this book.

Special Sales
For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com
or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
international@pearsoned.com.

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:international@pearsoned.com

Contents at a Glance

Introduction

Part I: Introduction to AngularJS, jQuery, and JavaScript Development

LESSON 1 Introduction to Dynamic Web Programming

LESSON 2 Debugging JavaScript in Web Pages

LESSON 3 Understanding Dynamic Web Page Anatomy

LESSON 4 Adding CSS/CSS3 Styles to Allow Dynamic Design and Layout

LESSON 5 Jumping into jQuery and JavaScript Syntax

LESSON 6 Understanding and Using JavaScript Objects

Part II: Implementing jQuery and JavaScript in Web Pages

LESSON 7 Accessing DOM Elements Using JavaScript and jQuery Objects

LESSON 8 Navigating and Manipulating jQuery Objects and DOM Elements with
jQuery

LESSON 9 Applying JavaScript and jQuery Events for Richly Interactive Web
Pages

LESSON 10 Dynamically Accessing and Manipulating Web Pages with JavaScript
and jQuery

LESSON 11 Working with Window, Browser, and Other Non-Web Page Elements

Part III: Building Richly Interactive Web Pages with jQuery

LESSON 12 Enhancing User Interaction Through jQuery Animation and Other Special
Effects

LESSON 13 Interacting with Web Forms in jQuery and JavaScript

LESSON 14 Creating Advanced Web Page Elements in jQuery

LESSON 15 Accessing Server-Side Data via JavaScript and jQuery AJAX Requests

Part IV: Utilizing jQuery UI

LESSON 16 Introducing jQuery UI

LESSON 17 Using jQuery UI Effects

LESSON 18 Advanced Interactions Using jQuery UI Interaction Widgets

LESSON 19 Using jQuery UI Widgets to Add Rich Interactions to Web Pages

Part V: Building Web Applications with AngularJS

LESSON 20 Getting Started with AngularJS

LESSON 21 Understanding AngularJS Application Dynamics

LESSON 22 Implementing the Scope as a Data Model

LESSON 23 Using AngularJS Templates to Create Views

LESSON 24 Implementing Directives in AngularJS Views

LESSON 25 Creating Your Own Custom Directives to Extend HTML

LESSON 26 Using Events to Interact with Data in the Model

LESSON 27 Implementing AngularJS Services in Web Applications

LESSON 28 Creating Your Own Custom AngularJS Services

LESSON 29 Creating Rich Web Application Components the AngularJS Way

Index

Table of Contents

Introduction

Lesson 1: Introduction to Dynamic Web Programming
Understanding the Web Server/Browser Paradigm
Setting Up a Web Development Environment
Summary
Q&A
Workshop

Lesson 2: Debugging JavaScript in Web Pages
Viewing the Developer Tools Console
Debugging HTML Elements
Debugging CSS
Debugging JavaScript
Analyzing the Network Traffic
Summary
Q&A
Workshop

Lesson 3: Understanding Dynamic Web Page Anatomy
Using HTML/HTML5 Elements to Build a Dynamic Web Page
Understanding HTML Structure
Implementing HTML Head Elements
Adding HTML Body Elements
Adding Some Advanced HTML5 Elements
Summary
Q&A
Workshop

Lesson 4: Adding CSS/CSS3 Styles to Allow Dynamic Design and Layout
Adding CSS Styles to the Web Page
Adding CSS Styles to HTML Elements

Preparing CSS Styles for Dynamic Design
Summary
Q&A
Workshop

Lesson 5: Jumping into jQuery and JavaScript Syntax
Adding jQuery and JavaScript to a Web Page
Accessing the DOM
Understanding JavaScript Syntax
Summary
Q&A
Workshop

Lesson 6: Understanding and Using JavaScript Objects
Using Object Syntax
Understanding Built-in Objects
Creating Custom-Defined Objects
Summary
Q&A
Workshop

Lesson 7: Accessing DOM Elements Using JavaScript and jQuery Objects
Understanding DOM Objects Versus jQuery Objects
Accessing DOM Objects from JavaScript
Using jQuery Selectors
Summary
Q&A
Workshop

Lesson 8: Navigating and Manipulating jQuery Objects and DOM Elements
with jQuery

Chaining jQuery Object Operations
Filtering the jQuery Object Results
Traversing the DOM Using jQuery Objects
Looking at Some Additional jQuery Object Methods

Summary
Q&A
Workshop

Lesson 9: Applying JavaScript and jQuery Events for Richly Interactive Web
Pages

Understanding Events
Using the Page Load Events for Initialization
Adding and Removing Event Handlers to DOM Elements
Triggering Events Manually
Creating Custom Events
Implementing Callbacks
Summary
Q&A
Workshop

Lesson 10: Dynamically Accessing and Manipulating Web Pages with JavaScript
and jQuery

Accessing Browser and Page Element Values
Dynamically Manipulating Page Elements
Dynamically Rearranging Elements on the Web Page
Summary
Q&A
Workshop

Lesson 11: Working with Window, Browser, and Other Non-Web Page Elements
Understanding the Screen Object
Using the Window Object
Using the Browser Location Object
Using the Browser History Object
Controlling External Links
Adding Pop-up Boxes
Setting Timers
Summary

Q&A
Workshop

Lesson 12: Enhancing User Interaction Through jQuery Animation and Other
Special Effects

Understanding jQuery Animation
Animating Show and Hide
Animating Visibility
Sliding Elements
Creating Resize Animations
Implementing Moving Elements
Summary
Q&A
Workshop

Lesson 13: Interacting with Web Forms in jQuery and JavaScript
Accessing Form Elements
Intelligent Form Flow Control
Dynamically Controlling Form Element Appearance and Behavior
Validating a Form
Summary
Q&A
Workshop

Lesson 14: Creating Advanced Web Page Elements in jQuery
Adding an Image Gallery
Implementing Tables with Sorting and Filters
Creating a Tree View
Using Overlay Dialogs
Implementing a Graphical Equalizer Display
Adding Sparkline Graphics
Summary
Q&A
Workshop

Lesson 15: Accessing Server-Side Data via JavaScript and jQuery AJAX
Requests

Making AJAX Easy
Implementing AJAX
Using Advanced jQuery AJAX
Summary
Q&A
Workshop

Lesson 16: Introducing jQuery UI
Getting Started with jQuery UI
Applying jQuery UI in Your Scripts
Summary
Q&A
Workshop

Lesson 17: Using jQuery UI Effects
Applying jQuery UI Effects
Adding Effects to Class Transitions
Adding Effects to Element Visibility Transitions
Summary
Q&A
Workshop

Lesson 18: Advanced Interactions Using jQuery UI Interaction Widgets
Introducing jQuery UI Interactions
Using the Drag-and-Drop Widgets
Resizing Elements Using the Resizable Widget
Applying the Selectable Widget
Sorting Elements with the Sortable Widget
Summary
Q&A
Workshop

Lesson 19: Using jQuery UI Widgets to Add Rich Interactions to Web Pages

Reviewing Widgets
Adding an Expandable Accordion Element
Implementing Autocomplete in Form Elements
Applying jQuery UI Buttons to Form Controls
Creating a Calendar Input
Generating Stylized Dialogs with jQuery UI
Implementing Stylized Menus
Creating Progress Bars
Implementing Slider Bars
Adding a Value Spinner Element
Creating Tabbed Panels
Adding Tooltips to Page Elements
Creating Custom Widgets
Summary
Q&A
Workshop

Lesson 20: Getting Started with AngularJS
Why AngularJS?
Understanding AngularJS
An Overview of the AngularJS Life Cycle
Separation of Responsibilities
Integrating AngularJS with Existing JavaScript and jQuery
Adding AngularJS to Your Environment
Bootstrapping AngularJS in an HTML Document
Using the Global APIs
Using jQuery or jQuery Lite in AngularJS Applications
Summary
Q&A
Workshop

Lesson 21: Understanding AngularJS Application Dynamics
Looking at Modules and Dependency Injection

Defining an AngularJS Module Object
Creating Providers in AngularJS Modules
Implementing Providers and Dependency Injection
Applying Configuration and Run Blocks to Modules
Summary
Q&A
Workshop

Lesson 22: Implementing the Scope as a Data Model
Understanding Scopes
Implementing Scope Hierarchy
Summary
Q&A
Workshop

Lesson 23: Using AngularJS Templates to Create Views
Understanding Templates
Using Expressions
Using Filters
Creating Custom Filters
Summary
Q&A
Workshop

Lesson 24: Implementing Directives in AngularJS Views
Understanding Directives
Using Built-In Directives
Summary
Q&A
Workshop

Lesson 25: Creating Your Own Custom Directives to Extend HTML
Understanding Custom Directive Definitions
Implementing Custom Directives
Summary

Q&A
Workshop

Lesson 26: Using Events to Interact with Data in the Model
Browser Events
User Interaction Events
Adding $watches to Track Scope Change Events
Emitting and Broadcasting Custom Events
Summary
Q&A
Workshop

Lesson 27: Implementing AngularJS Services in Web Applications
Understanding AngularJS Services
Using the Built-In Services
Using the $q Service to Provide Deferred Responses
Summary
Q&A
Workshop

Lesson 28: Creating Your Own Custom AngularJS Services
Understanding Custom AngularJS Services
Integrating Custom Services into Your AngularJS Applications
Summary
Q&A
Workshop

Lesson 29: Creating Rich Web Application Components the AngularJS Way
Summary
Q&A
Workshop

Index

About the Authors

Brad Dayley is a senior software engineer with more than 20 years of experience
developing enterprise applications and web interfaces. He has used JavaScript, jQuery,
and AngularJS to develop a wide array of feature-rich web applications. He has a
passion for new technologies, especially ones that really make a difference in the
software industry. He is the author of Node.js, MongoDB, and AngularJS Web
Development, Learning AngularJS, jQuery, and JavaScript Phrasebook, and Sams
Teach Yourself jQuery and JavaScript in 24 Hours.
Brendan Dayley is a university student majoring in computer science. He is an avid
web application developer who loves learning and implementing the latest and greatest
technologies. He recently attended Dev-Mountain’s Immersive Web Development
program, specializing in web application development and AngularJS in particular. He
has written a number of web applications using JavaScript, jQuery, and AngularJS and
is excited about the future of these technologies.

Dedication

For D!

A & F

Jessie

My one and only

Acknowledgments

I’d like to take this opportunity to thank all those who made this title possible. First,
thanks to my wonderful wife and boys for giving me the inspiration and support I need.
I’d never make it far without you.
Thanks to Mark Taber for getting this title rolling in the right direction, Jesse Smith for
keeping me honest with his technical review, Barbara Hacha for turning the technical
ramblings of my brain into a fine text, and Andy Beaster for managing everything on the
production end and making sure the book is the finest quality.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We
value your opinion and want to know what we’re doing right, what we could do better,
what areas you’d like to see us publish in, and any other words of wisdom you’re
willing to pass our way.
We welcome your comments. You can email or write to let us know what you did or
didn’t like about this book—as well as what we can do to make our books better.
Please note that we cannot help you with technical problems related to the topic of
this book.
When you write, please be sure to include this book’s title and author as well as your
name and email address. We will carefully review your comments and share them with
the author and editors who worked on the book.
Email: feedback@samspublishing.com
Mail: Sams Publishing
 ATTN: Reader Feedback
 800 East 96th Street
 Indianapolis, IN 46240 USA

mailto:feedback@samspublishing.com

Reader Services

Visit our website and register this book at informit.com/register for convenient access
to any updates, downloads, or errata that might be available for this book.

http://informit.com/register

Introduction

Welcome to AngularJS, JavaScript, and jQuery All in One. This book is designed to
jumpstart you into the world of dynamic web application development using JavaScript,
jQuery, and AngularJS. The book covers the basics of the JavaScript language, jQuery
library, and AngularJS framework and how to use them to build well-designed, reusable
components for web applications.
With billions of people using the Internet today, there is a rapidly growing trend to
replace traditional websites, where one page links to another page and so on, with
single page applications that have richly interactive elements.
The main reason is that users have become less patient with clicking, waiting, and then
having to navigate back and forth between web pages. Instead, they want websites to
behave more like the applications they are used to on their computers and mobile
devices.
In fact, in the next 24 hours, millions of new web pages will be added to the Internet.
The majority of these pages will be written in HTML, with CSS to style elements and
with JavaScript to provide interaction between the user interface and back-end
services.
As you complete the lessons in this book, you will gain a practical understanding of
how to incorporate JavaScript with the powerful jQuery library as well as the exciting
AngularJS framework to provide rich user interactions in your web pages. You will
gain the valuable skills of adding dynamic code that allows web pages to instantly react
to mouse clicks and finger swipes, interact with back-end services to store and retrieve
data from the web server, and create robust Internet applications.
Each lesson in the book provides fundamentals that are necessary to create professional
web applications. The book includes some basics on using HTML and CSS to get you
started, even if you’ve never used them before. You are provided with code examples
that you can implement and expand as your understanding increases. In fact, in just the
first lesson in the book, you create a dynamic web page using jQuery and JavaScript.
So pull up a chair, sit back, and enjoy the ride of programming rich Internet applications
with AngularJS, jQuery, and JavaScript.

Who Should Read This Book
This book is aimed at readers who already have an understanding of the basics of
HTML and have done some programming in a modern programming language. Having
an understanding of JavaScript will make this book easier to digest, but it is not
required because the basics of JavaScript are covered.

Why You Should Read This Book
This book will teach you how to create powerful, interactive web applications that have
a well-structured, easy-to-reuse code base that will be easy to maintain. The typical
readers of this book want to learn JavaScript, jQuery, and AngularJS for the purpose of
building highly interactive web applications. The typical reader will also want to
leverage the innovative Model View Controller (MVC) approach of AngularJS to
extend HTML and implement well-designed and structured web pages and web
applications.

What You Will Learn from This Book
Reading this book will enable you to build rich, dynamic interactions into your web
pages and applications. Websites are no longer simple static content that consist of
HTML pages with integrated images and formatted text. Instead, websites have become
much more dynamic, with a single page providing a wide array of functionality and
interactions.
Using AngularJS, jQuery, and JavaScript enables you to build logic directly into your
web applications that allows you to interact with the user from your client-side
application. These technologies also allow you to interact with back-end web services
on the web server to create a comprehensive client-side web application. The following
are a few of the things you will learn while reading this book:

 The basics of the JavaScript language
 How to implement JavaScript, jQuery, and AngularJS in your web pages
 How to dynamically modify page elements in the browser
 How to use browser events to interact with the user directly
 How to implement client-side services that can interact with the web server
 How to implement rich user interface (UI) components, such as zoomable images
and expandable lists
 How to quickly build AngularJS templates with built-in directives that enhance
the user experience
 How to bind UI elements to the data model so that when the model changes, the UI
changes, and vice versa
 How to bind mouse and keyboard events directly to the data model and back-end
functionality to provide robust user interactions
 How to define your own custom AngularJS directives that extend the HTML
language
 How to build dynamic browser views that provide rich user interaction
 How to create custom services that can be easily reused in other AngularJS

applications

Why AngularJS, jQuery, and JavaScript in the Same Book?
The reason we decided to put AngularJS, jQuery, and JavaScript in the same book is
that they all relate to each other. We’ve been asked questions like “Should I use
AngularJS or jQuery?” or “Should I use JavaScript or jQuery?” many times. We see
them as a stack that works together very well.
JavaScript is the base language that is supported by the browser. jQuery extends
JavaScript with a syntax that is much more powerful and user friendly. AngularJS is an
extension of jQuery (or at least a stripped-down version of jQuery) that provides an
extremely powerful MVC framework with robust data binding functionality.
Understanding all three of these technologies and how they work together will make you
a better web developer, even if you use another JavaScript framework or library to
develop, because they provide the fundamental functionality that all good web
applications need. You may decide that simple JavaScript fits the needs in one area, or
jQuery/jQueryUI provides the perfect functionality for some web forms, or that you
need the robust functionality of AngularJS for your web application. Either way, you
will have the skills and understanding to be able to choose and implement the right
technology.

What Is JavaScript?
JavaScript is a programming language much like any other. What separates JavaScript
the most from other programming languages is that the browser has a built-in interpreter
that can parse and execute the language. That means you can write complex applications
that have direct access to the browser events and Document Object Model (DOM)
objects.
Access to the DOM means that you can add, modify, or remove elements from a web
page without reloading it. Access to the browser gives you access to events such as
mouse movements and clicks. This is what gives JavaScript the capability to provide
functionality such as dynamic lists and drag and drop.

What Is jQuery?
jQuery is a library that is built on JavaScript. The underlying code is JavaScript;
however, jQuery simplifies a lot of the JavaScript code into simple-to-use functionality.
The two main advantages to using jQuery are selectors and built-in functions.
Selectors provide quick access to specific elements on the web page, such as a list or
table. They also provide access to groups of elements, such as all paragraphs or all
paragraphs of a certain class. This allows you to quickly and easily access specific

DOM elements.
jQuery also provides a rich set of built-in functionality that makes it easy to do a lot
more with a lot less code. For example, tasks such as hiding an element on the screen or
animating the resizing of an element take just one line of code.

What Is AngularJS?
AngularJS is a client-side framework developed by Google. It is written in JavaScript
with a reduced jQuery library called jQuery lite. The entire ideology behind AngularJS
is to provide a framework that makes it easy to implement well-designed and well-
structured web pages and applications using an MVC framework.
AngularJS provides all that functionality to handle user input in the browser, manipulate
data on the client side, and control how elements are displayed in the browser view.
Here are some of the benefits AngularJS provides:

 Data Binding—AngularJS has a very clean method to bind data to HTML
elements using its powerful scope mechanism.
 Extensibility—The AngularJS architecture enables you to easily extend almost
every aspect of the language to provide your own custom implementations.
 Clean—AngularJS forces you to write clean, logical code.
 Reusable Code—The combination of extensibility and clean code makes it very
easy to write reusable code in AngularJS. In fact, the language often forces you to
do so when you’re creating custom services.
 Support—Google is investing a lot in this project, which gives it an advantage
where other similar initiatives have failed.
 Compatibility—AngularJS is based on JavaScript and has a close relationship
with jQuery. That makes it easier to begin integrating AngularJS into your
environment and reuse pieces of your existing code within the structure of the
AngularJS framework.

Beyond AngularJS, jQuery, and JavaScript
This book covers more than jQuery and JavaScript because you need to know more than
the language structure to create truly useful web applications. The goal of this book is to
give you the fundamental skills needed to create fully functional and interactive web
applications in just 29 short, easy lessons. This book covers the following key skills
and technologies:

 HTML is the most current recommendation for web page creation. Every example
in this book is validated HTML5, the most recent recommended version.
 CSS is the standard method for formatting web elements. You not only learn how

to write CSS and CSS3, but also how to dynamically modify it on-the-fly using
jQuery and JavaScript.
 JavaScript is the best method to provide interactions in web pages without the
need to load a new page from the server. This is the standard language on which
most decent web applications are built.
 jQuery and jQueryUI are some of the most popular and robust libraries for
JavaScript. jQuery provides very quick access to web page elements and a robust
set of features for web application interaction. jQuery provides additional UI
libraries that provide rich UI components for web applications.
 AJAX is the standard method that web applications use to interact with web
servers and other services. The book includes several examples of using AJAX to
interact with web servers, Google, Facebook, and other popular web services.

Code Examples
Many of the examples in the book provide the following elements:

 HTML code—Code necessary to provide the web page framework in the
browser.
 CSS code—Code necessary to style the web page elements correctly.
 JavaScript code—This includes the AngularJS, jQuery, and JavaScript code that
provide interactions between the user, web page elements, and web services.
 Figures—Most of the examples include one or more figures that illustrate the
behavior of the code in the browser.

The titles for the listing blocks include a filename of the file that contains the source.
These files can be obtained from the book’s website (follow the directions on the back
cover of this book).
The examples in the book are basic to make it easier for you to learn and implement.
Many of them can be expanded and used in your own web pages. In fact, some of the
exercises at the end of each lesson have you expand on the examples.

Development Web Server
I chose Node.js with Express as the web server for the development environment for
this book. You will get a chance to set up Node.js as the web server in Lesson 1. There
are several reasons I chose Node.js over a more traditional web server like Apache or
IIS, including the following:

 Node.js is extremely easy to install and set up.
 You can use Node.js to test your JavaScript snippets without having to use a web
browser.

 There is a great Node.js plug-in for Eclipse that allows you to easily debug
JavaScript.
 You do not need to understand a back-end scripting language such as PHP, Python,
or Ruby because you can write your server-side script for Node.js in JavaScript.

Special Elements
As you complete each lesson, margin notes help you immediately apply what you just
learned to your own web pages.
Whenever a new term is used, it is clearly explained. No flipping back and forth to a
glossary!

Tip
Tips and tricks to save you precious time are set aside in Tips so that you
can spot them quickly.

Note
Notes highlight interesting information you should be sure not to miss.

Caution
When there’s something you need to watch out for, you’ll be warned about
it in a Caution.

Q&A, Quizzes, and Exercises
Every lesson ends with a short question-and-answer session that addresses the kind of
“dumb questions” everyone wants to ask. A brief but complete quiz lets you test
yourself to be sure you understand everything presented in the lesson. Finally, one or
two optional exercises give you a chance to practice your new skills before you move
on.

Finally
We hope you enjoy this book and enjoy learning about JavaScript, jQuery, and
AngularJS as much we did. These are great, innovative technologies that are really fun
to use. Soon you’ll be able to join the many other web developers who use them to build
rich, dynamic, and interactive websites and web applications.

Part I: Introduction to AngularJS,
jQuery, and JavaScript Development

Lesson 1. Introduction to Dynamic Web Programming

What You’ll Learn in This Lesson:
 Getting ready for creating dynamic web pages
 Creating an AngularJS, jQuery, and JavaScript-friendly development environment
 Adding JavaScript and jQuery to web pages
 Constructing web pages to support jQuery and JavaScript
 Creating your first dynamic web pages with jQuery and JavaScript

JavaScript and its amped-up companions, jQuery and AngularJS, have completely
changed the game when it comes to creating rich interactive web pages and web-based
applications. JavaScript has long been a critical component for creating dynamic web
pages. Now, with the advancements in the jQuery and AngularJS libraries, web
development has changed forever.
This lesson quickly takes you through the world of jQuery and JavaScript development.
The best place to start is to ensure that you understand the dynamic web development
playground that you will be playing in. To be effective in JavaScript and jQuery, you
need a fairly decent understanding of web server and web browser interaction, as well
as HTML and CSS.
This lesson includes several sections that briefly give a high-level overview of web
server and browser interactions and the technologies that are involved. The rest of this
lesson is dedicated to setting up and configuring an AngularJS, jQuery, and JavaScript
friendly development environment. You end with writing your very first web pages that
include JavaScript and jQuery code.

Understanding the Web Server/Browser Paradigm
JavaScript, jQuery, and AngularJS can interact with every major component involved in
communication between the web server and the browser. To help you understand that
interaction better, this section provides a high-level overview of the concepts and
technologies involved in web server/browser communication. This is not intended to be
comprehensive by any means; it’s simply a high-level overview that enables you to put
things into the correct context as they are discussed later in the book.

Looking at Web Server to Browser Communication Terms
The World Wide Web’s basic concept should be very familiar to you: An address is
typed into or clicked in a web browser, and information is loaded and displayed in a
form ready to be used. The browser sends a request, the server sends a response, and
the browser displays it to the user.

Although the concept is simple, several steps must take place for the data to be
requested from the server and displayed in the browser. The following sections define
the components involved, their interactions with each other, and how JavaScript,
jQuery, and AngularJS are involved.

Web Server
The web server is the most critical component of the web. Without it, no data would be
available at all. The web server responds to requests from browsers by sending data
that the browsers then use or display. A lot of things happen on the web server, though.
For example, the web server and its components check the format and validity of
requests. They may also check for security to verify that the request is from an allowed
user. To build the response, the server may interact with several components and even
other remote servers to obtain the data necessary.

Browser
The next most important component is the browser. The browser sends requests to the
web server and then displays the results for the user. The browser also has a lot of
things happening under the hood. The browser has to parse the response from the server
and then determine how to represent that to the user.
Although several browsers are available, the three most popular are Chrome, Internet
Explorer, and Firefox. For the most part, each browser behaves the same when
displaying web pages; however, occasionally some differences exist, and you will need
to carefully test your JavaScript, jQuery, and AngularJS scripts in each of the major
browsers that you are required to support.
JavaScript, jQuery, and AngularJS can be very involved in the interactions that occur
between the browser receiving the response and the final output rendered for the user.
These scripts can change the format, content, look, and behavior of the data returned
from the server. The following sections describe important pieces provided by the
browser.

DOM
The browser renders an HTML document into a web page by creating a Document
Object Model, or DOM. The DOM is a tree structure of objects with the HTML
document as the root object. The root can have several children, and those children can
have several children. For example, a web page that contains a list would have a root
object, with a child list object that contained several child list element objects. The
following shows an example of simple DOM tree for a web page containing a single
heading and a list of three cities:
Click here to view code image

document
 + html
 + body
 + h1
 + text = "City List"
 + ul
 + li
 + text = "New York, US"
 + li
 + text = "Paris, FR"
 + li
 + text = "London, EN"

The browser knows how to display each node in the DOM and renders the web page by
reading each node and drawing the appropriate pixels in the browser window. As you
learn later, JavaScript, jQuery, and AngularJS enable you to interact directly with the
DOM, reading each of the objects, changing those objects, and even removing and
adding objects.

Browser Events
The browser tracks several events that are critical to AngularJS, jQuery, and JavaScript
programs—for example, when a page is loaded, when you navigate away from a page,
when the keyboard is pressed, mouse movements, and clicks. These events are
available to JavaScript, allowing you to execute functionality based on which events
occur and where they occur.

Browser Window
The browser also provides limited access to the browser window itself. This allows
you to use JavaScript to determine the display size of the browser window and other
important information that you can use to determine what your scripts will do.

URL
The browser is able to access files on the web server using a Uniform Resource
Locator, or URL. A URL is a fully unique address to access data on the web server,
which links the URL to a specific file or resource. The web server knows how to parse
the URL to determine which file/resources to use to build the response for the browser.
In some instances, you might need to use JavaScript to parse and build URLs, especially
when dynamically linking to other web pages.

HTML/HTML5
Hypertext Markup Language, or HTML, provides the basic building blocks of a web
page. HTML defines a set of elements representing content that is placed on the web
page. These element tags are used to create objects in the DOM. Each element tag pair

is represented as an object in the DOM. Each element is enclosed in a pair of tags
denoted by the following syntax:

<tag>content</tag>

For example:
Click here to view code image

<p>This is an HTML paragraph.</p>.

The web browser knows how to render the content of each of the tags in the appropriate
manner. For example, the tag <p> is used to denote a paragraph. The actual text that is
displayed on the screen is the text between the <p> start tag and the </p> end tag.
The format, look, and feel of a web page is determined by placement and type of tags
that are included in the HTML file. The browser reads the tags and then renders the
content to the screen as defined.
HTML5 is the next generation of the HTML language that incorporates more media
elements, such as audio and video. It also provides a rich selection of vector graphic
tags that allow you to draw sharp, crisp images directly onto the web page using
JavaScript.
Listing 1.1 shows an example of the HTML used to build a simple web page with a list
of planets. The HTML is rendered by the browser into the output shown in Figure 1.1.

FIGURE 1.1 List of planets rendered in a browser using the code from Listing 1.1.

LISTING 1.1 list.html A Simple HTML Document That Illustrates the HTML
Code Necessary to Render a List in a Browser

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Server Side Script</title>
05 <meta charset="utf-8"/>
06 </head>
07 <body>
08
09 Mercury
10 Venus
11 Earth
12 Mars
13
14 </body>
15 </html>

CSS/CSS3
One of the challenges with web pages is getting them to look sharp and professional.
The generic look and feel that browsers provide by default is functional; however, it is
a far cry from the sleek and sexy eye candy that users of today’s Internet have come to
expect.
Cascading Style Sheets, or CSS, provide a way to easily define how the browser
renders HTML elements. CSS can be used to define the layout as well as the look and
feel of individual elements on a web page.
CSS3, or Cascading Style Sheets level 3, is the next generation of CSS that incorporates
more special effects, such as transformations and animations. It also provides rich
additions for borders, backgrounds, and text.
To illustrate CSS, we’ve added some CSS code to our example from Listing 1.1. Listing
1.2 uses CSS to modify several attributes of the list items, including the text alignment,
font style, and changing the list bullet from a dot to a check-mark image. Notice how the
CSS style changes how the list is rendered in Figure 1.2.

FIGURE 1.2 The CSS code dramatically changes the look of the list in the browser.

LISTING 1.2 style.htm HTML with Some CSS Code in <STYLE> Element to
Alter the Appearance of the List

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Style</title>
05 <meta charset="utf-8" />
06 <style>
07 li {
08 text-align: center;
09 font-family: "Times New Roman", Times, serif;
10 font-size: 30px;
11 font-style: italic;
12 font-weight: bold;
13 list-style-image: url('/images/check.png');
14 list-style-position: inside;
15 }
16 </style>
17 </head>
18 <body>
19
20 Mercury
21 Venus
22 Earth
23 Mars
24
25 </body>
26 </html>

HTTP/HTTPS Protocols
Hypertext Transfer Protocol (HTTP) defines communication between the browser and
the web server. It defines what types of requests can be made, as well as the format of
those requests and the HTTP response.
Hypertext Transfer Protocol with Secure Sockets Layer (HTTPS) adds an additional
security layer, SSL/TLS, to ensure secure connections. When a web browser connects
to a web server via HTTPS, a certificate is provided to the browser. The user is then
able to determine whether to accept the certificate. Without the certificate, the web
server will not respond to the user’s requests, thus ensuring that the request is coming
from a secured source.
The following sections discuss HTTP headers and the two most common types of HTTP
request, GET and PUT.

HTTP Headers
HTTP headers allow the browser to define the behavior and format of requests made to
the server and the response back to the web browser. HTTP headers are sent as part of
an HTTP request and response. You can send HTTP requests to web servers from
JavaScript, so you need to know a little bit about the headers required.
The web server reads the request headers and uses them to determine how to build a
response for the browser. As part of the response, the web server includes response
headers that tell the browser how to process the data in the response. The browser
reads the headers first and uses the header values when handling the response and
rendering the page.
Following are a few of the more common ones:

 ACCEPT—Defines content types that are acceptable in the response.
 AUTHORIZATION—Specifies authentication credentials used to authenticate
the requesting user.
 COOKIE—Cookie value that was previously set in the browser by a server
request. Cookies are key/value pairs that are stored on the client. They can be set
via server requests or JavaScript code and are sent back to the server as part of
HTTP requests from the browser.
 SET-COOKIE—Cookie value from the server that the browser should store if
cookies are enabled.
 CONTENT-TYPE—Type of content contained in the response from the web
server. For example, this field may be “text/plain” for text or
“image/png” for a .png graphic.
 CONTENT-LENGTH—Amount of data that is included in the body of the

request or response.
Many more headers are used in HTTP requests and responses, but the preceding list
should give you a good idea of how they are used.

GET Request
The most common type of HTTP request is the GET request. The GET request is
generally used to retrieve information from the web server—for example, to load a web
page or retrieve images to display on a web page. The file to retrieve is specified in the
URL that is typed into the browser, for example:
Click here to view code image

http://www.dayleycreations.com/tutorials.html

A GET request is composed entirely of headers with no body data. However, data can
be passed to the server in a GET request using a query string. A query string is sent to
the web server as part of the URL. The query string is formatted by specifying a ?
character after the URL and then including a series of one or more key/value pairs
separated by & characters using the following syntax:
Click here to view code image

URL?key=value&key=value&key=value...

For example, the following URL includes a query string that specifies a parameter
gallery with a value of 01 that is sent to the server:
Click here to view code image

http://www.dayleycreations.com/gallery.html?gallery=01

POST Request
A POST request is different from a GET request in that there is no query string. Instead,
any data that needs to be sent to the web server is encoded into the body of the request.
POST request are generally used for requests that change the state of data on the web
server. For example, a web form that adds a new user would send the information that
was typed into the form to the server as part of the body of a POST.

Web Server and Client-Side Scripting
Originally, web pages were static, meaning that the file that was rendered by the
browser was the exact file that was stored on the server. The problem is that when you
try to build a modern website with user interactions, rich elements, and large data, the
number of web pages needed to support the different static web pages is increased
dramatically.
Rather than creating a web server full of static HTML files, it is better to use scripts that

use data from the web server and dynamically build the HTML that is rendered in the
browser.
Those scripts can run either on the server or in the client browser. The following
sections discuss each of those methods. Most modern websites use a combination of
server-side and client-side scripting.

Client-Side Scripting
Client-side scripting is the process of sending JavaScript code along with the web page.
That code gets executed either during the loading of the web page or after the web page
has been loaded.
There are a couple of great advantages of client-side scripting. One is that data
processing is done on the client side, which makes it easier to scale applications with
large numbers of users. Another is that browser events can often be handled locally
without the need to send requests to the server. This enables you to make interfaces
respond to user interaction much more quickly.
JavaScript, jQuery, and now AngularJS are by far the most common forms of client-side
scripting. Throughout this book, you learn why that is the case.
Figure 1.3 diagrams the flow of data between the web server and the browser for a
simple client-side script that uses JavaScript to populate an empty element with a
list of planets. Notice that the file located on the server is the same one sent to the
browser, but in the browser, the JavaScript adds elements for each planet. You
do not need to fully understand the JavaScript code yet, just that the HTML is
dynamically changed on the client and not the server.

FIGURE 1.3 The JavaScript is executed in the browser, and so the HTML document
rendered by the browser is different from the one that was originally sent.

Server-Side Scripting
There are two major types of server-side scripting. These are server-side templates and
AJAX request handlers. Each of these methods requires that code be written on the
server to either dynamically generate an HTML document before it is sent to the
browser or to dynamically generate data that can be consumed by a client-side
application.

Server-Side Templates
The first type is to use a PHP, .Net, Java, or other type of application that is run on the
server that generates the HTML page, or at least parts of the HTML page, dynamically
as they are requested by the client.
The main advantages of this type of server-side scripting is that data processing is done
completely on the server side and the raw data is never transferred across the Internet;
also, problems and data fix-ups can be done locally within the server processing.
The disadvantage of this type of server-side scripting is that it requires more processing
on the server side, which can reduce the scalability of some applications.
Figure 1.4 illustrates using a simple Node.js application on the server that will
dynamically create an HTML document that populates a list of planets. In the example in
Figure 1.3, PHP code is used, and the web server’s PHP engine will replace the code in

the <?php> tag with the output generated by the PHP script.

FIGURE 1.4 The PHP script is executed on the web server, and so the HTML
document sent to the browser is different from what is actually contained on the

server.

You don’t necessarily need to understand how the code works at this point; you only
need to understand that the HTML document is dynamically generated on the server and
not the client.

Note
There are numerous methods of using HTML templates on the server-side.
We do not cover those here because they are out of the scope of the book. If
you would like to learn more about server-side scripting, you might
investigate PHP, Ruby on Rails, and Node.js more fully.

AJAX Handlers
The second major type of server-side scripts are applications that return raw data in the
form of raw JSON or XML to the browser in response to an Asynchronous JavaScript

plus XML or AJAX request. AJAX requests are designed to allow JavaScript running
in the browser client to get raw data from the server.
AJAX reduces the need to reload the web page or load other web pages as the user
interacts. This reduces the amount of data that needs to be sent with the initial web
server response and also allows web pages to be more interactive.
For a simple example of AJAX, we’ve constructed two scripts—Listing 1.3 and Listing
1.4. Listing 1.3 is an HTML document with JavaScript that runs on the client after the
page is loaded. The JavaScript makes an AJAX request back to the server to retrieve
the list of planets via a server-side script. Listing 1.4 simulates the JSON data that
could be returned by the server-side script. The list of planets returned is then used to
populate the HTML list element with items.

LISTING 1.3 ajax.html A Simple JavaScript Client-Side Script Executes an AJAX
Request to the Server to Retrieve a List of Planets to Use When Building the
HTML List Element

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>AJAX</title>
05 <meta charset="utf-8" />
06 <script>
07 var xmlhttp = new XMLHttpRequest();
08 function loadPlanets(){
09 xmlhttp.open("GET","/lesson01/data.html",false);
10 xmlhttp.send();
11 var planets = JSON.parse(xmlhttp.responseText);
12 var ulElement = document.getElementById("planetList");
13 for (var planet in planets){
14 var listItem =
ulElement.appendChild(document.createElement("li"));
15 listItem.appendChild(document.createTextNode(planets[planet]));
16 }
17 }
18 </script>
19 </head>
20 <body onload="loadPlanets()">
21 <ul id="planetList">
22
23 </body>
24 </html>

LISTING 1.4 data.html Dynamic JSON Data Generated by a Server-Side Script

01 [
02 "Mercury",
03 "Venus",
04 "Earth",
05 "Mars"
06]

Figure 1.5 illustrates the flow of communication that happens during the AJAX
request/response. Notice that a second request is made to the server to retrieve the list
of cities.

FIGURE 1.5 Using an AJAX request, JavaScript can send an additional request to
the server to retrieve additional information that can be used to populate the web

page.

Setting Up a Web Development Environment
With the brief introduction to dynamic web programming out of the way, it is time to cut
to the chase and get your development environment ready to write jQuery and
JavaScript.
The development environment can make all the difference when you are writing jQuery
and JavaScript projects. The development environment should have these following
components:

 Easy to Use IDE—The IDE provides text editors that allow you to modify your
code in the simplest manner possible. Choose an IDE that you feel comfortable
with and that is extensible to support HTML, CSS, JavaScript, jQuery, and
AngularJS.
 Development Web Server—You should never develop directly on a live web
server (although most of us have done it at one point or another). A test

development web server is required to test out scripts and interactions.
 Development Web Browser(s)—Again, you should initially develop to the
browser that you are most comfortable with or that will be the most commonly
used.

For the purposes of this book, we have chosen to use Eclipse for the IDE and Node.js
for the development web server. These technologies are very easy to set up, configure,
and get going with. They also integrate well with each other and are easily extended.
The following sections take you through the process of setting up Node.js and Eclipse
for JavaScript development.

Setting Up Node.js
Node.js is a JavaScript platform based on Google Chrome’s V8 engine that enables you
to run JavaScript applications outside of a web browser. It is an extremely powerful
tool, but this book covers only the basics of using it as the web server to support your
web application examples.
To install and use Node.js, you need to perform the following steps:

1. Go to the following URL and click INSTALL. This will download an installable
package to your system. For Windows boxes, you will get an .MSI file; for Macs,
you will get a .PKG file; and for Linux boxes, you can get a .tar.gz file.
http://nodejs.org

2. Install the package. For Windows and Macs, simply install the package file. For
Linux, go to the following location for instructions on installing using a package
manager:
https://github.com/joyent/node/wiki/Installing-
Node.js-via-package-manager

3. Open a terminal or console window.
4. Type node to launch the Node.js JavaScript shell, and you should see a >

prompt. The Node.js shell provides the capability to execute JavaScript
commands directly on the underlying JavaScript engine.

5. If the node application is not found, you need to add the path to the node binary
directory to the PATH for your development system (this process is different for
each different platform). The binary directory is typically /usr/local/bin/ on Macs
and Linux boxes. On Windows, the binary directory will be in the <install>/bin
folder, where <install> is the location you specified during the installation
process.

6. Then you get to the > prompt. Type the following command and verify that Hello
is printed on the screen, as shown in Figure 1.6:

http://nodejs.org
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager

console.log("Hello");

FIGURE 1.6 Starting and using the Node.js command prompt.

7. Use the following command to exit the Node.js prompt:
process.exit();

You have now successfully installed and configured Node.js.

Configuring Eclipse as a Web Development IDE
The IDE is the most important aspect when developing with JavaScript. An IDE
integrates the various tasks required to write web applications into a single interface. In
reality, you could use any text editor to write HTML, CSS, JavaScript, and jQuery code.
However, you will find it much more productive and easy to use a good IDE.
We chose Eclipse for this book because it is a great general IDE that is easy to
configure and set up. You can use your own IDE if you would rather; however, this
might be a good chance to try a different IDE if you are unfamiliar with Eclipse.

Note
You will need to have a Java JRE or JDK installed to be able to install
Eclipse.

Use the following steps to download, install, and configure Eclipse:
1. Install a Java JRE or JDK. For this book, we downloaded and installed the Java

SE Development Kit 8 from the following location:
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-
2133151.html

2. Download and extract Eclipse. The location you extract the Eclipse files to will
be the installation location. For this book, we installed the Luna version Eclipse

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

IDE for Java Developers from the following location:
http://www.eclipse.org/downloads/

3. Start Eclipse by double-clicking the Eclipse executable file.
4. After Eclipse has loaded, install the Node.js plug-in for Eclipse by selecting

Help, Eclipse Marketplace from the main menu. Then type nodeclipse into the
Find box and click Install to install the package, as shown in Figure 1.7. You will
need to accept the license agreement as part of the install process.

FIGURE 1.7 Installing the Nodeclipse plug-in for Eclipse.

5. After the Nodeclipese plug-in is installed, install the HTML Editor plug-in by
selecting Help, Eclipse Marketplace from the main menu. Then type html editor
into the Find box and click Install to install the package, as shown in Figure 1.8.
You will need to accept the license agreement as part of the install process.

http://www.eclipse.org/downloads/

FIGURE 1.8 Installing the HTML Editor plug-in for Eclipse.

6. Restart Eclipse to enable the new plug-ins.
7. Verify that the .js extensions uses Nodeclipse and .html extensions use HTML

Editor as their default editors. To do this, select Window, Preferences, and then
select General, Editors, File Associations and click the file types to see the
associated editors, as shown in Figure 1.9.

FIGURE 1.9 Setting default editors for file types in Eclipse.

8. Set the path to the Node.js executable by selecting Window, Preferences and then
selecting Nodeclipse in the navigation pane. The Node.js path option is toward
the top of the options.

9. Create a project for this book by selecting File, New, Project to launch the New
Project Wizard. Then select Node, Node.js Project. Click Next and type in the
name of the project; for example, LearningJavaScript. Then click Finish to create
the project.

10. Now we’ll validate that things work by creating and running a JavaScript

Application from Eclipse. Select the new project and then select File, New
JavaScript File from the main menu. Name the file first.js and click Finish to
create the file.

11. Type the following line of code into the file and save it:
console.log("Hello");

12. Double-click to the left of line number 2 so that a small circle appears, noting that
a breakpoint has been set.

13. Select Run, Run As, Node Application. You should see the word “Hello” printed
to the Console window, as shown in Figure 1.10.

FIGURE 1.10 Running a JavaScript application in Eclipse.

Eclipse is now set up and ready for you to begin developing JavaScript.

Note
You can also run JavaScript applications from a console prompt by typing
in the command:
node <path_to_JavaScript_file>

Creating an Express Web Server Using Node.js
Node.js is a very modular platform, meaning that Node.js itself provides a very efficient

and extensible framework, and external modules are utilized for much of the needed
functionality. Consequently, Node.js provides a very nice interface to add and manage
these external modules.
Express is one of these modules. The Express module provides a simple-to-implement
web server with a robust feature set, such as static files, routes, cookies, request
parsing, and error handling.
The best way to use Node.js as the web server for your web development is to utilize
the Express module. In the following exercise, you build a Node.js/Express web server
and use it to serve static files.
Use the following steps to build and test a Node.js/Express web server capable of
supporting static files and server-side scripting:

1. Open a console prompt and navigate to the location where you created the project
folder for this book. If you don’t know the path, right-click the project in Eclipse
and select Properties from the menu. Then select Resource, and the full path to the
project folder is shown in the Location field to the right.

2. From a console prompt in the project folder, execute the following command, as
shown in Figure 1.11. This command will install the Express module version
4.6.1 for Node.js into a subfolder named node_modules:
npm install express@4.6.1

FIGURE 1.11 Installing the Express npm module for Node.js from a console prompt.

Note
Node occasionally has an issue on some systems where it cannot

automatically create a folder to store modules in. You may see an error
message similar to the following. If you do, create the npm folder in the
path specified, and the npm install command should work:

Click here to view code image

Error: ENOENT, s≠tat 'C:\Users\Brad\AppData\Roaming\npm'
node <path_to_JavaScript_file>

3. Execute the following command to install the body-parser module for Node.js.
This module makes it possible to parse the query parameters and body from HTTP
GET and POST requests. This command will install the body-parser module
version 1.6.5 for Node.js into a subfolder named node_modules:
npm install body-parser@1.6.5

4. Go back to Eclipse, right-click the project, and select Refresh. You should see the
node_modules folder with body-parser and express subfolders.

5. Create a file named server.js in the root of your project directory, place the
contents from Listing 1.5 inside of it, and save it. This is a basic Node.js/Express
web server that will service static files using the root of your project directory as
the website root location.

6. Verify that your Node.js web server will run correctly. Start the web server by
right-clicking the server.js file and selecting Run As, Node Application from the
menu. The Console window, shown in Figure 1.12, should show that the server.js
file is running and provide a red box to stop the server. If you are running multiple
applications in Eclipse, you can click the Console Select button to select a
specific console, as shown in Figure 1.12.

FIGURE 1.12 Running a JavaScript application in Eclipse.

7. Hit the server from a web browser at the following address. Because the web
server is servicing static files using the ./ path, the actual contents of the server.js
file should be displayed in the browser:
localhost/server.js

8. Stop the web server by clicking the red box in the Console window.

Note
If you are not familiar with Eclipse, you should take a minute to practice
starting and stopping the server and running the first.js application at the
same time to understand starting and stopping applications and how to
navigate between them in the console window.

You have now successfully set up a Node.js/Express web server in Eclipse. You will
use this web server for most of the examples in the book. A few of the lessons require
AJAX interaction, and a separate server will be created for those lessons.

LISTING 1.5 server.js Creating a Basic Node.js/Express Web Server

Click here to view code image

01 var express = require('express');
02 var app = express();
03 app.use('/', express.static('./'));
04 app.listen(80);

Try it Yourself: Creating a Dynamic Web Page with jQuery and JavaScript
Now that you have a project created and a working web server, you are ready to
create your dynamic web pages. In this section, you follow the steps to create a
fairly basic dynamic web page. When you are finished, you will have a dynamic
web page based on HTML, stylized with CSS with interaction through jQuery
and JavaScript.

Note
The images and code files for this and all the examples throughout this
book can be downloaded from the code archive on Github.

Adding HTML
The first step is to create a simple web page that has an HTML element that you can
stylize and manipulate. Use the following steps in the editor to create the HTML
document that you will use as your base:

1. Create a folder named lesson01 in your project.
2. Right-click the lesson01 folder that you created.
3. Select New, File from the pop-up menu.
4. Name the file first.html and click OK. A blank document should be opened up for

you.
5. Type in the following HTML code. Don’t worry if you are not too familiar with

HTML; you’ll learn enough to use it a bit later in the book:
Click here to view code image

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8"
/>
 </head>
 <body>
 Click Me
 </body>
</html>

6. Save the file.
7. Open the following URL in your web browser and you should see the text “Click

Me” appear:
Click here to view code image

http://localhost/lesson01/first.html

That’s it. All the basic HTML elements are now in place. In the next section, you stylize
the element so that Click Me looks more like a button.

Adding CSS
The simple text rendered by the browser is pretty plain, but that problem can quickly be
solved by adding a CSS style. In this section, you use CSS to make the text appear more
like a button.
Use the following steps to add the CSS style to the element. For reference, the
style changes you make in these steps are shown in the final script in Listing 1.6:

1. Add the following code inside the <head> tags of the web page to include a
CSS <style> element for all elements:

<style>
 span{
 }
</style>

2. Add the following property setting to the span style to change the background of
the text to a dark blue color:
background-color: #0066AA;

3. Add the following property settings to the span style to change the font color to
white and the font to bold:
color: #FFFFFF;
font-weight: bold;

4. Add the following property settings to the span style to add a border around the
span text:
border-color: #C0C0C0;
border:2px solid;
border-radius:5px;
padding: 3px;

5. Add the following property settings to the span style to set an absolute position
for the span element:
position:absolute;
top:150px;
left:100px;

6. Save the file.
7. Open the following URL in your web browser, and you should see the stylized

text Click Me appear, as shown in Figure 1.13:
Click here to view code image

http://localhost/lesson01/first.html

FIGURE 1.13 element stylized to look like a button.

Writing a Dynamic Script
Now that the HTML is stylized the way you want it, you can begin adding dynamic
interactions. In this section, you add a link to a hosted jQuery library so that you will be
able to use jQuery, and then you link the browser mouse event mouseover to a
JavaScript function that moves the text.
Follow these steps to add the jQuery and JavaScript interactions to your web page:

1. Change the element to include an ID so that you can reference it, and
also add a handler for the mouseover event, as shown in line 30 of Listing 1.6:

Click here to view code image

Click Me

2. Add the following line of code to the <head> tag, as shown in line 6 of Listing
1.6. This loads the jQuery library from a hosted source:

Click here to view code image

<script src="https://code.jquery.com/jquery-2.1.3.min.js"></script>

3. Add the following JavaScript function to the <head>, as shown in lines 6–13 of
Listing 1.6. This function creates an array of coordinate values from 10 to 350,
then randomly sets the top and left CSS properties of the span element each time
the mouse is moved over it:

Click here to view code image

function moveIt(){
 var coords = new Array(10,50,100,130,175,225,260,300,320,350);
 var x = coords[Math.floor((Math.random()*10))];
 var y = coords[Math.floor((Math.random()*10))];
 $("#elusiveText").css({"top": y + "px", "left": x + "px"})
}

4. Save the file.
5. Open the following URL in your web browser, and you should see the stylized

text Click Me appear, as shown in Figure 1.13:
Click here to view code image

http://localhost/lesson01/first.html

6. Now try to click the Click Me button. The button should move each time the
mouse is over it, making it impossible to click it.

7. Find someone who annoys you, and ask them to click the button.

LISTING 1.6 A Simple Interactive jQuery and JavaScript Web Page

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <meta charset="utf-8" />
05 <script src="https://code.jquery.com/jquery-2.1.3.min.js"></script>
06 <script>
07 function moveIt(){

08 var coords = new Array(10,50,100,130,175,225,260,300,320,350);
09 var x = coords[Math.floor((Math.random()*10))];
10 var y = coords[Math.floor((Math.random()*10))];
11 $("#elusiveText").css({"top": x + "px", "left": y + "px"})
12 }
13 </script>
14 <style>
15 span{
16 background-color: #0066AA;
17 color: #FFFFFF;
18 font-weight: bold;
19 border-color: #C0C0C0;
20 border:2px solid;
21 border-radius:5px;
22 padding: 3px;
23 position:absolute;
24 top:150px;
25 left:100px;
26 }
27 </style>
28 </head>
29 <body>
30 Click Me
31 </body>
32 </html>

Summary
In this lesson, you learned the basics of web server and browser communications. You
learned differences between GET and POST requests, as well as the purposes of
server-side and client-side scripts. You also learned about the DOM and how the
browser uses it to render the web page that is displayed to the user.
You have set up a good web development environment and created your first project.
As part of creating your first project, you created a dynamic web page that incorporates
HTML, CSS, jQuery, and JavaScript.

Q&A
Q. Which is better—a client-side or a server-side script?
A. It really depends on what you are trying to accomplish. Some people say that one

way or the other is the only way to go. In reality, it is often a combination of the
two that provides the best option. A good rule to follow is that if the interaction
with the data is heavier based on user interaction such as mouse clicks, use a
client-side script. If validation or error handling of the data requires interaction
with the server, use a server-side script.

Q. Why don’t all browsers handle JavaScript the same way?

A. To render HTML and interact with JavaScript, the browsers use an engine that
parses the data from the server, builds objects, and then feeds them into a
graphical rendering engine that writes them on the screen. Because each browser
uses a different engine, each interprets the scripts slightly differently, especially
with fringe elements that have not yet become standardized. If you want to
support all browsers, you need to test your web pages in each of them to verify
that they work correctly.

Workshop
The workshop consists of a set of questions and answers designed to solidify your
understanding of the material covered in this lesson. Try answering the questions before
looking at the answers.

Quiz
1. Would you send a GET or a POST request to a web server to open a web page?
2. What type of script has access to browser mouse events: server-side, client-side,

or both?
3. True or false: JavaScript consoles are enabled by default on all browsers.
4. What type of script is the best to use when defining the appearance of DOM

elements?

Quiz Answers
1. GET
2. Client-side
3. False. You must manually enable JavaScript debugging on all browsers. Pressing

F12 in most browsers will launch the Developer Tools that allow you to debug
JavaScript.

4. CSS scripts are the simplest to use when defining the appearance of DOM
elements.

Exercises
1. Modify your first.html file to change the background color of your button

randomly each time it is moved. Add the following two lines to randomly select a
color:

Click here to view code image

var colors = new Array("#0066AA", "#0000FF", "#FF0000", "#00FF00");
var color = colors[Math.floor((Math.random()*4))];

Then modify the CSS change in your JavaScript to include background-color, as
shown next:

Click here to view code image

$("#elusiveText").css({"top": y + "px", "left": x + "px", "background-
color": color})

2. Add an additional element to your first.html file with the same behavior
as the first. To do this, add the following two lines in the appropriate locations.
You should be able to figure out where they go:

Click here to view code image

$("#elusiveText2").css({"top": x + "px", "left": y + "px"})
Click Me

Lesson 2. Debugging JavaScript in Web Pages

What You’ll Learn in This Lesson:
 Where to find information that is outputted from JavaScript scripts
 How to debug problems with HTML elements
 Ways to more easily find and fix problems with CSS layout
 Methods to view and edit the DOM live in the web browser
 How to quickly find and fix problems in your JavaScript
 What information is available to analyze network traffic between the browser and
the web server

A major challenge when writing JavaScript applications is finding and fixing problems
in your scripts. Simple syntax problems or invalid values can cause a lot of frustration
and wasted time. For that reason, some excellent tools have been created to help you
quickly and easily find problems in your scripts. In this lesson, you learn some of the
basics of debugging JavaScript via the browser developer tools.
This lesson uses the Chrome developer tools to illustrate how to debug JavaScript in
web pages. If you are already familiar with using the developer tools to debug HTML,
CSS, and JavaScript, you can probably skip this lesson and move on to the next.
Although the developer tools console in Chrome, IE, and Firefox are a bit different,
most of the principles are the same across browsers, and you should be able to apply
the concepts equally. Also, don’t be alarmed if you don’t recognize the code element in
the examples. They’ll be covered in upcoming lessons, but you should be able to debug
before you jump into coding heavily.

Viewing the Developer Tools Console
One of the first debugging tools that you will want to become familiar with is the
developer tools console. The console is your interface to output from JavaScript scripts.
Errors and log messages will be displayed as they occur in the JavaScript console.
For example, when an error in the script results in the browser not being able to parse
it, the error will be displayed in the console. In addition to errors, by using the
console.log statement, you can add your own debug statements to be displayed in the
JavaScript console.
The developer tools can be accessed in Chrome using F12 or Ctrl+Shift+i on Windows
or Cmd-Shift-i on Macs.

Note

In addition to console.log, you can use console.error(),
console.assert(), and a variety of other statements to log
information to the JavaScript console.

Understanding the Browser Developer Tools Console
When you open the developer tools, you see a series of tabs. The console tab, shown in
Figure 2.1, acts as the interface to your JavaScript output. console.log() and error
messages are displayed here.

FIGURE 2.1 The JavaScript console in Chrome displays log messages and errors.

Notice that in the messages portion in Figure 2.1, there are two types of messages. One
is a log statement, and the second is an error. Both show the line number to the right. If
you click the line number, you go directly to the code.
Notice in the error message, the top portion of text refers to the error that occurred and
the bottom shows the actual JavaScript line. This is useful when debugging because you
can often see the problem by looking at the error and the single line of code.

Try it Yourself: Using the JavaScript Console to Find Errors
The simplest way to understand using the console is to debug an actual script.
Consider the HTML code in Listing 2.1, which contains several errors. Use the
following steps to add the listing to your project in Eclipse:
1. Right-click the project and select New, Folder from the menu.
2. Name the folder lesson02 and click Finish.

3. Right-click the new folder and select New, File from the menu.
4. Name the file js_errors.html.
5. Type in the contents of Listing 2.1, or if you have the file from the website, cut

and paste the contents into the new file.
6. Save the file.

LISTING 2.1 js_errors.html A Very Simple HTML Document with JavaScript
Errors

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <meta charset="utf-8"/>
05 <script>
06 fnction loadedFunction(){
07 console.log("Page is Loaded");
08 }
09 function clickItNow(){
10 console.log("User Clicked");
11 }
12 </script>
13 </head>
14 <body onload="loadedFunction()">
15 Click Me
16 </body>
17 </html>

The code in Listing 2.1 is supposed to display the message Page Is Loaded in the
console after the page has been loaded in the browser. Another message, User Clicked,
is displayed each time the user clicks the Click Me text in the browser. The problem is
that the script has several bugs.
With the file now in place, use the following steps to debug the errors using the
JavaScript console:

1. Open Chrome and load the developer tools.
2. Open the following URL in Chrome to load the newly created web page:

Click here to view code image

http://localhost/lesson02/js_errors.html

3. Click the Console tab to bring up the JavaScript console shown in Figure 2.2.

FIGURE 2.2 The JavaScript console showing two errors that occurred during the
page load.

4. Notice the errors displayed in the console, as shown in Figure 2.2. The first error
shows that there is an unexpected identifier on line 6 in the file. Clicking the line
number brings up the Sources tab at line 6 and you can see that function is
misspelled as fnction, as shown in Figure 2.3.

FIGURE 2.3 The Sources console showing a syntax error in the JavaScript code.

5. In Eclipse, change the word fnction in line 6 to function.
6. Go back to Chrome and refresh the web page. Now in the Console, you should

see Page Is Loaded in the Console, the text that is logged in the
loadedFunction() function, but no errors.

7. Click the Click Me text. An error is added to the console, as shown in Figure 2.4.
The error states that clickItNow is not defined. When you look at the HTML
file and search for clickItw, you can see on line 15 that an onclick event is
linked to clickItNot(), but that the JavaScript function is named
clickItNow().

FIGURE 2.4 The JavaScript console showing one successful log message and one
error.

8. In Eclipse, change clickItNow in line 15 to clickIt and save the file.
9. Reload the web page.

10. Click the Click Me Text again. Figure 2.5 shows that both log statements are now
displayed correctly and there are no errors. The page has been successfully
debugged.

FIGURE 2.5 The JavaScript console showing two successful log messages and no
errors.

Debugging HTML Elements
Debugging HTML elements can be a big challenge at times. Simple syntax errors can
lead to major problems for the browser when it’s trying to render an HTML document.
In addition, HTML elements have property values that are not rendered to the screen but
that will affect the behavior of the web page.
The Element inspector and the DOM editor help you find and fix problems in your
HTML code. The following sections take you through some simple examples of using
those tools.

Inspecting HTML Elements
The Element inspector enables you to view each of the HTML elements that have been
parsed by the browser. This gives you a view of the HTML from the browser’s
perspective, which in the case of syntax errors is usually different from the one that was
intended, making it more obvious where syntax errors are.
Figure 2.6 shows an example of the Element inspector. With the Element inspector,
some very useful features are available to you, as described next:

 DOM Tree—This is a simple view into the DOM tree. You can click the arrow
icons to expand and contract parts of the tree.

 Break on Changes—Right-clicking an element and selecting Break On allows
you to set different types of breaks for when the element is changed, removed, or
sub elements are modified. The browser will break into the JavaScript debugger
whenever the DOM element is changed dynamically. This helps you catch
problems as they are occurring.
 Edit as HTML—Right-clicking an element and selecting Edit as HTML allows
you to directly edit the HTML code in the browser. The browser changes what is
rendered based on the changes you make here. Although this won’t change the
code in your project, it is much easier to use this feature to try things out until
problems are fixed. Then you can copy the code from the editor and paste it into
the actual file in your project.
 Hover—When you hover over the HTML code in the DOM tree, the element is
highlighted in the browser. The hover feature of the Element inspector is one of
my favorites because it gives a visual way to see the relationship between the
node in the DOM tree and the rendered web page. Notice in Figure 2.6 that as the
<h1> element hovered over, the heading is highlighted in the web page.

FIGURE 2.6 The Element inspector page in Chrome.

Note
When an element is hovered over in the DOM tree, the element is
highlighted on the web page. The hover highlight is color coded, with light
blue being the contents, purple being the padding, and yellow being the
margin for the HTML element.

 Bread Crumbs—The bread crumbs show the hierarchy of nodes from the root
<html> node down to the one that is currently selected in the tree or edit view.
This makes it easy to navigate around, especially in the edit view.

Try it Yourself: Debugging HTML Using the Element Inspector
To illustrate how to use the Element inspector, consider the code in Listing 2.2. A
basic HTML document with a list of movies and the word “Favorite” in the
heading is supposed to be in italic. However, look at the rendered version in
Figure 2.7. There are obviously some problems: Everything is in italic and there
is no bullet point on the first list item. These problems are caused by just two
characters in all the text.

FIGURE 2.7 This web page has two problems: Only the word “Favorite” should be
in italic, and there is no bullet point on the first list item.

LISTING 2.2 html_errors.html A Very Simple HTML Document with Some HTML
Syntax Errors Illustrated in Figure 2.6

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <meta charset="utf-8" />
05 </head>
06 <body>

07 <h1><i></i>Favorite Movies</h1>
08
09 <ll>Lord of the Rings
10 Harry Potter
11 Narnia
12 Hot Lead and Cold Feet
13
14 </body>
15 </html>

Follow along with these steps to find and fix the HTML syntax problems using the
Element inspector:

1. Add the code in Listing 2.2 to a new file html_errors.html in the lesson02 folder
of your project and save the document. You should be familiar with this process
by now.

2. Open Chrome and load the developer tools.
3. Open the following URL; the web page should look like Figure 2.7:

Click here to view code image

http://localhost/lesson02/html_errors.html

4. Click the Elements tab in the developer tools and expand the <html>, then
<body>, and then <i> tags, as shown in Figure 2.8. Notice that the word
“Favorite” is not contained within the <i> tag. That isn’t right.

FIGURE 2.8 This Element inspector shows a second <i> in the DOM.

5. Go back to Eclipse and move the word “Favorite” inside the <i> tags on line 7
and save the document.

6. Refresh the document in the browser. Notice that the word “Favorite” is now in
italic, as it should be, but the bullet point is still missing, as shown in Figure 2.9.

FIGURE 2.9 This web page now has only one problem—no bullet point on the first
list item.

7. Go back to the Element inspector and expand the <html>, then <body>, then
, then <ll>, as shown in Figure 2.10. Instead of a set of four
elements under the element, there is an <ll> element with the
elements underneath. We haven’t covered the HTML tags yet, but if you are
familiar with HTML lists, you will recognize that ll is not a valid HTML tag. It

should be .

FIGURE 2.10 Viewing the DOM reveals that the browser sees an <ll> tag under
the tag, not a set of tags.

8. Go back to Eclipse and change the <ll> tag in line 9 to and save the page.
9. Reload the web page in the browser. The list is now displayed properly.

Viewing and Editing the DOM Properties of Elements
Another important tool when debugging HTML is the DOM properties editor. The DOM
properties editor is extremely powerful. It allows you to view and edit the attributes,
properties, functions, children, parents, and everything else about each HTML element
in the DOM. The information is displayed in tree form so that you can expand and
collapse groups.
The DOM editor can be accessed by clicking the Elements tab in the Developer Tools
console and selecting the Properties sub tab. You can launch the Elements tab from the
web page by right-clicking an element and selecting Inspect Element from the pop-up
menu.
Figure 2.11 shows the DOM properties editor. From the DOM properties editor, you
have access to a variety of information about the browser environment. For example, in
Figure 2.11, the innerHTML attribute of the window object is displayed.

FIGURE 2.11 The main DOM Properties editor tab in Chrome.

You can also view a DOM properties editor for DOM objects in the Console tab by
typing in the name of the object. Typically we’ve used this only to access the browser
window object to get information, such as the screen dimensions and such. To do this in
the JavaScript Console view in Chrome, type the word window directly into the editor,
as shown in Figure 2.12.

FIGURE 2.12 Editing HTML elements inside the DOM editor.

Try it Yourself: Editing HTML Element Values in the DOM Editor
As an example, you can play with the previous example of code using the
following steps:
1. Open the fixed code in file html_errors.html in Chrome and open the

Developer Tools console.
2. Click the Elements tab.
3. Expand the <html>, <body>, and nodes in the Element inspector.
4. Select the first node.
5. Click the Properties tab to the right, as shown in Figure 2.11.
6. Scroll down and find the innerHTML property in the DOM properties

editor.
7. Double-click the value to the right of the innerHTML attribute and change

the text as shown in Figure 2.11. Notice that the HTML element rendered in the
web page also changes. It is as easy as that to manipulate any editable attribute
of your HTML nodes.

Debugging CSS

As part of debugging your dynamic web pages, you also need to be aware of how to
debug CSS issues because a lot of the dynamics of web pages deal with modifying CSS
layout in the JavaScript.
If your JavaScript scripts modify the CSS layout of DOM elements, looking at the code
in the web browser will not do you any good. You need to be able to see what CSS the
browser has applied to the element. To do this, you need to use a combination of the
CSS Style editor as well as the Layout editor and CSS Style editor inside the Element
inspector.

Using the CSS Style Editor
The CSS Style editor, shown in Figure 2.13, provides access to all the CSS properties
of elements loaded in the web page. You can access the CSS Style editor by selecting
the Elements tab in the developer tools and selecting the Styles sub tab shown in Figure
2.13.

FIGURE 2.13 Editing CSS properties inside the CSS Style editor.

Note
You can view the full CSS files by selecting the Sources tab in the
developer tools and then selecting the HTML or CSS files you want to
view.

From the CSS Style editor, you also have the capability to do the following, as shown in
Figure 2.13:

 Disable a CSS Style—The disable icon allows you to enable/disable a specific
CSS property.
 Edit Element Specific CSS Properties—You can view and edit the CSS

properties specific to this instance of the element.
 Edit Class Specific CSS Properties—You can view and edit the CSS properties
specific to the element’s class(es).
 Edit Element Type Specific CSS Properties—You can view and edit the CSS
properties specific to all elements of this type.
 Toggle Element State—The toggle element state button loads the menu shown in
Figure 2.14 that allows you to set the element state to active, hover, focus,
or visited so that you can see the CSS styles that apply for each of those states.

FIGURE 2.14 Setting the state of the element to view CSS properties specific to
active, hover, focus, or visited states.

 View and Edit Layout—The Layout editor, shown in Figure 2.15, allows you to
view and change the margin, border padding, height, and width for the element.

FIGURE 2.15 Viewing the CSS layout properties inside the Layout editor inside the
Element inspector.

Using the Layout Editor
Another extremely powerful tool when debugging CSS is the Layout editor in the
Element editor. The Layout editor, shown in Figure 2.15, provides an easy-to-use visual
interface to the CSS layout of the selected HTML element. You can see the actual values
for things like margin and padding. You can also double-click those values to edit the
CSS properties directly.
From the Layout editor, you can view and modify the following properties:

 Margin—The margin is the outermost box shown in the Layout editor. There is a
value on each of the four sides of the margin. You can double-click those values
and change the CSS property directly in the Layout editor.
 Border—The border is the next box. It also has four values you can change to
adjust the CSS border properties of the HTML element.
 Padding—The padding is the next box. It also has four values you can change to
adjust the CSS padding properties of the HTML element.
 Content—The content is the innermost box in the Layout editor. It has two values,
the length and width, that you change to set the CSS length and width CSS
properties of the HTML element.

Try it Yourself: Editing the CSS Layout
To help you understand debugging and editing the CSS layout using the developer
tools, consider the code in Listing 2.3. The code is designed to display a simple

tabbed box to display info. Some problems exist with the CSS properties that
cause it to be displayed poorly, as shown in Figure 2.16. Notice that the tabs are
stacked and there is space between them.

FIGURE 2.16 The poor CSS layout of the tabs makes the web page ugly.

LISTING 2.3 css_errors.html A Very Simple HTML Document with Some HTML
Syntax Errors Illustrated in Figure 2.16

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <meta charset="utf-8" />
05 <style>
06 #container{
07 margin: 30px;
08 padding:5px;
09 }
10 #tabs{
11 padding: 0px;
12 width:100px;
13 }
14 #content{
15 border: 1px solid #000000;
16 height: 100px;
17 width: 300px;
18 clear: both;
19 }
20 span{
21 margin: 5px;
22 width: 70px;

23 background-color: #C0C0C0;
24 font-weight: bold;
25 border-color: #C0C0C0;
26 border:1px solid #000000;
27 border-radius: 5px 5px 0px 0px;
28 padding: 3px;
29 float: left;
30 text-align: center;
31 }
32 span:hover{
33 background-color: #3030FF;
34 color: #FFFFFF;
35 cursor: pointer;
36 }
37 p{
38 font-weight: bold;
39 text-align: center;
40 }
41 </style>
42 </head>
43 <body>
44 <div id="container">
45 <div id="tabs">
46 Name
47 Contact
48 Bio
49 </div>
50 <div id="content">
51 <p>Brad Dayley</p>
52 <p>Author</p>
53 </div>
54 </div>
55 </body>
56 </html>

Use the following steps to correct the CSS layout:
1. Add the code in Listing 2.3 to a new file css_errors.html in the lesson02

folder of your project and save the document.
2. Open Chrome.
3. Open the following URL in Chrome and load the developer tools:

Click here to view code image

http://localhost/lesson02/css_errors.html

4. Click the Elements tab in the developer tools and expand the <html>, then
<body>, <div id="container">, and then <div id="tabs">
elements, as shown in Figure 2.17.

FIGURE 2.17 The Layout shows that the width of the tabs <div> container is only
100px, which is not enough room for three tabs side by side.

5. Look at the size of the <div id=“tabs”> element and see that it is only 100px.
The elements are 70px wide, so the <div> element could not possibly
support all three elements side by side.

6. To fix this problem, click the Styles tab and change the width property to
300px, as shown in Figure 2.18. Notice that the tabs now are all side by side,
but there is still too much space between them.

FIGURE 2.18 Changing the <div> width allows the tabs to be side by side, but they
are still too far apart.

Note
You can also modify the margin, border, height, width, and padding values
directly in the Layout view.

7. Right-click the Name tab in the web page and select Inspect Element from the
list. That element is automatically selected in the Element inspector.

8. Click the Layout tab and hover over the margin box, as shown in Figure 2.19.
Notice that there is a margin of 5px around the element. That is why
they are not close to each other.

FIGURE 2.19 The Layout reveals that there is a margin around the element
keeping the tabs apart.

9. Go to the Styles tab and disable the margin property for the element,
as shown in Figure 2.20. The tabs are now right together and sitting directly on
top of the display box.

FIGURE 2.20 Disabling the margin allows the tabs to sit close to each other and the
display box.

Debugging JavaScript
You already have learned to look for exception errors in JavaScript and other scripts in
the JavaScript console. What if your script isn’t causing any browser errors, but it just
isn’t working the way you want it to? All of the browsers have a very nice integrated
debugger to help you out. The following sections cover using the Chrome developer
tools to debug JavaScript.

Navigating the JavaScript Debugger
The JavaScript debugger allows you to view the JavaScript scripts that are loaded into
the browser with the web page. In addition to viewing the scripts, you can set
breakpoints, watch variable values, and view the call stack, just as you would with any
other debugger.
Figure 2.21 shows the components of the JavaScript debugger available in the
developer tools. From the JavaScript debugger, you have access to the following

features:
 JavaScript View—This shows you the actual JavaScript code.
 Source Selection Menu—This menu shows a list of the source files including the
JavaScript scripts loaded with the web page. You can click this menu to select
which JavaScript file to load in the view.
 Pause on Exceptions—When this option is selected, the browser will break into
the debugger and stop executing if a JavaScript exception occurs.
 Watch—The Watch pane shown in Figure 2.21 gives you a list of functions,
variables, properties, and so on that are available at the current execution of the
code. This is an extremely valuable window. From here you can see what the
values of variables and objects are as the code is executing. In addition, you can
add your own expressions to the Watch pane by clicking the plus icon at the top of
the watch list. A great feature of the Watch pane is that you can double-click
variable values and change the value that is used in execution. This is a great way
to test what-if scenarios.
 Call Stack—The Call Stack pane provides a history of the function calls that led
up to the currently executing line of code. One of the most valuable aspects of the
Call Stack pane is that you can see the parameter values passed into each function
by expanding the function name. You can also click the function name, and that file
will be loaded in the JavaScript view and that line of code highlighted.
 Breakpoints—Breakpoints allow you to specify where to stop when executing
JavaScript. When you set a breakpoint, the browser stops executing and breaks
into the debugger before it executes that line of code. You set breakpoints by
clicking to the left of the line of code in the JavaScript view. They are denoted by
a red dot. To remove the breakpoint, click it. The Breakpoints pane shows you a
list of breakpoints that have been set. You can disable the breakpoint by
unchecking the box next to it. You can disable breakpoints by clicking on the
Disable Breakpoints button.
 Currently Executing Line—The currently executing line of code is denoted by a
yellow arrow.
 Resume—This allows the script to continue executing normally until hitting
another breakpoint if one is encountered.
 Step Into—When you click this icon, code advances one line. If the line of code
is executing another function, you are taken to the first line of code in that function.
 Step Over—When you click this icon, code advances one line. If the line of code
is executing another function, that function is executed and you are taken to the next
line of code in the current function. If a breakpoint is encountered when stepping

over a function, the browser will stop executing at that location in the script.
 Step Out—When you click this icon, the current function finishes executing and
you are taken to the next line of code in the calling function.

FIGURE 2.21 The developer tools JavaScript debugger provides code, watch, stack,
and breakpoint views.

Try it Yourself: Using the JavaScript Debugger
The following example will help you become more familiar with the JavaScript
debugger. Consider the code in Listing 2.4. This is a basic web page that contains
a button and a count string. The HTML contains two <div> elements. The first,
<div id="clicker" onclick="countIt()">, is used for a simple
button. When you click the button, the JavaScript function countIt() is called.
The second, <div id="counter">, is used to display a number.
The JavaScript is supposed to increase the number by 1 each time the button is
clicked. A problem exists with the JavaScript code, though; the number will not
increase past 2.

LISTING 2.4 debug.html A Very Simple HTML Document with JavaScript Errors
Illustrated

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <meta charset="utf-8" />
05 <script src="https://code.jquery.com/jquery-2.1.3.min.js"></script>
06 <script>
07 function incCount(){
08 var cnt = 1;
09 cnt += 1;
10 return cnt;
11 }
12 function countIt(){
13 $("#counter").html(incCount);
14 }
15 </script>
16 <style>
17 #clicker{
18 background-color: #0066AA;
19 color: #FFFFFF;
20 font-weight: bold;
21 border:2px solid, #C0C0C0;
22 width: 65px;
23 }
24 </style>
25 </head>
26 <body>
27 <div id="clicker" onclick="countIt()">Click Me</div>
28 <div id="counter">1</div>
29 </body>
30 </html>

Walk through the following steps to set a breakpoint in the JavaScript Debugger
and debug the problem:
1. Add the code in Listing 2.4 to a new file debug.html in the lesson02 folder of

your project and save the document.
2. Open Chrome.
3. Open the following URL in Chrome and load the developer tools. Notice the

single button and the count value of 1:
Click here to view code image

http://localhost/lesson02/debug.html

4. Click the Sources tab in the developer tools and then select debug.html from
the script selection menu. You should see the code from Listing 2.4 in the
Sources area of the debugger. Notice that the function that sets the value that is
placed in the counter div is in lines 7–11.

5. Set a breakpoint on line 8 by clicking to the left of the line number. A blue
arrow should appear, as shown in Figure 2.22.

FIGURE 2.22 The JavaScript debugger in the developer tools is stopped on line 8
because of a breakpoint. The Scope Variables shows the value of the cnt variable

as undefined.

6. Now click the button on the web page. You should see line 8 in the debugger
highlighted. The script has stopped executing on that line. This function will
determine what value will be placed in the counter. Notice that the value of the
cnt variable in the Scope Variables tab is undefined.

7. Click the Step Over icon. You should see the value of cnt go to 1.
8. Click the Step Over icon again. Now the value of cnt is 2, as expected,

changed by the cnt += 1; line.
9. Click the Resume button to allow the script to finish execution.

10. Notice that the value on the web page has gone to 2. So far, so good.
11. Click the button again in the web page. The debugger should activate again

and be stopped in the same location as step 6. Notice that the value of cnt is
undefined again.

12. Click the Step Over icon; cnt changes to 1. Click Step Over again and cnt
changes to 2. As the button is clicked, cnt is reset to undefined, set to 1, and
then incremented to 2.

13. To fix the problem, switch lines 7 and 8 in the original file in Eclipse so that

the definition of cnt happens before the definition of incCount(). This
defines the variable cnt and sets the value only once when the script is
loaded before the function is defined. Save the file.

14. Clear the breakpoint on line 8 by clicking on it in Chrome, and reload the web
page.

15. Add a breakpoint to line 9, as shown in Figure 2.23.

FIGURE 2.23 Changing the breakpoint from the function definition to the first line in
the function.

16. Click the button in the web page, and the JavaScript should break again—this
time on line 9. This time you should not see the cnt variable in the Scope
Variables pane, as shown in Figure 2.24.

FIGURE 2.24 Adding a new Watch expression for cnt so you don’t have to expand
the Window element each time.

17. Rather than having to expand the Window element each time you want to
debug, click New Watch Expression at the top of the Watch list shown in
Figure 2.24, type in cnt, and press Enter. This adds a new watch expression
right at the top for the cnt variable, as shown in Figure 2.24.

18. Click the Step Over icon and cnt will go to 2. Then click the Continue button
to resume execution.

19. Click the button in the web page again, and this time the cnt variable will
show as 2. When you click the Step Over button, the cnt variable will go to 3.

20. The program appears to be working, so click the breakpoint on line 9 to
remove the breakpoint, and then click the Continue button to resume execution.

21. Now every time you click the button, the number is incremented. You’ve just
debugged the JavaScript.

This was a very basic example, but it was made simple so that it would be easy
to follow the steps and get used to how the debugger works. You will likely come
back to the debugger several times when doing exercises in the book. Keep in
mind the basic steps. Set a breakpoint and watch the variables as you step through
the code.

So How Do You Debug jQuery or AngularJS?
A question that comes up frequently, even with people who are experienced with

debugging JavaScript, is how to debug jQuery or AngularJS. The answer is simple.
AngularJS, jQuery, and the numerous JavaScript plug-ins and versions are just
additional JavaScripts. To debug AngularJS or jQuery, use a nonminified version of the
library in your project. You learn how to do that later in this book.
The reason you download a nonminified version is that the minified is unreadable.
Everything is crunched together in one line and doesn’t show up well in the debugger.
The nonminified version is formatted in a readable form.

Note
Even if you cannot get a nonminified version of a JavaScript file, you can
always open the file in Eclipse and select File, Format from the main menu.
Eclipse will automatically format the file to a readable form. Most IDEs
will have that type of feature.

With the AngularJS, jQuery, or any other JavaScript library formatted, you can debug it
like any other JavaScript file.

Analyzing the Network Traffic
A very valuable tool available in the developer tools that is often used in debugging
JavaScript is the network traffic analyzer. The network traffic analyzer, shown in Figure
2.25, is available by clicking the Net tab in the developer tools. The traffic analyzer
displays information about each request from the browser to the web server. This
allows you to get a better understanding about what data is being transferred and
whether requests are happening at all and in the right order.

FIGURE 2.25 Network traffic required to load amazon.com.

Figure 2.25 shows the traffic involved in loading the amazon.com web page. There are
numerous requests, each one represented by a single line in the traffic list. For each
request, the following is shown in the traffic:

 URL Path—The URL of the request can be very useful. You can right-click the
URL and copy it, or even open it in another tab or window. This allows you to
debug a single request and not the full web page load.
 Method—The type of HTTP method that was used in the request.
 Status—You can use the status to determine whether the request was successful
and whether it is still running. For example, the web page may not look right
because an image request failed to load, which is very easy to diagnose from the
Net tab in the developer tools.
 Type—Type of data that was retrieved by the request.
 Initiator—Where the request was initiated from.
 Size—The size may also be useful in that it allows you to quickly find requests
that require a lot of disk space and network bandwidth.
 Latency—Shows the latency times for the request in milliseconds.
 Timeline—Shows the time in milliseconds the request took. This is very useful in
diagnosing slow-responding web pages and other problems related to speed.

http://amazon.com
http://amazon.com

Note
An option at the top of the Network tab allows you to disable the browser
cache. This option can be very useful when you are updating files on the
web server to debug and fix issues. When this option is checked, the
browser will always retrieve the latest from the web server.

With some complex web pages, you may have too much traffic to try to debug all the
requests. The filter options in the Net tab allow you to view only certain types of
requests, such as HTML, CSS, or JS. The XHR filter stands for XMLHttpRequest,
which is the communication used in AJAX. Selecting the XHR filter will show only
AJAX communication.
When you expand a request, as shown in Figure 2.26, you get a lot of additional
information about the request. What tabs are available in the expanded request depend
on the request type and the response type, but here are some of the most useful items:

 Headers—Displays the HTML request and response headers that were sent. This
is very useful if you are accessing a service via AJAX that requires specific
headers to be sent.
 Preview—This shows a preview of the request data. If this is a POST request, it
shows you the values of the parameters sent in the POST request to the server.
 Response—This will vary, depending on what the response is. For example, if
you are downloading a JavaScript file from the web server, this displays the raw
JavaScript; for HTML files, it shows the HTML.
 Cookies—Displays the cookies and values involved in the request.
 Timing—Displays timing information on the request, including send time, wait
time, and download time.

FIGURE 2.26 Expanding the request provides additional tabs with more information
about the request and server response.

Summary
In this lesson, you learned a myriad of ways to debug problems in your dynamic web
pages. You learned how to output messages from your scripts to the JavaScript console.
You learned how to use the Element inspector to see the HTML elements that the
browser has built while loading the web page.
You also followed several example of debugging problems in HTML, CSS, and
JavaScript. The methods you learned throughout this lesson will be very helpful to you
as you finish this book and in future projects because they will save a lot of time and
frustration with simple syntax problems that always seem to creep up.

Q&A
Q. Is there a way to debug server-side scripts?
A. Yes, there is. It is really beyond the scope of this book; however, most good

languages have a method of remotely debugging problems. If you are trying to
debug PHP server-side scripts, look into the capabilities of ZEND at
www.zend.com/en/community/pdt. If you are working with Python server-side
scripts, check into using PyDev at pydev.org.

Q. Is there a way to debug cookies?
A. As far as debugging cookies, all you need to know is whether cookies are

enabled, which cookies are set in the browser, what the cookie values are, and
when they expire. All that information can be found in the Cookies tab in the

http://www.zend.com/en/community/pdt
http://pydev.org

developer tools. There are similar features with both Chrome and Internet
Explorer in their developer consoles.

Workshop
The workshop consists of a set of questions and answers designed to solidify your
understanding of the material covered in this lesson. Try to answer the questions before
looking at the answers.

Quiz
1. Where do you go in the developer tools to find what the background-color CSS

property value is for a specific <div> tag?
2. Where would you go in the developer tools to see the available size of the

browser window?
3. How do you get your JavaScript to stop executing on a specific line of code?
4. When JavaScript execution is halted, how do you find the values of a variable?

Quiz Answers
1. The Styles tab of the Element inspector with that <div> tag selected.
2. Type window in the Console view.
3. Set a breakpoint in the Sources debugger tab.
4. Look in the Watch tab of the Sources debugger.

Exercises
1. Modify the debug.html code to output the value of cnt to the JavaScript console

by adding the following code at line 10:
console.log("cnt=%d",cnt);

2. Use the Net traffic as you browse the traffic from some different pages. Expand
some of the requests and look at the data represented in some of the tabs. This can
help you understand the ebb and flow of browser to web server traffic a bit better.

Lesson 3. Understanding Dynamic Web Page Anatomy

What You’ll Learn in This Lesson:
 How to build a basic dynamic web page
 Where to add CSS and JavaScript in web pages
 What the difference is between block and inline elements
 How to add images to web pages
 How to build web forms
 How to add links to specific spots in a web page
 How to build tables into your web pages
 What HTML5 SVG graphics can do
 Ways to use HTML5 to prep for dynamic audio and video

Throughout the rest of this book, you will use a lot of HTML, CSS, jQuery, and
JavaScript. For that purpose, this lesson is designed to accomplish two tasks. The first
is to familiarize you, in case you are not already familiar, with some important basics of
HTML so that you will be able to easily understand the examples.
The second is to help you understand how to design your HTML to make it easier to add
dynamics to your web pages later using jQuery and JavaScript. Understanding how to
design your HTML elements will make it easier later to add some cool effects and
dynamically update data stored in lists or tables.
The following sections discuss the basics of HTML and how they relate to jQuery and
JavaScript.

Using HTML/HTML5 Elements to Build a Dynamic Web Page
You have already seen some examples of HTML code in Lessons 1 and 2. Now it’s
time to delve a bit deeper in understanding the syntax and which HTML elements and
attributes are important to dynamic web pages.
To properly build dynamic web pages, you need to understand the HTML syntax, some
fundamental HTML elements, and how to organize and structure those elements. The
following sections cover those topics.

Understanding HTML Structure
HTML documents are composed of three main parts: the <!DOCTYPE> tag, the head,
and the body. Each of these parts plays a specific role in helping the browser to render
the HTML document into a web page.
The <!DOCTYPE> tag must be the first statement in the HTML file; it tells the browser

how to read the rest of the file. Although this tag is not strictly required, it is a good idea
to include it in your HTML documents. There are several forms of the <!DOCTYPE>
element; a few of them are listed next:

 HTML5—Version used for HTML5 documents:
<!DOCTYPE html>

 HTML 4.01 Strict—Enforces strict compliance with the HTML 4.01 standard
and will remove deprecated elements such as :

Click here to view code image

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/
strict.dtd">

 HTML 4.01 Transitional—Relaxed compliance with the HTML 4.01 standard
and will allow deprecated elements such as :

Click here to view code image

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.
w3.org/TR/html4/loose.dtd">

The head and body components are contained in the HTML tag. The purpose of the
head element is to contain elements that are used in parsing the HTML document but
are not rendered inside the browser window, such as scripts and metadata. The purpose
of the body tag is to contain elements that will be rendered to the browser window and
viewed by the user.
The following code shows an example of the basic HTML document structure with one
head element and one body element:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8" />
 </head>
 <body>
 <h1>New Page</h1>
 </body>
</html>

Syntax is everything when you are working with HTML elements. If the browser cannot
parse the document correctly, the page will not be rendered correctly to the user.

Tip
Most web development IDEs and editors have built-in error checking as

well as code completing for HTML syntax. These are shown in a variety of
ways, from highlighted or underlined code, to warning icons inline with the
code, to a list of potential problems in a different pane. Pay attention to
what the IDE is trying to tell you about possible problems.

An HTML element is composed of the following three main components:
 Tag—The tag is enclosed in <> characters and tells the browser what type of
HTML element to parse and render. For example, the tag for a paragraph element
is <p>, the tag for an unordered list is , and the tag for a list item is .
 Content—The content portion of the HTML element can be another HTML
element, simple text, or nothing. To define what is contained inside an HTML
element, a closing tag is added at the end of the content. The following example
illustrates that perfectly. Notice that there are several elements—each with
an opening tag , some content, and then a closing tag . The content of
the tags is the text in between. There is also an opening and closing
and tag. The content of the element is all the elements in
between:

 New York, US
 Paris, FR
 Rome, IT
 London, EN

 Attribute—Attributes provide a way of attaching additional information about the
element that can be used by the browser. This information can be used to define
how the element is rendered by the browser or provide a way to identify or
classify the element. The following shows an example of adding an align
attribute to a paragraph element to tell the browser to center the text when
rendering it. Notice that the attribute value is assigned using an equal sign and that
the value is enclosed in double quotes:

Click here to view code image

<p align="center">This is some centered text.</p>

Note
If the value of an attribute requires a double quote, the normal assignment
of attribute=“value” will not work. In these instances, you can use single
quotes in the assignment. For example, attribute=’some “quoted” value’.

If an element does not have an end tag, you can include the / at the end of the first tag
and completely leave out the end tag. For example, both of the following are acceptable
to the browser:

<p align="center"></p>
<p align="center" />

Implementing HTML Head Elements
The HTML <head> element is designed as a container for nonvisual elements of the
web page. The tags in the <head> element are parsed by the browsers into the DOM, but
they are not rendered to the browser window.
The following sections describe some of the more important <head> elements and
how they relate to using jQuery and JavaScript.

<title>
The <title> element is supposed to be required in all HTML documents. The
browser will still render the page without it, but there are many reasons to include the
title element in your web pages, including that the <title> element does the
following:

 Defines the title that is displayed in the browser toolbar/tab.
 Provides the title that the web page is listed as when it is added to favorites.
 Determines what is displayed as the title when the web page is displayed by
search engines.

The following code shows an example of adding a title to the web page:
<!DOCTYPE html>
<html>
 <head>
 <title>Page</title>

The value of the <title> element can easily be changed using jQuery and JavaScript.
For example, the code in Listing 3.1 uses JavaScript to change the title of the web page
after it is loaded.

LISTING 3.1 page_title.html JavaScript Code Changing the <title> Value After
the Page Has Loaded

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>

04 <title>Page</title>
05 <meta charset="UTF-8" />
06 <script>
07 function appendTitle(newTitle){
08 document.title += newTitle;
09 }
10 </script>
11 </head>
12 <body onload="appendTitle('... Loaded')">
13 </body>
14 </html>

Notice in Figure 3.1 that the Title in the tab has changed to read Page...Loaded.

FIGURE 3.1 The JavaScript function has changed the title of the web page that is
displayed in the browser tab.

<meta>
The <meta> tag has many uses. Browsers use the <meta> tags to determine such
things as what character sets to use when rendering the web page. Search engine
crawlers use the <meta> tags to determine the purpose of the content of the web page
for better optimized searches. The best way to introduce it is to show you some
examples of syntax.
The meta tag required to set the character set in HTML5 web pages is as follows:

<meta charset="UTF-8">

The <meta> tag required to set the character set in HTML 4 web pages is as follows:
Click here to view code image

<meta http-equiv="content-type" content="text/html; charset=UTF-8">

The <meta> tag to define keywords for search engines is as follows, where the value
of content is the keywords you want the search engine to use when finding the web page:
Click here to view code image

<meta name="keywords" content="HTML, CSS, jQuery, JavaScript">

The <meta> tag to tell the browser to refresh the web page every 60 seconds is as
follows:

Click here to view code image

<meta http-equiv="refresh" content="300">

<style>
The <style> tag allows you to add CSS code directly inside the HTML document.
Everything included inside the <style> tag is treated like a CSS document and is used
by the browser to render the web page.
As an example of the syntax, the Listing 3.2 HTML file includes CSS to turn the
background of <h1> elements black and the foreground white, as shown in Figure 3.2.

FIGURE 3.2 This <h1> element has had its style reversed by a CSS style script in
the HTML document.

LISTING 3.2 reversed_text.html Adding CSS to an HTML Document Using the
<style> Tag

Click here to view code image

01 <html>
02 <head>
03 <meta charset="UTF-8">
04 <style type="text/css">
05 h1 {
06 background-color:black;
07 color:white;
08 }
09 </style>
10 </head>
11 <body>
12 <h1>CSS Reversed Text</h1>
13 </body>
14 </html>

<script>

The <script> tag enables you to add JavaScript code directly inside the HTML
document or link to a separate external JavaScript file. If you include inline JavaScript
code, everything included inside the <script> tag is treated like a JavaScript
document and loaded into the browser when the HTML document is parsed. If you
include a link to an external file, that file is downloaded from the web server and
loaded by the browser.

Caution
When using the <script> tag, scripts are loaded in the order in which
they are parsed. That means that any subsequent scripts that have the same
global variable or function names will overwrite the ones already loaded.
When adding multiple scripts to a web page, you should be careful to not
override global variable and function names that you do not intend to.

For example, the HTML document in Listing 3.3 includes two <script> elements:
one to load the external jQuery library and the second with a simple JavaScript and
jQuery function to turn the background of <h1> elements black and the foreground
white, as shown in Figure 3.3.

FIGURE 3.3 This <h1> element has had its style reversed by a JavaScript function
using jQuery directly in the HTML document.

LISTING 3.3 js_reversed_text.html Adding JavaScript and jQuery to an HTML
Document Using the <script> Tag

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <meta charset="UTF-8">
05 <script src="https://code.jquery.com/jquery-2.1.3.min.js"></script>

06 <script>
07 function reverseText(){
08 $("h1").css("background-color", "black");
09 $("h1").css("color", "white");
10 }
11 </script>
12 </head>
13 <body onload="reverseText()">
14 <h1>JavaScript Reversed Text</h1>
15 </body>
16 </html>

<noscript>
Although it doesn’t happen very often anymore, occasionally people disable JavaScript
on their web browsers. If JavaScript is disabled, any JavaScript, and consequently
jQuery scripts, will not be executed. This can provide a very bad experience for users.
The <noscript> tag allows you to provide elements that will be rendered before
items in the <body> element. This allows you to display warning messages, or
alternative forms of the page in the event that JavaScript is disabled.
The <noscript> tag supports the same child element types that the <body> tag
supports. For example, the following code loads the JavaScript file if JavaScript is
enabled, but if not, it adds a <h3> heading to the top of the web page that warns users
that the web page will not function properly:
Click here to view code image

<head>
 <script src="DynamicPage.js"></script>
 <noscript>
 <h3>This web page uses JavaScript but it is disabled in your browser.
 The web page may not function properly.</h3>
 </noscript>
</head>

<link>
The <link> tag allows you to link separate resources to the current document. For the
most part, it is used for CSS files. That means that when the browser loads the HTML
document, linked CSS files are downloaded from the web server and loaded as well.
For example, the following head block will load two different CSS documents:
Click here to view code image

<head>
 <link rel="stylesheet" type="text/css" href="styleA.css">
 <link rel="stylesheet" type="text/css" href="styleB.css">
</head>

In addition to CSS files, you can link things like icons, help documents, licenses, and
searches to the web page. For example, the following code links an icon that is
displayed in the browser tab when the web page is loaded:
Click here to view code image

<link rel="icon" type="image/png" href="http://example.com/myicon.png">

Adding HTML Body Elements
Most of the HTML elements that are added to the body block are rendered by the
browser and displayed on the screen to the user. Each of the HTML body element tags
provides different options that will help you show information on the web page in a
meaningful and elegant way.
In the following sections, you’ll see some specific attributes that are useful to apply to
HTML elements when programming in jQuery and JavaScript. You also learn the syntax
of some of the more common elements that you will see throughout the rest of the book
so that the examples will be easier to follow.

Using Important Body Element Attributes
Each of the different body elements will have some attributes that are specific to the
element only. However, some attributes are important and common for all elements.
Those tags are the following:

 id—This is a string identifier that must be unique among all elements on the web
page. This is used by CSS, JavaScript, and jQuery to identify, access, and modify
a specific element on the web page.
 class—The class attribute allows you to specify a grouping of multiple
elements. This option is used heavily with CSS stylizing to set styles such as
background-color for several HTML elements at once. It is also useful in jQuery
to select multiple elements based on their class value.
 style—The style attribute allows you to place CSS definitions directly in the
HTML code inside of the HTML object. The values in the style override all
other CSS directives.

The following code illustrates the syntax to add id, class, and style attributes to HTML
elements. Notice that the classes “heading” and “content” are used multiple times,
but the id attribute is different for every element. Also notice that for the first heading,
an additional style attribute was added to force the first heading to always be bold:
Click here to view code image

<div id="Div1">
 <p id="Div1Heading" class="heading" style="font-weight:bold">Heading
Text</p>

 <p id ="Div1Content" class ="content">Some Content</p>
</div>
<div id="Div2">
 <p id="Div2Heading" class="heading">Another Heading Text</p>
 <p id ="Div2Content" class ="content">Some More Content</p>
</div>

Understanding Block Versus Inline Elements
Remember that the web page is rendered to the display screen by the browser parsing
each element in the HTML document and rendering it along with any children. The
difference between block and inline elements is how much room the browser gives the
element.
Block elements are given the full width available to render the item in the browser. That
means that any elements before will be displayed above, and elements that come after
will be displayed below. <div> and <p> are examples of block elements.
Inline elements are given only enough width to display the element on the page. That
means that multiple inline elements are displayed side by side in the browser as long as
there is enough room. , <a>, and are some examples of inline
elements.
The following code and the rendered version shown in Figure 3.4 illustrate the
difference between block and inline tags. Notice that the <p> tags take up the full width
of the browser screen, and the tags take only enough space to display the text
and margin:

<p>Paragraph A</p>
<p>Paragraph B</p>
<p>Paragraph C</p>
Span A
Span B
Span CA

FIGURE 3.4 The block element <p> takes up the entire width, but the inline element
 uses only the width that it needs.

Although elements are block or inline by default, you can always change them by setting
the display CSS style. For example, setting a display to block as follows
will make it behave like a <div> element:
Click here to view code image

Span Text

The following is a list of values that you can set the display style to:
 block—Renders the element as a block element.
 inline—Renders the element as an inline element.
 none—Will not render the element to the screen even though it is parsed and
exists in the DOM.

You can also force items to be rendered below other items by separating them by using
one of the following line break tags:

—Adds a line break that causes the content after to be rendered below the
current content, even if they are inline.
 <hr>—Similar to
 but also causes the browser to render a horizontal line
under the current content.

These tags do not require a closing tag. For example, the following code creates a set of
three elements that are separated by first the
 tag and then the <hr> tag.
The rendered results are shown in Figure 3.5. Notice that
 inserted a line break
and <hr> inserted a line break and rendered a line between the content:
Click here to view code image

Text on
 Line 1

Text on Line 2<hr>
New section on Line 3

FIGURE 3.5 Using
 adds a line break and <hr> adds a line break and renders
a line between the content.

Creating Container Elements
Container elements are used for a variety of purposes, such as grouping and formatting

sets of elements or text. This allows you to apply formatting and dimensions to the
container and have it affect all the items within. Although just about any HTML element
could be used as a container, three main ones are <p>, <div>, and .
Container elements by themselves do not alter the appearance of the text or data within
them. For example, the text inside all the following will render the same in the browser:

Some Text
<p>Some Text <p>
<div>Some Text </div>
Some Text

Try it Yourself: Using Container Elements to Group and Style
Container elements are typically used to group elements for layout and style
settings. The following exercise creates the code in Listing 3.4. The code is
designed to introduce you to grouping and styling elements:
1. Start by creating a folder in your Eclipse project called lesson03.
2. Create a new HTML document in the lesson03 folder called css_styling.html

(to match the filename on the book’s website).
3. Add the appropriate <html>, <head>, and <body> tags.
4. Add the following <div> element with the class attribute set to

“heading”.
This will be the container for your heading items:

Click here to view code image

20 <div class="heading">
21 <p>Heading A</p>
22 <p>Heading B</p>
23 <p>Heading C</p>
24 </div>

5. Add the following second <div> element with the class attribute set to
“content”. This is the container for your content items:

Click here to view code image

25 <div class="content">
26 <p>Paragraph A</p>
27 <p>Paragraph B</p>
28 <p>Paragraph C</p>
29 </div>

6. Save the file and load the following URL in the web browser to view the
unformatted code, as shown in Figure 3.6:

Click here to view code image

http://localhost/lesson03/css_styling.html

FIGURE 3.6 Using <div> container elements makes it easy to change the look and
behavior of <p> elements in different areas of the web page.

7. Go back to Eclipse and add a <style> tag to the header of the file.
8. Inside the <style> tag, add the following code that formats the content

elements with a gray background and a bit of padding around the edges:
Click here to view code image

06 .content p{
07 background-color:#C0C0C0;
08 padding: 3px;
09 }

9. Add the following additional rule to style the header elements. This rule
changes the <p> elements in the heading container to be inline, with bold
white text and a black background:

Click here to view code image

10 .heading p{
11 display: inline;
12 background-color:black;
13 color: white;
14 font-weight:bold;
15 padding:3px;
16 }

10. Save the document and then reload it in the web browser. Notice in Figure 3.6
that the elements in the “heading” class <div> element are rendered as
inline with a black background and white text, and the elements in the
“content” class <div> element are rendered with a gray background and
remain block style.

LISTING 3.4 css_styling.html Adding CSS to an HTML Document Using the

<style> Tag

Click here to view code image

01 <html>
02 <head>
03 <title>CSS Styling</title>
04 <meta charset="UTF-8">
05 <style type="text/css">
06 .content p{
07 background-color:#C0C0C0;
08 padding: 3px;
09 }
10 .heading p{
11 display: inline;
12 background-color:black;
13 color: white;
14 font-weight:bold;
15 padding:3px;
16 }
17 </style>
18 </head>
19 <body>
20 <div class="heading">
21 <p>Heading A</p>
22 <p>Heading B</p>
23 <p>Heading C</p>
24 </div>
25 <div class="content">
26 <p>Paragraph A</p>
27 <p>Paragraph B</p>
28 <p>Paragraph C</p>
29 </div>
30 </body>
31 </html>

You will be using the container elements heavily in JavaScript and jQuery development
to group, format, and control various aspects of the dynamic web page.

Adding Link Elements
Web pages often contain a series of links to additional pages. Links are easy to add to a
web page using the anchor tag <a>. The <a> tag has three purposes:

 Link to External Web Page—Displays a link on the web page. When the user
clicks the link, the browser requests the web page in the link from the server. The
following is an example of adding a link to an external web page:

Click here to view code image

Dayley Creations

 Link to Location on Current Web Page—Displays a link on the web page.
When the user clicks the link, the browser changes the scroll down to the location
so that the anchor linked to is visible:

Click here to view code image

Link to Some Text Below

 Web Page Anchor—Adds a link inside the web page that can be directly linked
to either by the current page or by another web page. To define an anchor, you
need to use the id attribute. For example, to add the anchor for the preceding link,
use the following:

Click here to view code image

Page Anchor

Web page anchors can be useful when using JavaScript to build the link elements. For
example, you can dynamically change the url attribute of the link to control where the
link takes the user.

Using Image Elements
One of the greatest aspects of web pages is the capability to display images along with
other graphics and text. Images are displayed using the tag.
The actual image file on the web server to display in the tag is determined by
the src attribute. The size of the image on the screen is determined by the height and
width attributes.
The following code shows some examples of displaying an image with different sizes
and whitespace, as shown in Figure 3.7. Notice that when only the height or width
is specified, the image is scaled to keep the aspect ratio, but when both are specified,
the image is stretched to fit the specific height and width settings:
Click here to view code image

FIGURE 3.7 Using to add images to a web page and specify height and
width.

You will also be dealing with images frequently when creating dynamic web pages
using jQuery and JavaScript because they allow you to quickly resize, move, hide, and
add them to the web page. This allows your images to interact with mouse actions and
other input from users.

Applying List Elements
List elements allow you to group a set of items together and have the browser
automatically format them with bullet or numbers. Ordered lists are created using the
 tag, and bulleted lists are created using the unordered list tag . Items within
the list are contained in the tag. For example, the following code renders to
Figure 3.8:

 Yellowstone
 Yosemite
 Glacier
 Arches
 Zion

FIGURE 3.8 Adding a list to a web page using the and tags.

Creating Table Elements
Table elements are some of the more complex HTML elements. They are used to
organize other elements on the screen in a series of rows and columns. They can be used
for a variety of purposes, from laying out entire web pages to a simple table of data.
This section covers the basics that you need to know for this book.
Tables are constructed using a series of tags that define the table, headers, body, and
cells. The following lists the various tags that can be used when constructing a table:

 <table>—Acts as the container element for all other table elements and defines
the overall table.
 <thead>—This element is not required, but it can be useful in that it allows you
to group and define the header elements in a table, or refer to the parent of header
elements directly from jQuery or JavaScript via the id attribute.
 <tbody>—This is also not required, but it is useful to define the overall body
of the table or refer to the parent of body elements directly from jQuery or
JavaScript via the id attribute.
 <th>—Defines a single header cell in a table.
 <td>—Defines a cell in a table.
 <tr>—Defines a single row in a table. This acts as a container for either <th>
and/or <td> elements or cell elements.
 <caption>—Provides a container for caption content. The caption content can
be either text or other HTML elements.
 <colgroup>—Enables you to place one or more columns in a table into a
group that can be formatted together. This is also useful if you want to access a
specific set of columns from jQuery or JavaScript via the id attribute.
 <col>—Specifies the column properties for a single column within a
<colgroup> element.
 <tfoot>—This element is not required, but it can be useful in that it allows you
to group and define the footer elements in a table or refer to the parent of footer
elements directly from jQuery or JavaScript via the id attribute.

In HTML 4, several attributes can be set on the table elements. Many of those have been
deprecated in HTML5 because they were used for formatting size, alignment, and color,
which should be done with CSS styles. The following is a list of the more important
attributes that you will still need to use on table elements:

 border—Specifies whether the table cells should have borders.
 colspan—Specifies the number of columns a cell should span. This allows an
individual <td> or <th> element to occupy more than one column in the table.
 rowspan—Specifies the number of rows a cell should span. This allows an
individual <td> or <th> element to occupy more than one row in the table.
 headers—Added to <td> or <th> elements. Allows you to specify the id
value of one or more <th> elements. This creates an association to the header
element that can be accessed from jQuery and JavaScript.

Try it Yourself: Creating HTML Tables
The easiest way to explain tables is to show you an example of creating a basic
table. Use the following steps to create the table code in Listing 3.5:
1. Create a new HTML document in the lesson03 folder called tables.html (to

match the filename on the book’s website).
2. Add the appropriate <html>, <head>, and <body> tags.
3. Add the following <table> element with the border attribute set to 1:

Click here to view code image

08 <table border=1></table>

4. Add the following <caption> element inside the <table> element to give
the table a caption:

Click here to view code image

09 <caption>Favorite World Sites</caption>

5. Create the table headers by adding the following <thead> element to the
<table> element. Notice that the third <th> sets the colspan to 2 so that
it will cover the last two columns, as shown in Figure 3.9:

Click here to view code image

10 <thead>
11 <th>Monument</th>
12 <th>location</th>
13 <th colspan=2>century</th>
14 </thead>

FIGURE 3.9 An HTML table example showing headers in rows and columns and a
caption.

6. Add the following <tr> elements. Notice in the example that follows that
each of these <tr> elements contains four cells. The first cell is a row header
because it uses the <th> tag. The next two cells are simple text in <td>
elements, but in the fourth cell, the <td> element contains an element
(the .jpg files can be found on the book’s website):

Click here to view code image

15 <tr>
16 <th>Delicate Arch</th>
17 <td>Utah</td>
18 <td>March 1, 1872</td>
19 <td>
20 </tr>

7. Save the document and open the following URL in the web browser to view

the rendered results shown in Figure 3.9:
Click here to view code image

http://localhost/lesson03/tables.html

LISTING 3.5 tables.html HTML Generating a Table with Headers, Rows, and
Columns

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Tables</title>
05 <meta Charset="UTF-8">
06 </head>
07 <body>
08 <table border=1>
09 <caption>Favorite World Sites</caption>
10 <thead>
11 <th>Monument</th>
12 <th>location</th>
13 <th colspan=2>century</th>
14 </thead>
15 <tr>
16 <th>Delicate Arch</th>
17 <td>Utah</td>
18 <td>March 1, 1872</td>
19 <td>
20 </tr>
21 <tr>
22 <th>Washington Monument</th>
23 <td>Washington D.C.</td>
24 <td>March 1, 1872</td>
25 <td>
26 </tr>
27 <tr>
28 <th>Tikal</th>
29 <td>Guatemala</td>
30 <td>November 19, 1919</td>
31 <td>
32 </tr>
33 </table>
34 </body>
35 </html>

Implementing Form Elements
Another extremely useful set of tags in HTML are the form tags. These tags provide the

building blocks to render user input forms that enable you to gain input from the user.
Browsers know how to render the form elements to display things like text boxes,
buttons, and lists.
Following is a list of the more common form tags you will use in jQuery and JavaScript
to create dynamic form elements:

 <form>—This is the root element of the form. All other elements are contained
inside.
 <fieldset>—Acts as a container allowing you to group several form elements
together. In HTML5, you can set the disabled attribute of the fieldset to disable it
from user input. You can also use jQuery and JavaScript to access the children of
the fieldset and modify them from code.
 <legend>—Tells the browser to add a caption to the fieldset.
 <label>—Allows you to tie a label element to an <input> element in the
form by setting the for attribute to the id attribute value of the <input>
element. This adds the advantage that the mouse events for the input element are
also triggered for the <label>.
 <input>—The input tag is really a wrapper for several types of input
components. The input that is rendered by the browser will depend on the value of
the type attribute. The following is a list of type elements that can be specified
in the input tag: button, checkbox, color, date, datetime, email,
file, hidden, image, month, number, password, radio, range,
reset, search, submit, tel, text, time, url, and week.
 <textarea>—Different from the other inputs, this provides a resizable area
where the user can type in multiple lines of text. The cols and rows attributes
define the initial size.
 <select>—Acts as a container for a drop-down list of items.
 <option>—Used inside the <select> element to define a single item in the
list. The value attribute of the selected item is also the value of the
<select> element.
 <button>—Defines a clickable button element. The type attribute of button
tells the browser whether to use the button to submit the form, reset the
values, or act as a simple input button.

The form elements have a different set of attributes that provide access to and modify
the look and behavior of the element. The following are some of the more important
ones:

 name—This option specifies a name that can be used when submitting the form.

 value—This option specifies the value of the form element. For elements such as
text <input>, what you specify for value will be added as text in the
rendered text box. The value attribute is also accessible via JavaScript, so you
can get the value of any form element directly from JavaScript.
 disabled—When this attribute is added, the element will be displayed;
however, it will appear disabled so the user cannot interact with the form element.
When you enable and disable elements from JavaScript or jQuery, this value is
modified dynamically. The disabled attribute is a Boolean, so you do not need
to include a value. The following shows an example of how to include the
disabled attribute:

Click here to view code image

<input type="text" disabled />

Try it Yourself: Adding Forms to Web Pages
In this example, you add a form with different elements to a web page. The
finished example, shown in Listing 3.6, renders the web form shown in Figure
3.10 with several types of form elements. Using the basics you learn in the
following example, you will be able to create just about any custom form you
need:
1. Create a new HTML document in the lesson03 folder called forms.html (to

match the filename on the book’s website).
2. Add the appropriate <html>, <head>, and <body> tags.
3. Add a <form> element.
4. Inside the <form> element, add the following <fieldset> to request info.

The <fieldset> includes a <legend> element that provides a caption;
two basic text <input> tags for name, origin, destination, and data; and
then a <select> element with four <option> children to provide a drop-
down list of airlines. Figure 3.10 shows the rendered <fieldset> with a
box around it and the elements.

Click here to view code image

08 <fieldset>
09 <legend>Contact Info:</legend>
10 Name: <input type="text" name="name">
11 Origin: <input type="text" name="address">

12 Destination: <input type="text" name="city">
13 Flight Date: <input type="text" name="zip">

14 <select name="Airline">
15 <option value="DA">Delta</option>
16 <option value="PJ">Private Jet</option>

17 <option value="Heli">Helicopter</option>
18 <option value="EG">Eagles</option>
19 </select>
20 </fieldset>

5. Next, add the radio buttons to select one way or round trip. Add the following
<label> and <input> fields to the form. The type attribute of the
<input> elements is set to radio. Also, notice that the <label> elements
include a for attribute that links them to the radio <input> elements.
Because the <label> is linked to the <input>, when you click the label, it
toggles the radio button.

Click here to view code image

21 <input id="One WayRB" type="radio"
22 name="travelPlan" value="One way">
23 <label for="One WayRB">One Way</label>
24 <input id="Round TripRB" type="radio"
25 name="travelPlan" value="round trip">
26 <label for="Round TripRB">Round Trip</label>

6. Add a comments element by adding the following <textarea> element.
Notice that the rows and cols attributes define the size, and we include the
word “comments” initially in the text area rather than adding a label outside.
The
 tag at the end causes the following form elements to be on a new
line:

Click here to view code image

27 <textarea rows="10" cols="30">comments</textarea>

7. Provide a check box to enable frequent flier miles by adding the following
<input> and <label>. The type of the <input> element is set to
checkbox so the browser knows to render it as a check box. Also, the
<label> element uses the for attribute so that the user can click the check
box or the label to toggle it on or off:

Click here to view code image

28 <input di='newsCB' type="checkbox" name="news" value="news">
29 <label for="newsCB">
30 I would like to enroll into the frequent flyer miles
program
31 </label>

8. Add the following code to include two button elements: a submit button and
a reset button. When the submit button is clicked, the browser submits the
form. When the reset button is clicked, the values in the form are reset:

Click here to view code image

32 <button type="submit" name="SubmitButton"
33 value="Submit">Submit</button>
34 <button type="reset" name="ResetButton"
35 value="Reset">Reset</button>

9. Save the document and open the following URL in the web browser to view
the rendered results shown in Figure 3.10:

Click here to view code image

http://localhost/lesson03/forms.html

FIGURE 3.10 An HTML form example showing the various form elements created
by Listing 3.6.

LISTING 3.6 forms.html HTML Generating a Form with Text, Radio, and Select
Inputs

Click here to view code image

01 <html>
02 <head>
03 <title>Forms</title>
04 <meta charset="UTF-8">
05 </head>
06 <body>

07 <form>
08 <fieldset>
09 <legend>Contact Info:</legend>
10 Name: <input type="text" name="name">
11 Origin: <input type="text" name="address">

12 Destination: <input type="text" name="city">
13 Flight Date: <input type="text" name="zip">

14 <select name="Airliner">
15 <option value="DA">Delta</option>
16 <option value="PJ">Private Jet</option>
17 <option value="Heli">Helicopter</option>
18 <option value="EG">Eagles</option>
19 </select>
20 </fieldset>
21 <input id="One WayRB" type="radio"
22 name="travelPlan" value="One way">
23 <label for="One WayRB">One Way</label>
24 <input id="Round TripRB" type="radio"
25 name="travelPlan" value="round trip">
26 <label for="Round TripRB">Round Trip</label>

27 <textarea rows="10" cols="30">comments</textarea>

28 <input di='newsCB' type="checkbox" name="news" value="news">
29 <label for="newsCB">
30 I would like to enroll into the frequent flyer miles program
31 </label>

32 <button type="submit" name="SubmitButton"
33 value="Submit">Submit</button>
34 <button type="reset" name="ResetButton"
35 value="Reset">Reset</button>
36 </form>
37 </body>
38 </html>

Adding Some Advanced HTML5 Elements
HTML5 adds several more advanced elements that you can use to enhance dynamic web
pages. A few of the graphic and media elements are covered in the following sections
because a direct relationship exists between those and JavaScript/jQuery programming.

Using HTML5 Graphical Elements
The two main HTML5 graphical elements are <svg> and <canvas>. These two
elements can be added and manipulated via jQuery and JavaScript. This allows you to
dynamically change complex graphics in your web pages by drawing directly to the
browser window from your scripts.
That means you can dynamically add graphical elements in the browser without needing
to load files from the server.

Creating SVG Graphics in HTML5
The <svg> element allows you to add scalable vector graphics to your web pages.
Scalable vector graphics are composed of a series of lines, arcs, and fills that make up
paths. When rendered by the browser, these paths can produce simple to complex
graphics. The advantage to using vector graphics is that they retain their crisp edges
even when scaled inside the browser. They look sharper onscreen and when printed.
Adding SVG graphics can get extremely complex; the next section gives you an idea of
the HTML elements involved so that you can understand attributes and style properties.
From JavaScript and jQuery, you will be able to access the properties for various
reasons, such as creating and animating graphics in your web page.

Adding Basic Geometric Shapes
First, you’ll create some basic geometric shapes. The following code from Listing 3.7
creates a simple series of ellipses and a circle, shown in Figure 3.11. In the
<ellipse> element, you specify the center of the ellipse as cx and cy coordinates;
then you specify the radius in both the horizontal and vertical directions using the rx
and ry attributes. Notice that you also specify a stroke color and width, as well as
the fill color:
Click here to view code image

08 <svg xmlns="http://www.w3.org/2000/svg" version="1.1"
09 height="200">
10 <ellipse cx="100" cy="100" rx="80" ry="50"
11 stroke="black" stroke-width="2"
12 fill="transparent" />
13 <ellipse cx="100" cy="100" rx="50" ry="80"
14 stroke="black" stroke-width="2"
15 fill="transparent"
16 transform="rotate(30, 100, 100)" />
17 <ellipse cx="100" cy="100" rx="80" ry="50"
18 stroke="black" stroke-width="2"
19 fill="transparent"
20 transform="rotate(60, 100, 100)" />
21 <ellipse cx="100" cy="100" rx="8" ry="2"
22 stroke="crimson" stroke-width="2"
23 fill="crimson"
24 transform="rotate(45, 100, 100)" />
25 <ellipse cx="100" cy="100" rx="2" ry="8"
26 stroke="crimson" stroke-width="2"
27 fill="crimson"
28 transform="rotate(45, 100, 100)" />
29 <ellipse cx="100" cy="100" rx="2" ry="8"
30 stroke="crimson" stroke-width="2"
31 fill="crimson" />
32 <ellipse cx="100" cy="100" rx="8" ry="2"
33 stroke="crimson" stroke-width="2"
34 fill="crimson" />

35 <circle cx="100" cy="100" r="6"
36 stroke="red" stroke-width="4" fill="DarkRed"/>
37 </svg>

FIGURE 3.11 Using SVG graphics makes it easy to add basic geometric shapes to a
web page.

Adding Paths
Another example is using paths to draw some more complex shapes. A path is a
collection of lines that are all connected. The lines may be straight, parabolic arcs, or
Bezier curves. To create a path, add a <path> element to the <svg> element and
define the d attribute. The d attribute contains a series of commands that tells the
browser how to render the path on the screen. The following is a list of the more
common commands:

 M x,y—Specifies to move to coordinates x,y. Capital M specifies absolute
coordinates; lowercase m specifies relative coordinates.
 h n—Specifies to draw a horizontal line n pixels. This value can be positive or
negative. Negative means left. Capital H is absolute and lowercase h is relative.
 v n—Specifies to draw vertical line n pixels. This value can be positive or
negative. Negative means up. Capital V is absolute and lowercase v is relative.

 l x,y—Draws a line from the current coordinates to the coordinate x,y. You can
specify additional sets of coordinates separated by a space to add additional line
segments. Capital L is absolute, and lowercase l is relative.
 c x1 y1 y2 y2 x y—Draws a Bezier curve from the current coordinates to
x,y using x1,y1 as a control point of the curve for the start and x2,y2 as
control points for the curve’s end. Figure 3.12 illustrates how the control points
work. Capital C is absolute and lowercase c is relative.

FIGURE 3.12 The control points define the shape of the curve.

 a rx ry x-axis-rotation large-arc-flag sweep-flag x y—Draws an arc
from the current coordinates to x,y. The size and orientation of the ellipse are
defined by two radii rx, ry as well as the x-axis-rotation value, which
specifies the angle of the x axis of the arc. The large-arc-flag and
sweep-flag are set to 0 or 1 and define which part of the parabolic curve is
rendered to the screen. Capital A is absolute and lowercase a is relative.
 z—Close the path, which means that the last coordinate will be connected to the
beginning of the path.

The following code in Listing 3.7 illustrates utilizing a couple of paths to create a
disconnected pie graph, as shown in Figure 3.13. Notice that the <path> data begins
with an M command to move to a specific absolute coordinate. Then an h50 command
draws a line to the right 50 pixels; next, an a command draws an arc with a 50 pixel
radius in both directions up 50 pixels and to the right 50 pixels. Finally, the z
command closes the arc, and you have the first piece of pie. The next <path> element
draws the main portion of the pie in the same way:
Click here to view code image

38 <svg xmlns="http://www.w3.org/2000/svg" version="1.1"
39 height="200">
40 <path d="M100,90 h-50 a50,50 0 1,0 50,-50 z"
41 fill="none" stroke="purple" stroke-width="1" />

42 <path d="M90,80 v-50 a50,50 0 0,0 -50,50 z"
43 fill="violet" stroke="none" stroke-width="2" />
44 </svg>

FIGURE 3.13 Using vector paths to create a pie chart.

In addition to using paths to create graphical elements, you can also use paths to create
some cool textual effects. For example, the following code adds a path with no fill as an
SVG definition in a <defs> container. The path draws a full circle using two arc
segments. The id attribute is set to path1. Next, an SVG <text> element is created
that defines some text.
Notice that inside the <text> element is a <textPath> element that references the
path1 definition. The result is that the text is drawn on the path, as shown in Figure 3.14.
We also added a path element to the <svg> tag that draws the hands using a couple of
line segments:
Click here to view code image

45 <svg xmlns="http://www.w3.org/2000/svg" version="1.1"
46 height="350">
47 <defs>
48 <path id="path1"
49 d="M 77,210 a 1,1 0 1,1 200,0 a 1,1 0 1,1 -200,1"/>
50 </defs>
51 <text x="10" y="10" style="fill:blue;font-size:31px;">
52 <textPath xlink:href="#path1">
53 Teach Yourself AngularJS JavaScript and jQuery
54 </textPath>
55 </text>
56 <path d="M 175,130 v90 h60" stroke="black"
57 stroke-width="5" fill="none"/>
58 </svg>

FIGURE 3.14 Using vector paths, you can link text to the path to create some cool
visual effects.

The SVG examples can be found in the code/lesson03/html_svg.html file on the website.
Using these techniques, you can create a vast amount of graphical shapes.

LISTING 3.7 JavaScript and HTML Code That Uses <svg> Elements to Create
a Pie Graph and a Text Border Around a Clock

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>html 5 graphics</title>
05 <meta charset="UTF-8" />
06 </head>
07 <body>
08 <svg xmlns="http://www.w3.org/2000/svg" version="1.1"
09 height="200">
10 <ellipse cx="100" cy="100" rx="80" ry="50"
11 stroke="black" stroke-width="2"
12 fill="transparent" />
13 <ellipse cx="100" cy="100" rx="50" ry="80"
14 stroke="black" stroke-width="2"
15 fill="transparent"
16 transform="rotate(30, 100, 100)" />
17 <ellipse cx="100" cy="100" rx="80" ry="50"
18 stroke="black" stroke-width="2"
19 fill="transparent"

20 transform="rotate(60, 100, 100)" />
21 <ellipse cx="100" cy="100" rx="8" ry="2"
22 stroke="crimson" stroke-width="2"
23 fill="crimson"
24 transform="rotate(45, 100, 100)" />
25 <ellipse cx="100" cy="100" rx="2" ry="8"
26 stroke="crimson" stroke-width="2"
27 fill="crimson"
28 transform="rotate(45, 100, 100)" />
29 <ellipse cx="100" cy="100" rx="2" ry="8"
30 stroke="crimson" stroke-width="2"
31 fill="crimson" />
32 <ellipse cx="100" cy="100" rx="8" ry="2"
33 stroke="crimson" stroke-width="2"
34 fill="crimson" />
35 <circle cx="100" cy="100" r="6"
36 stroke="red" stroke-width="4" fill="DarkRed"/>
37 </svg>
38 <svg xmlns="http://www.w3.org/2000/svg" version="1.1"
39 height="200">
40 <path d="M100,90 h-50 a50,50 0 1,0 50,-50 z"
41 fill="none" stroke="purple" stroke-width="1" />
42 <path d="M90,80 v-50 a50,50 0 0,0 -50,50 z"
43 fill="violet" stroke="none" stroke-width="2" />
44 </svg>
45 <svg xmlns="http://www.w3.org/2000/svg" version="1.1"
46 height="350">
47 <defs>
48 <path id="path1"
49 d="M 77,210 a 1,1 0 1,1 200,0 a 1,1 0 1,1 -200,1"/>
50 </defs>
51 <text x="10" y="10" style="fill:blue;font-size:31px;">
52 <textPath xlink:href="#path1">
53 Teach Yourself AngularJS JavaScript and jQuery
54 </textPath>
55 </text>
56 <path d="M 175,130 v90 h60" stroke="black"
57 stroke-width="5" fill="none"/>
58 </svg>
59 </body>
60 </html>

This section only scratched the surface of SVG. If you would like to learn more about
SVG graphics in HTML5, you can check out the docs here:
www.w3.org/TR/SVG/Overview.html.

Adding a Canvas for Dynamic Design
The <canvas> element also allows you to dynamically add and manipulate image-
type graphics to your web pages. The canvas allows you to paint color, lines, text, and
images onto an area of the browser screen from JavaScript.

http://www.w3.org/TR/SVG/Overview.html

The difference between <svg> elements and <canvas> elements is that rather than
being a path, the graphics are stored as a pixel by pixel map where each pixel is a
different color and opaqueness.
Most of the work done with the <canvas> element will be done in jQuery and
JavaScript scripts. In HTML, all you need to do is add the canvas element with an id
that you can access from your scripts. To get an idea of the relationship between
<canvas> elements and JavaScript, consider the code in Listing 3.8.
The canvas element only defines a container that can be drawn on. All the work is done
in the <script> element. Inside the script, the first two lines get the myCanvas
element and get a 2d context object. The context object is the graphical object that
provides methods to draw on the canvas. This code sets the line width and color that
will be rendered by a stroke() call:
Click here to view code image

11 var c=document.getElementById("myCanvas");
12 var ctx=c.getContext("2d");
13 ctx.lineWidth="1";
14 ctx.strokeStyle="blue";

The rest of the JavaScript draws three sides of a cube onto the canvas. For each side,
the beginPath() call starts a new path. Then you use
createLinearGradient() and addColorStop() to create a gradient fill and
set the context fill style:
Click here to view code image

17 var grd=ctx.createLinearGradient(100,50,100,5);
18 grd.addColorStop(0,"blue");
19 grd.addColorStop(1,"white");
20 ctx.fillStyle=grd;

Next, to build the cube side, begin with a moveTo() call to move to a specific
coordinate in the canvas and then a series of lineTo() to add the lines. At this point,
there is still nothing written to the canvas. To write the pixels to the canvas, you can use
the stroke() call and/or fill() calls to draw lines and fill colors on the canvas.
The results are shown in Figure 3.15.

FIGURE 3.15 Using JavaScript to draw pixels on a canvas.

LISTING 3.8 JavaScript and HTML Code That Draws a Cube onto a <canvas>
Element

Click here to view code image

01 <html>
02 <head>
03 <title>HTML 5 Canvas</title>
04 <meta charset="UTF-8" />
05 </head>
06 <body>
07 <canvas id="myCanvas" width="300" height="300">
08 Sorry Your Browser Doesn't Support HTML5 Canvas
09 </canvas>
10 <script>
11 var c=document.getElementById("myCanvas");
12 var ctx=c.getContext("2d");
13 ctx.lineWidth="1";
14 ctx.strokeStyle="blue";
15 //top
16 ctx.beginPath();
17 var grd=ctx.createLinearGradient(100,50,100,5);
18 grd.addColorStop(0,"blue");
19 grd.addColorStop(1,"white");
20 ctx.fillStyle=grd;
21 grd.addColorStop(0,"blue");
22 ctx.moveTo(1,25);
23 ctx.lineTo(100,5);
24 ctx.lineTo(200,25);
25 ctx.lineTo(100,50);
26 ctx.fill();
27 ctx.stroke();
28 //left
29 ctx.beginPath();
30 var grd=ctx.createLinearGradient(75,100,60,25);
31 grd.addColorStop(0,"red");

32 grd.addColorStop(1,"white");
33 ctx.fillStyle=grd;
34 ctx.moveTo(1,25);
35 ctx.lineTo(100,50);
36 ctx.lineTo(100,165);
37 ctx.lineTo(1,125);
38 ctx.lineTo(1,25);
39 ctx.fill();
40 ctx.stroke();
41 //right
42 ctx.beginPath();
43 var grd=ctx.createLinearGradient(200,50,125,175);
44 grd.addColorStop(0,"yellow");
45 grd.addColorStop(1,"white");
46 ctx.fillStyle=grd;
47 ctx.moveTo(100,50);
48 ctx.lineTo(200,25);
49 ctx.lineTo(200,125);
50 ctx.lineTo(100,165);
51 ctx.fill();
52 ctx.stroke();
53 </script>
54 </body>
55 </html>

This section only scratched the surface of <canvas> elements. If you would like to
learn more about canvas graphics in HTML5, you’ll find some good docs and examples
here: www.w3schools.com/tags/ref_canvas.asp.

Adding Media Elements
Some additional HTML5 elements that you should be aware of are the <video> and
<audio> tags. These tags allow you to add media elements to web pages in the form
of audio and video. Using jQuery and JavaScript, you can reference these elements and
manipulate them dynamically. This allows you to change the size, notify the user when
the media has loaded, or just control the playback.
The following code shows an example of the <video> and <audio> tags, and
Figures 3.16 and 3.17 show the rendered components:
Click here to view code image

<video width="320" height="240" controls>
 <source src="images/movie.mp4" type="video/mp4">
 <source src="images/movie.ogg" type="video/ogg">
 Sorry, your browser does not support the video tag.
</video>
<audio controls>
 <source src="song.mp3" type="audio/mp3">
 Sorry, your browser does not support the audio element.
</audio>

http://www.w3schools.com/tags/ref_canvas.asp

FIGURE 3.16 Rendered <video> element allows you to play back a movie.

FIGURE 3.17 Rendered <audio> element allows you to play back songs or other
audio.

Summary
In this lesson, you learned the basics of HTML web page development. You also
learned how some of the elements can be dynamically accessed via jQuery and
JavaScript so that you can better design interactions into your web pages. In addition,
you learned the basics necessary to design your HTML elements to support
implementing CSS layouts and styling.
Several Try It Yourself walkthroughs took you step by step through adding styled
containers, tables, and web forms. In subsequent lessons, you use the basics learned in
this lesson to implement dynamic jQuery and JavaScript.

Q&A
Q. Why is there HTML5 and HTML 4, and not just HTML? Which one should

I use?
A. It takes web browsers some time to adopt the standards in the newer versions of

HTML. Many of the HTML5 features will not work in older browsers and some
newer browsers only support some features but not others. This causes errors on
the HTML pages and a very poor user experience. Because of that, HTML 4 is
kept as a different standard until HTML5 is fully supported on all web browsers.
Which one you select to use depends on who will be viewing your web pages. If
the web pages are for everyone on the Internet, you need to continue to support
HTML 4 until the browsers fully support HTML5. If the web pages are only for

users internal to your company, and you can require a certain level of web
browser, you can choose a web browser and version that fully supports HTML5
and run with the new features.

Q. Why even bother creating HTML documents with elements when you can
dynamically create them from JavaScript?

A. The best paradigm to use for dynamic web pages is to build the bare bones in
HTML, style them in CSS, and then add interactions with JavaScript. The reason
you should use HTML documents with the full bare bones is that it is much easier
to understand and adjust the structure of the web pages via HTML rather than in
JavaScript. Also, if you are localizing your web pages, it is often easier to
localize an HTML document in contrast to dynamic JavaScript strings.

Workshop
The workshop consists of a set of questions and answers designed to solidify your
understanding of the material covered in this lesson. Try to answer the questions before
looking at the answers.

Quiz
1. What HTML element attribute is used to change such things as the background

color and size of elements?
2. What is the <noscript> element used for?
3. What is the difference between the <canvas> and <svg> elements?
4. True or false: You cannot have an HTML page link to a location on the same

page.
5. What is the difference between a block and inline HTML elements?

Quiz Answers
1. style.
2. The <noscript> allows you to display a message on the HTML page if

JavaScript is not active in the user’s web browser.
3. The <canvas> element displays images as pixel-based graphics and supports

images such as JPEG and PNG; <svg> supports vector-based graphics as a
series of paths that remain crisp when scaled.

4. False. You can use the <a href"# syntax to link to a local anchor on the web
page.

5. Block elements take up the full width of the screen so elements after them flow

below, whereas multiple inline elements can be displayed on the same line
because they take up only the amount of room necessary for the content within
them.

Exercises
1. Extend the example in Listing 3.5 to include some additional national parks.
2. Use the example in Listing 3.8 as a base and change the cube to a sphere by

making all the top points in the path go to the same point (100,15). You will need
to remove the portion that draws the top of the cube, change the moves, and
remove some of the lineTo() functions.

Lesson 4. Adding CSS/CSS3 Styles to Allow Dynamic
Design and Layout

What You’ll Learn in This Lesson:
 Adding CSS to HTML documents
 How to use CSS selectors to apply styles to specific HTML elements
 How to apply color, images, and backgrounds to HTML elements
 Creating cool borders around HTML elements
 Using CSS to define the look and layout of web pages
 Designing CSS to be used by your AngularJS, jQuery, and JavaScript code

One of the most important aspects of dynamic web pages is their capability to
dynamically adjust the design and layout of elements as users interact with the page.
This lesson focuses on adding CSS styles to your HTML documents. CSS provides a
way to easily apply style changes to HTML elements on the web page.
It is important to add an initially good design that can be easily altered in your
AngularJS, jQuery, and JavaScript code. With a good design, simple style changes
through AngularJS, jQuery, and JavaScript can dramatically alter the appearance and
behavior of the HTML components, providing a rich user experience.
The following sections cover CSS syntax and using CSS to modify the look of HTML
elements and the layout of the web page.

Adding CSS Styles to the Web Page
You can add CSS styles to web pages in a number of ways: as a separate file, in the
HTML <head> element, in the HTML <body> element, inline inside of a specific
HTML element, or even dynamically from AngularJS, jQuery, and JavaScript.
You can apply as many styles in as many ways as you would like. However, you need to
keep in mind that the styles are applied in order, with the latest style overriding the
values of previous styles. Styles are loaded in the following order:

1. <link> or <style> elements from the header. The lower elements override
the ones above them.

2. <style> elements in the web page body. The lower elements override the ones
above them.

Caution
If you define different CSS definitions for the same element(s) in two

different CSS files or <style> sections, the ones that are loaded last will
overwrite the previous ones. This is very useful; however, it can be a pain
if it is not intended. For example, if you have a selector that changes
several properties for <p> elements and then a subsequent selector that
directly references the ID of a specific <p> element, you would likely
want to place the general definition before the specific so that you retain
the specific property values.

3. Styles applied to HTML elements directly via the style attribute of the element.
4. Styles applied dynamically via AngularJS, jQuery, or JavaScript. These are

dynamically applied when the JavaScript is executed.
The following sections discuss how to add styles using each of the options and when to
use them.

Loading CSS Styles from a File
Typically, the best method of loading CSS styles is from a separate file, which means
you create a file with a .css extension and then add it to your website. This provides
several advantages:

 You can link several HTML documents to the same CSS file.
 Your HTML files remain much cleaner because there is not a lot of extra CSS
code encumbering them.
 It is easy to re-skin your website by changing out the CSS file for another.

To load CSS styles from a separate file, you need to add the .css file to your website
and then add a <link> element to the HTML <head> element. When the web page is
loaded, the browser parses the <link> element, requests the .css file from the web
server, and applies the styles when rendering the HTML elements.
The following is an example of the syntax used in the <link> element. Notice that the
rel attribute is set to stylesheet, the type to text/css, and the href points to
the location of the .css file on the web server:
Click here to view code image

<link rel="stylesheet" type="text/css" href="css/test.css">

Adding CSS Styles to the Header
You can also add CSS styles directly to a web page in the <head> element using the
<style> tag. All the text inside the <style> tag will be treated as CSS, read into
the browser, and applied to the elements as they are rendered.
Applying CSS styles in the header does have some advantages, including the following:

 It is easy to apply them to the header to test out the web page without needing to
manage an additional .css file.
 You can override global styles loaded from a .css file with some that apply
specifically to that page.

The following is an example of a <head> element that includes a <style> element
with CSS. Notice that the type attribute is set to text/css; this is not required, but
it is good practice for a time when other style types are supported by browsers:
Click here to view code image

<html>
 <head>
 <meta charset="UTF-8">
 <style type="text/css">
 p{
 background-color:#C0C0C0;
 padding: 3px;
 }
 span{
 font-weight:bold;
 }
 </style>
 </head>
...

Using CSS Styles in the HTML Body
You can also use the <script> tag to add CSS style settings directly inside the
HTML <body> element. This is not a good practice, because it can make the web page
styles very difficult to change and fix. You should limit your use of this method to times
when you want to quickly add a style for testing purposes. After testing, you should
always move them to the <head> or a separate file.

Defining CSS Styles in HTML Elements
HTML elements provide a style attribute that allows you to directly set the CSS style
inside the HTML statement. This provides advantages, but one huge disadvantage.
The advantage is that you can override the CSS styles that are applied globally to the
website or web page. This makes it possible to customize the look and feel of a specific
element without the need to include a special rule in another location.
The disadvantage is that if you do this very much, it makes it really difficult to update
the style of your website when you decide on a different web design or branding.
The following line of code shows an example of adding a CSS style directly inside
of a element:
Click here to view code image

Styled
Text

Adding CSS Styles to HTML Elements
You have already seen some brief examples of CSS being applied in previous examples
in this book. Now it is time to introduce you to the syntax and properties that you can
apply to HTML elements via CSS. This section is by no means comprehensive;
however, it will give you an understanding of what can be done to HTML elements via
CSS.
As you read through and try out the examples, keep in mind that you will have access to
the CSS properties via AngularJS, jQuery, and JavaScript and can therefore set them
dynamically as the user interacts with the web page.

Understanding the Basic CSS Syntax
CSS is composed of a set of one or more rules that define values of properties that the
web browser uses when rendering the HTML element. Each rule is started by a selector
that defines which HTML element(s) to apply the style change to. Then inside the {}
brackets are specific property settings. The property values are set using the
property:value syntax. Each property setting is separated by a semicolon.
The following listing shows an example of a simple CSS rule that sets the font style,
background color, and width of a <p> element:

p {
 font-style:italic;
 background-color:#DDDDDD;
 width:250px;
}

You should use a separate line for each of the elements to make the file more readable
and clean. You can combine multiple elements on the same line as long as they are
enclosed in the {} brackets. For example:
Click here to view code image

p { font-style:italic; background-color:#DDDDDD; width:250px; }

Note
Several of the CSS properties support multiple settings for a single
property. This helps keep your CSS files a bit more concise and yet
maintains the readability. For example, the following single CSS property
setting sets the font to bold, italic, 12 pixels, and Times New
Roman. The multiple settings are separated by spaces. Two typefaces are

specified, Times New Roman and serif, so if the browser can’t find
the first, it will use the second. Notice that because Times New Roman
includes spaces, it must be encapsulated in double or single quotes. Also
notice that the two typefaces are separated by a comma indicating they are
still part of the same setting value:

Click here to view code image

font:italic bold 12px "Times New Roman",serif;

Figure 4.1 shows the basic CSS to apply background and color changes to a <p>
element and a element. Notice that there are two rules—one for each element
type. The property values listed in each rule are applied only to the element specified
by the selector.

FIGURE 4.1 CSS rules are composed of a selector, followed by a list of property
values to be applied to HTML elements.

Note
Some of the CSS properties are supported only in specific types of
browsers. CSS has a naming convention that allows for the browser engine
to be prepended onto the property name to identify the browser that the
property setting is intended for. This provides a couple of benefits: one is
that you can specify different CSS property values for different browsers;
the second is that it allows you to set the CSS property only for browsers
that support the functionality. The prefixes are -ms- for Internet Explorer,
-moz- for Firefox, -webkit- for Safari and Chrome, and o- for Opera.
The following shows an example of using the prefixes to set the rotate

property value:
Click here to view code image

-ms-transform:rotate(5deg); /* IE 9 */
-moz-transform:rotate(5deg); /* Firefox */
-webkit-transform:rotate(5deg); /* Safari and Chrome */
-o-transform:rotate(5deg); /* Opera */

Using CSS Selectors to Style HTML Elements
One of the most important pieces of styling HTML elements is the CSS selector. The
CSS selector is used to define which HTML elements the CSS rule applies to. CSS
selectors can seem a bit daunting at first; however, when you understand the basic
concepts in some examples, the syntax falls into place.
The following series of examples will help you understand selectors.
To apply a CSS rule to all <div> elements, use the following (HTML elements are
referred to by tag name):

div {...

To apply a CSS rule to a specific HTML element with the id attribute equal to myDiv,
use the following (in CSS, the id attribute is designated using #):

#myDiv {...

To apply a CSS rule to a group of HTML elements all with the class attribute equal to
container, use the following (in CSS, the id attribute is designated using .):

.container {...

To apply a CSS rule to elements when the mouse is hovering over them, use
the following (in CSS, states are designated by :state):

span:hover {...

To apply a CSS rule to <a> elements that have the target attribute set to _blank, use
the following (in CSS, attributes are designated by [] brackets):

a[target=_blank]

You can also chain multiple selectors together using commas. For example, to apply a
CSS rule to all <div>, , <p>, and elements with class="menu", you
could use the following:

div, span, p, .menu {...

Also keep in mind that CSS stands for Cascading Style Sheets. You may have different
selectors that apply to several groups of objects that overlap. For example, consider the

following selectors. The first applies to all <div> elements, the second applies only to
“menu” class elements—some of which are <div> elements—and the final applies
only to “menu” class elements that are currently under the mouse cursor. Property
settings in the .menu and .menu:hover rules will override settings made in the div
rule:

div {...
.menu {...
.menu:hover{...

Table 4.1 provides a list of several types of selectors; it shows an example and
describes how the selector works. You can do much more with selectors than what is
shown in the preceding examples and in Table 4.1, but these should give you an idea of
how we are using selectors in the rest of the exercises in this book.

TABLE 4.1 List of Some of the More Commonly Used CSS Selectors

Using CSS Design Properties
Most of the CSS properties are aimed at altering the appearance of the HTML items.
Unfortunately, the out-of-the-box HTML elements look pretty bland. However, by
adding color, borders, backgrounds, images, and other design properties, you can
dramatically change the appearance of your HTML elements with only a little bit of
CSS code.
The following sections cover the CSS properties that alter the look of HTML
components.

CSS Colors
One of the most frequently used settings applied via CSS is the color property. Most
elements have a color property that defines the color the browser uses to render them—
for example, a table border, a list bullet, or text characters in a paragraph.
You can use several methods for setting the exact color to support the different
backgrounds and situations of people who are defining the color. The color value can be
specified via one of the following methods:

 Name—The CSS color name, such as red, blue, green, or yellow. There
are 147 predefined color names, such as aqua, crimson, and silver. You
can find a list of color names at www.w3.org/TR/css3-color/#svg-color.

http://www.w3.org/TR/css3-color/#svg-color

 Hex—You can specify a hex number that represents the amount of red, green, and
blue to include in the color. The syntax is #RRGGBB. A value of 00 represents
none of that color, and a value of FF represents all of that color. For example, red
is #FF0000, green is #00FF00, and blue-green is #00FFFF.
 RGB—Similar to Hex, except that you can specify values between 0 and 255. For
example, blue-green is rgb(0, 255, 255).
 RGBA—Same as RGB; however, you can also specify an alpha parameter that
controls the opaqueness, with 0.0 being fully transparent and 1.0 being opaque.
For example: rgba(0, 255, 255, 0.5) is blue-green that is 50% opaque.
 HSL—Enables you to specify the color based on the Hue/Saturation/Lightness
color scheme. For example, a color with a hue of 100, saturation of 45%, and a
lightness of 75% would be hsl(100, 45%, 75%).
 HSLA—Same as HSL, except you can also specify an alpha parameter that
controls the opaqueness, with 0.0 being fully transparent and 1.0 being opaque.
For example, an 80% transparent color would be hsla(100, 45%, 75%,
.20).

For example, the following CSS rules all define the text color of a <p> element as blue
and are completely interchangeable:
Click here to view code image

p {color:blue;}
p {color:#0000FF;}
p {color:rgb(0,0,255);}
p {color:rgba(0,0,255,1.0);}
p {color:hsl(240,100%,50%);}
p {color:hsl(240,100%,50%,1.0);}

Try it Yourself: Applying Text Styles via CSS
CSS provides several properties that enable you to define the look of text in
HTML elements. The following are some of the more common text properties you
might be dealing with:

 color—Allows you to set the color and transparency of the text.
 font—Allows you to set the various properties of the font used to render
the text. The properties that you can set are font-style, font-
variant, font-weight, font-size, and font-family. The font
property allows these to be set on a single line or as a series of separate
properties. For example, the following lines are equivalent and produce the
output shown in Figure 4.2:

Click here to view code image

#roman{font: italic bold 30px "Times New Roman", serif}
#roman{
 font-family:"Times New Roman", serif;
 font-style:italic;
 font-weight:bold;
 font-size: 30px;
 }

FIGURE 4.2 Changing the font style, weight, size, and face.

Note
Font families are applied in the order specified in the font-family property.
The first font found is used. It is a good idea to always provide one of the
common fonts, such as serif, as a backup in case the font you specify
doesn’t exist on the browser’s system.

 text-align—Allows you to set the text alignment to right, left, or
centered. For example, the following CSS settings render the output
shown in Figure 4.3:

Click here to view code image

#align-left{text-align:left}
#align-center{text-align:center}
#align-right{text-align:right}

FIGURE 4.3 Changing the alignment repositions the text in the browser.

 letter-spacing—Allows you to specify an amount of spacing between
the letters in the words. This value can be either positive or negative and
can be specified as px/pt/cm. Figure 4.4 shows an example of using the
following CSS setting to tighten the letter spacing by 1 pixel:
#tight{letter-spacing:-1px}

FIGURE 4.4 Changing the letter-spacing to 1px tightens the text.

 word-spacing—Enables you to specify an amount of spacing between

the letters in the words. This value can be either positive or negative and
can be specified as px/pt/cm.
 line-height—Enables you to control the amount of space between lines.
You can specify the value as a number that is multiplied by the height of the
text, a size amount using a number with an em/px/pt/cm suffix, or a % for
percentage of the height of the line. Figure 4.5 shows an example of using
the following CSS setting to tighten the line spacing to only 50% the normal
height:
#half-height{line-height:50%}

FIGURE 4.5 Changing the line height to 50% tightens the lines of text.

 text-decoration—Enables you to add a line below, above, or through
the text using the overline, underline, or line-through values.
You can also specify blink as the value to have the text blink in the
browser. The following lines of CSS cause the element to render an
underline and strikethrough, as shown in Figure 4.6:

Click here to view code image

#underline{text-decoration:underline;}
#strike-through{text-decoration:line-through;}

FIGURE 4.6 Changing the text to underline or strikethrough.

 text-indent—Enables you to specify an amount to indent the first line of
the text either by a specific value, such as 20px, or as a percentage of the
width of the element, such as 20%.
 text-transform—Enables you to change the capitalization of the text
using capitalize to capitalize the first character in each word, uppercase to
make the text all caps, or lowercase to remove all capital letters.
 text-overflow—Allows you to define what happens when the text is
wider than the size allowed by the element. The options are clip to just cut
off the text, ellipsis to add a ... representing the clipped text, or a string
that will be added to replace the clipped text. For example, the following
line of CSS will clip text if it is too long and append the string “(more)”
at the end:

Click here to view code image

#overflow{text-overflow:" (more)";}

Use the following steps to create an HTML document and add CSS styles to text
elements. The full versions of the files you are creating are in Listing 4.1 and
Listing 4.2:
1. From Eclipse, create a folder named lesson04.
2. Add a subfolder to lesson04 called css.
3. Right-click the lesson04 folder and create a new HTML document named

text_styles.html; then add the following basic HTML elements:
Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Text Styles</title>
05 <meta charset="UTF-8">
...
07 </head>
08 <body>
...
24 </body>
25 </html>

4. Now add the following <p> elements that you will format using CSS. Notice
that each has a different id property that you can use in the CSS selector to
isolate just that element:

Click here to view code image

09 <p id="plain">Plain Text</p>
10 <p id="indent">Indented Text
Indented Line 2</p>
11 <p id="blue">Blue Text</p>
12 <p id="tight">Tight Text</p>
13 <p id="half-height">Close Text Line 1

14 Close Text Line 2</p>
15 <p id="align-left">Left Text</p>
16 <p id="align-center">Centered Text</p>
17 <p id="align-right">Right Text</p>
18 <p id="underline">Underlined Text</p>
19 <p id="strike-through">Strike Through Text</p>
20 <p id="first-cap">capitalize the first letter</p>
21 <p id="uppercase">change to upper case</p>
22 <p id="blackadder">Some BlackAdder Text</p>
23 <p id="roman">Some Times New Roman Text</p>

5. Right-click the new css folder and add a new CSS file named text_styles.css.
6. Add the following CSS rules to the new file to define different property

settings for the different textual elements created in step 4:
Click here to view code image

01 #blue{color:blue;}
02 #tight{letter-spacing:-1px}
03 #half-height{line-height:50%}
04 #align-left{text-align:left}
05 #align-center{text-align:center}
06 #align-right{text-align:right}
07 #indent{text-indent:50px;}
08 #underline{text-decoration:underline;}
09 #strike-through{text-decoration:line-through;}
10 #first-cap{text-transform:capitalize;}
11 #uppercase{text-transform:uppercase;}

7. Add the following <link> element to the header of text_styles.html to link to
the new CSS document:

Click here to view code image

06 <link rel="stylesheet" type="text/css"
href="css/text_styles.css">

8. Save both files and open the following location in a browser. You should see
output similar to Figure 4.7 with the various looks of each of the paragraphs
altered:

Click here to view code image

http://localhost/lesson04/text_styles.html

FIGURE 4.7 Applying CSS styles to paragraph elements enables you to completely
change their look and behavior.

LISTING 4.1 text_styles.html HTML Code with Several Paragraph Elements to
Be Stylized

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Text Styles</title>
05 <meta charset="UTF-8">
06 <link rel="stylesheet" type="text/css" href="css/text_styles.css">
07 </head>
08 <body>
09 <p id="plain">Plain Text</p>

10 <p id="indent">Indented Text
Indented Line 2</p>
11 <p id="blue">Blue Text</p>
12 <p id="tight">Tight Text</p>
13 <p id="half-height">Close Text Line 1

14 Close Text Line 2</p>
15 <p id="align-left">Left Text</p>
16 <p id="align-center">Centered Text</p>
17 <p id="align-right">Right Text</p>
18 <p id="underline">Underlined Text</p>
19 <p id="strike-through">Strike Through Text</p>
20 <p id="first-cap">capitalize the first letter</p>
21 <p id="uppercase">change to upper case</p>
22 <p id="blackadder">Some BlackAdder Text</p>
23 <p id="roman">Some Times New Roman Text</p>
24 </body>
25 </html>

LISTING 4.2 text_styles.css CSS Code That Stylizes the Various Textual
Elements by Adjusting the Color, Alignments, Adding Lines, and Adjusting the
Spacing

Click here to view code image

01 #blue{color:blue;}
02 #tight{letter-spacing:-1px}
03 #half-height{line-height:50%}
04 #align-center{text-align:center}
05 #align-right{text-align:right}
06 #indent{text-indent:50px;}
07 #underline{text-decoration:underline;}
08 #strike-through{text-decoration:line-through;}
09 #first-cap{text-transform:capitalize;}
10 #uppercase{text-transform:uppercase;}
11 #roman{font: italic bold 30px "Times New Roman", serif}
12 #blackadder{
13 font-family:"blackadder itc";
14 font-size: 25px;
15 font-weight:bold;
16 }

Try it Yourself: Adding Backgrounds Via CSS
Altering the background properties of elements is an excellent way to completely
change the look and feel. You should be aware of several background properties,
such as the following:

 background-attachment—Can be set to scroll or fixed, which will

scroll the background with the rest of the page or leave it fixed.
 background-color—Enables you to define the color of the background
using the normal color commands; for example:

Click here to view code image

#top-left {background-color:rgb(255,255,0);}

 background-size—Enables you to specify the size of the background of
the element. The values can be a width/height set in pixels or percentages,
cover which will scale the background to fill the area of the element, or
contain which will scale the image so that the entire image fits in the
element. Keep in mind that with cover, some parts of the image may not be
displayed in the element if the dimension ratios are different. Some
examples that follow set the size to 200 pixels wide by 100 pixels high,
20% the width of the element by 200% the height, and contained fully within
the size of the element:

Click here to view code image

#top-left {background-size:200px 100px;}
#top-left {background-position:20% 100%;}
#top-left {background-position:contain;}

 background-position—This sets the location the background is placed
in the element, such as top left, bottom center, and so on. You can also
specify a position coordinate of width and height in pixels or percentages
for the top-left corner of the background image. For example, the following
code places the background image in the middle, 10% to the right 50%
down, and 100px to the right 20px down:

Click here to view code image

#top-left {background-position:center center;}
#top-left {background-position:10% 50%;}
#top-left {background-position:100px 20px;}

 background-image (url)—Enables you to specify the url to an
image that will be applied as a background. For example:

Click here to view code image

#rocs{background-image:url("images/rocks.png");}

 background-image (gradient)—In CSS3, you can also specify a
gradient that will fill the background with transitions to different colors.
When specifying the gradient, you can set the position, size, and colors.
Each of the browsers has its own specific property name. This is hard to

describe, so a few examples follow.
Following is an example of CSS that defines a horizontal linear gradient.
Figure 4.8 shows how the gradient is applied. Notice that the position is set
to top. It starts with the color blue at the top, goes to white at 70%, and then
to green at 100%, or the bottom:

Click here to view code image

background-image: -moz-linear-gradient(top, blue 0%, white 70%, green
100%);

FIGURE 4.8 Creating a linear background image gradient.

 The following line of CSS defines the radial gradient shown in Figure 4.9.
The center of the radiant is set to 50% from the left and 50% from the top;
circle ensures that it isn’t skewed into an ellipse, and contain scales it
down to the right size. The color starts at white at the center, moves to blue
at 75%, and then back to transparent white on the outside, using the rgba()
color setting:

Click here to view code image

background-image: -moz-radial-gradient(50% 50%, circle
contain,white,blue
75%,rgba(255,255,255,0));

FIGURE 4.9 Creating a radial background image gradient.

 background-repeat—You can use this option to repeat the background
image multiple times. The values are repeat to repeat in all directions,
repeat-y to repeat in the vertical direction, and repeat-x to repeat in
the horizontal direction. You can also specify no-repeat to display the
image only once. Repeating images are used for borders and as a design
element for bars and buttons. Figure 4.10 shows the results for the different
background-repeat values in the following code:

Click here to view code image

body{
 background-size:50px 50px;
 margin:5px;
 background-image: -moz-radial-gradient(20px 20px, circle
contain,white,blue 75%,white);
 background-repeat:repeat;
}

FIGURE 4.10 Using repeating images in an image.

Use the following steps to create an HTML document and add CSS styles to text
elements. These are the basics with a few <div> and elements. The full
versions of the files you will be creating are in Listing 4.3:

1. Create a new HTML document named backgrounds.html in the lesson04 folder in
Eclipse.

2. Add the following basic HTML elements:
Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Backgrounds</title>
05 <meta charset="UTF-8">
06 <style>
...

37 </head>
38 <body>
39 <div id="heading">jQuery Rules!</div>
40 <div id="content">
41 <div id="menu">
42 Home
43 Info
44 Examples
45 </div>
46 <p>Page Content</p>
47 </div>
48 </body>
49 </html>

3. Save the file and open it in your browser using the localhost address. Notice
that the text is very plain. All that is about to change with just a little bit of CSS.

4. Create a 200-pixel wide image named /images/rules.png or download the
rules.png file from the book’s website and place it there. This image will be a
repeating image on the left side.

5. Add the following CSS rule to the <style> element in the header of the HTML
file. This adds the image you just copied into the images folder to the web page. It
repeats the image vertically:

Click here to view code image

07 body {
08 margin:0px;
09 background-image:url("/images/ruler.png");
10 background-repeat:repeat-y;
11 }

6. Then add the following rule to style the text for the heading element and add a
horizontal linear gradient as the background:

Click here to view code image

12 #heading {
13 background-image: -moz-linear-gradient(left, #294551 0%,
#AACCFF 100%);
14 background-image: -webkit-linear-gradient(left, #294551 0%,
#AACCFF 100%);
15 background-image: -ms-linear-gradient(left, #294551 0%,
#AACCFF 100%);
16 height:200px;
17 font:150px bold;
18 text-align: center;
19 color:rgba(255,255,255,.4);
20 }

7. The vertical repeating image we added to the body is 200 pixels wide, so change
the left margin for the content container to 200px using the following rule so that

the content will be to the right of the image:
Click here to view code image

24 #menu{
25 padding:2px;
26 background-color:#294551;
27 }

8. Style the menu by changing the background color to #555555 and adding a
vertically linear gradient to the elements that make up the options:

Click here to view code image

22 #menu{
23 padding:3px;
24 background-color:#555555;
25 }
28 span {
29 padding:3px;
30 background-image: -moz-linear-gradient(top, #294551 0%,
#AACCFF 85%, #0022ff 100%);
31 background-image: -webkit-linear-gradient(top, #294551 0%,
#AACCFF 85%, #294551 100%);
32 background-image: -ms-linear-gradient(top, #294551 0%,
#AACCFF 85%, #294551 100%);
33 font:20px bold;
34 color:white;
35 }

9. Save the file and refresh the web page in your browser, as shown in Figure 4.11.
Notice the difference that adding some background elements can have to some
otherwise very plain HTML.

FIGURE 4.11 Adding CSS background styles greatly improves the appearance of
elements.

LISTING 4.3 backgrounds.html HTML and CSS Code That Add Different Types
of Background Styles to Elements

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Backgrounds</title>
05 <meta charset="UTF-8">
06 <style>
07 body {
08 margin:0px;
09 background-image:url("/images/ruler.png");
10 background-repeat:repeat-y;
11 }
12 #heading {
13 background-image: -moz-linear-gradient(left, #294551 0%,
#AACCFF 100%);
14 background-image: -webkit-linear-gradient(left, #294551 0%,

#AACCFF 100%);
15 background-image: -ms-linear-gradient(left, #294551 0%, #AACCFF
100%);
16 height:200px;
17 font:150px bold;
18 text-align: center;
19 color:rgba(255,255,255,.4);
20 }
21 #content {
22 margin-left:200px;
23 }
24 #menu{
25 padding:2px;
26 background-color:#294551;
27 }
28 span {
29 padding:3px;
30 background-image: -moz-linear-gradient(top, #294551 0%, #AACCFF
85%, #0022ff 100%);
31 background-image: -webkit-linear-gradient(top, #294551 0%,
#AACCFF 85%, #294551 100%);
32 background-image: -ms-linear-gradient(top, #294551 0%, #AACCFF
85%, #294551 100%);
33 font:20px bold;
34 color:white;
35 }
36 </style>
37 </head>
38 <body>
39 <div id="heading">jQuery Rules!</div>
40 <div id="content">
41 <div id="menu">
42 Home
43 Info
44 Examples
45 </div>
46 <p>Page Content</p>
47 </div>
48 </body>
49 </html>

Try it Yourself: Adding Borders to HTML Elements
Another CSS attribute that can be modified to completely change the look and
feel of an HTML component is the border attribute. All the container elements,
such as <div>, , and <p>, enable you to define a border style through
CSS.
Table 4.2 describes the some of the CSS properties that can be modified in CSS
to define various styles of borders.

TABLE 4.2 CSS Properties That Define Border Styles
You can specify different values of the border-width, border-color,
and border-style attributes on a single property setting using the following
syntax:

Click here to view code image

property: top right bottom left;
border-width: 1px 2px 1px 2px;
border-color: red blue red blue;

You can also set individual border component properties using the location
properties, such as border-top or border-top-width. For example, the

following CSS will style only the top and left components of the border:
border-top: 1px solid black;
border-left-color: blue;
border-left-style: solid;
border-left-width: 2px;

The following steps take you through the process of adding several types of
borders to HTML <div> elements by creating the code in Listing 4.4 and Listing
4.5:
1. Create a new HTML document named borders.html in the lesson04 folder in

Eclipse.
2. Add the code shown in Listing 4.4. The code links to an external style sheet

named css/borders.css and then defines a series of <div> elements.
3. Create a new CSS document named borders.css in the lesson04/css folder in

Eclipse.
4. Add the following line to the new CSS file to set basic spacing and size for

the <div> elements:
Click here to view code image

01 div { width:200px; margin:5px; padding:2px; text-align:center}

5. Add the lines of code 2–8 from Listing 4.5 to define several border styles that
apply to the different <div> elements.

6. Add the following CSS rules to create rounded borders on two of the <div>
elements:

Click here to view code image

09 #round { border: 1px solid; border-radius:5px;}
10 #veryround { border: 1px solid; border-radius:50%;}

7. Add lines 11–20 from Listing 4.5. These lines of code create shadows on the
<div> element. The first is an outset shadow and the second included the
inset value that defines it as an inner shadow.

8. Add the following lines of code that create a mixed border. This is included to
show you that you have a great deal of control on each side of the border. The
top is solid, with a radius on the right side; the left is dotted, and the
bottom is a ridge with a radius on the right side:

Click here to view code image

21 #mixed {
22 border-top: 1px solid;
23 border-top-left-radius:5px;
24 border-left: 1px dotted;

25 border-bottom: 5px ridge;
26 border-bottom-right-radius: 10px;
27 }

9. Add the following code that uses only the border with a large radius and a
background color to create a good-looking button:

Click here to view code image

28 #button {
29 width:150px;
30 background-color: #2233FF;
31 color: white;
32 border:5px outset blue;
33 border-radius:50%;
34 }

10. Save the files and open the HTML file in a web browser. You should see
results similar to what is shown in Figure 4.12. Notice the different styles of
borders applied with only a few CSS styling statements.

FIGURE 4.12 Adding CSS border elements can apply a variety of borders to HTML
elements.

LISTING 4.4 HTML That Creates a Series of <div> Elements That Are Styled
by Listing 4.5

Click here to view code image

01 <html>
02 <head>
03 <title>Borders</title>
04 <meta charset="UTF-8">
05 <link rel="stylesheet" type="text/css" href="css/borders.css">
06 </head>
07 <body>
08 <div id="simple">Simple Border</div>
09 <div id="dashed">Dashed Border</div>
10 <div id="dotted">Dotted Border</div>
11 <div id="groove">groove Border</div>
12 <div id="inset">Inset Border</div>
13 <div id="outset">Outset Border</div>
14 <div id="ridge">Ridge Border</div>
15 <div id="round">Round Border</div>
16 <div id="veryround">Rounder Border</div>
17 <div id="shadow">Outset shadow</div>
18 <div id="ishadow">Inset shadow</div>
19 <div id="mixed">Mixed Border</div>
20 <div id="button">Button</div>
21 </body>
22 </html>

LISTING 4.5 CSS Rules That Define Several Border Styles

Click here to view code image

01 div { width:200px; margin:5px; padding:2px; text-align:center}
02 #simple { border:1px solid black; }
03 #dashed { border:1px dashed black; }
04 #dotted { border:1px dotted gray; }
05 #groove { border:5px groove blue; }
06 #inset { border:5px inset red; }
07 #outset { border:5px outset blue; }
08 #ridge { border:5px ridge black; }
09 #round { border: 1px solid; border-radius:5px;}
10 #veryround { border: 1px solid; border-radius:50%;}
11 #shadow {
12 margin:10px;
13 border:1px solid black;
14 box-shadow: 5px 5px 3px 2px blue;
15 }
16 #ishadow {
17 margin:15px;
18 border:1px solid black;

19 box-shadow: 5px 5px 3px 2px blue inset;
20 }
21 #mixed {
22 border-top: 1px solid;
23 border-top-left-radius:5px;
24 border-left: 1px dotted;
25 border-bottom: 5px ridge;
26 border-bottom-right-radius: 10px;
27 }
28 #button {
29 width:150px;
30 background-color: #2233FF;
31 color: white;
32 border:5px outset blue;
33 border-radius:50%;
34 }

Cursor
An important part of browser interaction with users is the mouse cursor. You can let the
user know the purpose or behavior of an HTML element just by changing the way the
cursor looks when the mouse is over it.
The cursor CSS property enables you to define what cursor should be used when the
mouse is over a specific element. The following shows an example of setting the
cursor to a pointer:

div { cursor:pointer; }

You can choose from several cursor values. Figure 4.13 shows an example of some
of the cursor values that are available via the cursor CSS property.

FIGURE 4.13 Examples of some of the cursor types available via the cursor CSS
property.

Opacity
The opacity CSS property enables you to set the transparency of an HTML element
as well as all elements contained within. The opacity is specified as a decimal value
between 0 and 1, where 0 is transparent and 1 is opaque.
Changing the opacity is a great way to let users know that an HTML element is

inactive. For example, the following CSS and HTML define two button definitions. The
definition for button2 includes an opacity of .4 to make it partially transparent. The
results are shown in Figure 4.14.

FIGURE 4.14 Two elements styled as buttons, with one having an
opacity set to .4.

CSS rules:
Click here to view code image

#button, #button2 {
 margin: 5px; padding:3px;
 text-align: center;
 background-color: #2233FF;
 color: white;
 border:5px outset blue;
 border-radius:50%;
}
#button2 { opacity:.4; }

HTML elements:
Click here to view code image

Active
Inactive

Visibility
Another useful CSS property is visibility. You can set visibility to
hidden, and the HTML element and all elements contained will not be rendered to the
browser. Then setting it to visible again will display it in the browser window. This
capability is very useful in jQuery and JavaScript to enable you to show and hide page
elements dynamically.

Applying CSS Layout Properties
One of the biggest challenges with creating HTML web pages is that HTML does not
lend itself to creating attractive-looking layouts very easily. That is why many of the
CSS properties are aimed at altering the size, position, and relation to other HTML
elements.
Using the CSS Layout properties, you will be able to position items correctly on your
web page, and with JavaScript, jQuery, and AngularJS you can alter those positions
efficiently to provide more of an application experience for your users, rather than a
simple point-and-click web page. The following sections cover the CSS properties that

alter the layout of HTML components.

Understanding the Box Model
HTML elements are rendered to the browser window using the box model. In the box
model, the content of the HTML element is made up of the following four parts shown in
Figure 4.15:

 Content—The HTML component content itself
 Padding—Space between the component and the border
 Border—Border surrounding the HTML element
 Margin—Space between the HTML element and other elements around it

FIGURE 4.15 CSS Box Model includes four parts: content, padding, border, and
margin.

The amount of space that each of these takes in the web browser can be set using CSS.

Setting the Content Size
The content is set by specifying a size value of the height and width CSS
properties. The size value can be specified as px, cm, auto, %, and so on. You can
also specify a maximum and minimum height and width using max-height, max-
width, min-height, and min-width properties.

The following shows an example of setting the height and width properties of <p>
element:

p {height:100px; width: 50px;}

Adding Padding Around HTML Content
Padding is an important part of element layout, especially if you are using borders.
Padding keeps the content inside the HTML element from touching the border.
Padding can be added to all sides of the HTML element by specifying a padding
value, such as the following:

padding:3px;

You can also specify the padding for each side of the element, for example:
padding:1px 2px 1px 2px;

Adding Margins Around HTML Elements
Margins work similar to padding, except they are outside the border of the element and
keep other HTML elements away from touching the border. A margin can be added to
all sides of the HTML element by specifying a margin value, such as the following:

margin:3px;

You can also specify the margin for each side of the element, for example:
margin:1px 2px 1px 2px;

The margin property also supports the value of auto. Using auto splits the
margin values equally, based on the size constraints that are placed in the HTML
element.

Modifying HTML Element Flow
Unless you specify otherwise, HTML elements flow to the top-left corner of the
browser window.
As you learned in the previous lesson, some HTML elements are block elements and
some are inline elements. The block elements take up the full width, and so items after
them flow down to the next line. Inline elements take up only the amount necessary for
the content.
Using the display CSS property, you can set elements to be block or inline.
Another value of the display attribute worthy of mention is inline-block.
Inline-block allows the element to be displayed inline; however, unlike inline
elements, you can still set the block properties, such as height and width as well as
margin. For example:

span {
 height: 200px; width:200px;
 display:inline-block;
}

Another way to modify the HTML element flow is to use the float property. The
float property allows an element to float either to the left or right of the
containing element. Other elements that are not floating will be displayed next to the
floating element on the side away from the edge of the containing element.
When using the float attribute, you need to use the clear property to define which
sides of the floating element other elements are not allowed to flow around. To
illustrate this, consider the following CSS and HTML code. Notice that in Figure 4.16,
the paragraph element that does not include the clear:both attribute is rendered next
to the image that is floating to the left.

FIGURE 4.16 Floating an element to the left or right modifies the flow. However,
you need to clear properties that you do not want to flow next to.

CSS rules:
#image1 {float:left;}
#image2 {float:right;}
#cleared {clear:both;}

HTML elements:
Click here to view code image

<p id="uncleared">Uncleared Line of Text</p>
<p id="cleared">Cleared Line of Text</p>

Positioning HTML Elements from CSS
The position property enables you to define how an element is positioned by the
browser. By default, elements are static and flow with the other elements in the

document. However, by changing the value of the position property, you can change
that behavior.
The following list describes each of the nonstatic position values:

 fixed—Positions the element relative to the browser window.
 absolute—Positions the element relative to the first nonstatic container element.
At least one of the element’s containers must already be defined in a nonstatic
position.
 relative—Positions the element relative to the normal position it would have
been in.

After you change the position property to a nonstatic value, you can use the top, left,
bottom, and right properties to set the positioning. For example, to set the top-left
corner of an element to 50 pixels from the top and 100 pixels from the top-left edge of
the browser window, you would use the following CSS code:

position:fixed;
top:50px;
left:100px;

Z-Index
When you begin positioning HTML elements using nonstatic positioning, you may find a
situation where one element overlaps another. The z-index property allows you to
specify which element should be in front. Elements with a higher z-index number are
in front of elements with lower z-index values. The following CSS <div> elements
would be in front of <p> paragraph elements:

div { z-index:2; }
p { z-index:1; }

Overflow
The overflow CSS property is provided to solve the problem of trying to display an
item that is too large for the area in the web page you have designed. The overflow
property can be set to the following:

 visible—Default behavior.
 hidden—Will hide the element if the content is too big.
 scroll—Adds scrollbars on the bottom and right. If the content exceeds the size
constraint, the scrollbars become active so you can view the full contents of the
container without affecting the flow of the rest of the page.
 auto—Will add the scrollbars, if necessary, to keep the element to the size
constraints you place on it.

Figure 4.17 shows an example of a list that gets constrained inside of a element
that has the following CSS rule with the overflow property:

ul{
 border:1px solid;
 height:150px; width:300px;
 overflow:auto;
}
li{ width:800px; }

FIGURE 4.17 Adding the overflow property to a element results in the list
being constrained within scrollbars.

Try it Yourself: Using CSS to Lay Out Web Page Components
In this example, you put into practice several of the layout properties. In the
example, you create two <div> elements and place them in fixed positions in the
web page using the following steps. The full HTML and CSS code can be found
in Listing 4.6 and Listing 4.7:
1. Create a new HTML document named web_layout.html in the lesson04 folder

in Eclipse.
2. Add the code shown in Listing 4.6. The code links to an external style sheet

named css/web_layout.css and then defines two <div> elements: one that
contains a set of images and the second that contains <p> elements to display
song info.

3. Copy the image files listed in Listing 4.6 from the book’s website under
/images to the /images folder in your Eclipse project.

4. Create a new CSS document named web_layout.css in the lesson04/css folder
in Eclipse.

5. Add the following lines to the new CSS file to set basic spacing and size for
the elements. The margin property gives them space around each
other and in the div element. The float property allows them to float to the
left of their container:

01 img{
02 width:48px;

03 margin:-5px;
04 float:left;
05 }

6. Add the following lines of code to define the look and feel of both <div>
elements. The position is set to fixed, but no positioning is specified yet.
We also add padding to give the items inside the <div> room away from
the border:

06 #buttons, #songInfo{
07 position:fixed;
08 padding:5px;
09 display:inline-block;
10 border:8px ridge blue;
11 border:radius 5px;
12 }

7. Add the following CSS rules to position each of the #songiInfo and
#buttons <div> elements individually. Remember that they keep all the
values from the previous step. Notice that you set the elements’ position by
specifying the top and left positions in the browser window. Also notice
that you give the buttons a higher z-index number to ensure that it will
always be on top of the songInfo:

Click here to view code image

13 #songInfo{
14 background-color: black;
15 top:70px;
16 left:100px;
17 height:150px;width:300px;
18 z-index:1;
19 }
20 #buttons{
21 background-color: white;
22 top:200px;
23 left:120px;
24 z-index:2;
25 }

8. Add the following rule for the title and year elements. Notice that you set the
position to relative so that you can position them relative to where
they would normally flow inside of the <div> container. Then when you set
the top and left values, they are relative to the <p> items’ normal position.
By specifying a negative number, you can move the item up toward the top:

33 #title{
34 color:lime;
35 font-size:15px;
36 position:relative;
37 left:30px;

38 top:25px;
39 }
40 #year{
41 color:yellow;
42 font-size:15px;
43 position:relative;
44 left:30px;
45 top:-40px;
46 }

9. Save the files and open the HTML file in a web browser. You should see
results similar to what is shown in Figure 4.18. Notice that the CSS layout
styles have positioned the elements in specific positions in the browser.

FIGURE 4.18 Adding CSS layout properties allows you to position elements at
specific locations in the browser.

LISTING 4.6 web_layout.html HTML That Creates a Pair of <div> Elements
That Are Styled by Listing 4.7 to Be Song Info and a Set of Playback Controls

Click here to view code image

01 <html>
02 <head>
03 <title>Layout</title>
04 <meta charset="UTF-8">
05 <link rel="stylesheet" type="text/css" href="css/web_layout.css">
06 </head>
07 <body>

08 <div id="buttons">
09
10
11
12
13
14
15 </div>
16 <div id="songinfo">
17 <p id="title">9TH Symphony</p>
18 <p id="artist">Beethoven</p>
19 <p id="Year">1824</p>
20 </div>
21 <h1>Song Controls</h1>
22 </body>
23 </html>

LISTING 4.7 web_layout.css CSS Code Used to Apply a Page Layout That Places
Elements in Fixed Positions

Click here to view code image

01 img{
02 width:48px;
03 margin:-5px;
04 float:left;
05 }
06 #buttons, #songInfo{
07 position:fixed;
08 padding:5px;
09 display:inline-block;
10 border:8px ridge blue;
11 border:radius 5px;
12 }
13 #songInfo{
14 background-color: black;
15 top:70px;
16 left:100px;
17 height:150px;width:300px;
18 z-index:1;
19 }
20 #buttons{
21 background-color: white;
22 top:200px;
23 left:120px;
24 z-index:2;
25 }
26 #artist{
27 color:cyan;
28 font-size:25px;
29 position:relative;

30 left:30px;
31 top:-50px;
32 }
33 #title{
34 color:lime;
35 font-size:15px;
36 position:relative;
37 left:30px;
38 top:25px;
39 }
40 #year{
41 color:yellow;
42 font-size:15px;
43 position:relative;
44 left:30px;
45 top:-40px;
46 }

Preparing CSS Styles for Dynamic Design
One of the coolest features of AngularJS, jQuery, and JavaScript is the capability to
adjust CSS styles dynamically. A little bit later in the book, you learn how to do that to
create some cool effects. In this section, you are introduced to the concept of preparing
for dynamic styles while CSS is still fresh in your mind.
As you define your CSS styling rules, keep in mind that there are a few methods to
applying styles dynamically. You can design the CSS in such a way that the dynamic
code will be much simpler to implement. The following sections describe some of the
methods that you will learn later.

Preparing to Add Classes to HTML Elements Dynamically
The simplest way to dynamically adjust the style of an HTML element is to change
which CSS rules are associated with the element. The easiest way to change CSS rules
is to use class selectors for the different rules that you want to use. That way, from
AngularJS, jQuery, and JavaScript, you can add a class to apply a style or remove a
class to remove the style.
This provides two main advantages. First, dynamic code is much simpler because it is
easy to add and remove classes. The second is that it is easy to make adjustments to the
CSS styles that will be applied, because they will be done inside a .css file or a
<style> tag.
Using dynamic class rules requires that the rules for the class selectors be completely
defined somewhere in the CSS code loaded with the web page. It also requires some
thinking about how to implement each CSS rule.
For example, think about adding dynamic interaction with a element that is

styled to be used as a button. You want the button to be able to have four different states
of up, down, inactive, and state changing. You can create a different CSS rule with a
selector for the class of those button states. When the button is up, the class attribute
assigned to the would be up; when the user clicks the button, you could change
the class to state changing, and then when the mouse is released, change the class to
down.

Preparing to Directly Adjust CSS Properties
You can also directly access and modify specific CSS properties of an element or a set
of elements via AngularJS, jQuery, and JavaScript. This provides the advantage of
being able to create static CSS definitions in .css files or <style> tags and then
dynamically change a subset of the property values.
A great example of using JavaScript with CSS property values is moving items around
the web page. For instance, suppose you were to define an HTML image element for a
scrolling banner that was supposed to scroll horizontally across the screen. You would
define the static CSS style that styles the banner as a fixed position in the browser
window. Then, because the CSS already defines all the necessary properties to render
the banner fixed, all you need to do from AngularJS, jQuery, and JavaScript is to adjust
the CSS position properties to scroll the banner.

Summary
This lesson discussed using CSS to quickly and easily alter the look and feel of your
web pages. Understanding these concepts is critical to implementing JavaScript, jQuery,
and AngularJS to create dynamic web pages and rich Internet applications.
You learned how the CSS rules are structured and how to define selectors that will
apply a CSS rule to a specific set of HTML elements. You were introduced to some of
the common design and layout styles of CSS.
You learned how to style text, apply color and background images, and create cool
borders around HTML elements. You also learned how to understand and control the
flow of the HTML elements on the page as well as how to apply fixed positioning.

Q&A
Q. Is it better to use a fixed size and position for HTML elements, or should I

try to use more of the HTML flow based on the content size?
A. That is a tough question. For most web pages, consider using more of a flow

with relative positioning within elements as much as possible. The reason for that
is because of the wide range of displays that may be looking at the web pages. If
you need to support mobile displays up to 36-inch monitors, the flow allows for

the content to more easily match the browser size. However, if you are designing
a dynamic web page as more of a web application, use more fixed sizes that
support an average size monitor and then implement a mobile version using the
jQuery Mobile techniques you learn later in this book.

Q. Why bother with CSS—can’t I just apply the CSS styles directly from
jQuery and JavaScript?

A. Sure, everything that you can do with CSS can be applied from JavaScript.
However, it is more difficult to maintain the changes, especially when more than
one person is involved in the design. Often, some of the best web page designers
won’t know any jQuery or JavaScript. Also, think about how easy it is to keep
multiple versions of a CSS file and tweak them to apply different skins to the
web page.

Workshop
The workshop consists of a set of questions and answers designed to solidify your
understanding of the material covered in this lesson. Try to answer the questions before
looking at the answers.

Quiz
1. What selector would you use to apply a CSS rule to all <div> elements?
2. What CSS property allows an element to float past other elements either to the

right or to the left?
3. How would you apply a border with rounded corners around a <div> element?
4. True or false: You cannot specify exact coordinates in the browser to position an

HTML element.
5. What selector would you use to apply a CSS rule only to an HTML element with

the class attribute set to “myClass” and the id set to “mainContainer”?

Quiz Answers
1. div {...
2. float:right or float:left
3. border:1px solid;border-radius:5px;
4. False. You can set the display:fixed property and then set the top, left,

bottom, or right pixel offset to place the HTML element, regardless of where other
elements are on the page.

5. #mainContainer {...

Exercises
1. Modify the code that you applied in Listing 4.3 to include the following CSS rule

that will apply to the span you defined as buttons. The rule should change the style
of the HTML element and consequently the look of the menu item when the mouse
hovers over it:
span:hover {
 width:150px;
 background-color: #2233FF;
 color: white;
 border:5px outset blue;
 border-radius:50%;
}

2. Modify the code in Listing 4.6 and Listing 4.7 to wrap the heading in its own
border and position it above the other <div> elements. You will need to change
the position of the existing <div> elements to do so.

Lesson 5. Jumping into jQuery and JavaScript Syntax

What You’ll Learn in This Lesson:
 Ways to add jQuery and JavaScript to your web pages
 Creating and manipulating arrays of objects
 Adding code logic to JavaScript
 Implementing JavaScript functions for cleaner code

Throughout the book, you’ll see several examples of using jQuery and JavaScript to
perform various dynamic tasks. jQuery doesn’t replace JavaScript; it enhances it by
providing an abstract layer to perform certain common tasks, such as finding elements
or values, changing attributes and properties of elements, and interacting with browser
events.
AngularJS uses JavaScript and jQuery syntax to provide its functionality. It is important
for you to understand the jQuery and JavaScript syntax before getting into AngularJS.
That is why these are covered first and AngularJS is covered in later lessons.
In this lesson, you learn the basic structure and syntax of JavaScript and how to use
jQuery to ease some of the development tasks. The purpose of this lesson is to help you
become familiar with the JavaScript language syntax, which is also the jQuery language
syntax.

Adding jQuery and JavaScript to a Web Page
Browsers come with JavaScript support already built in to them. That means all you
need to do is add your own JavaScript code to the web page to implement dynamic web
pages. jQuery, on the other hand, is an additional library, and you will need to add the
jQuery library to your web page before adding jQuery scripts.

Loading the jQuery Library
Because the jQuery library is a JavaScript script, you use the <script> tag to load
the jQuery into your web page. jQuery can either be downloaded to your code directory
and then hosted on your web server, or you can use the hosted versions that are
available at jQuery.com. The following statement shows an example of each; the only
difference is that the first loads it from the jQuery CDN source and the second loads it
from the web server:
Click here to view code image

<script src="http://code.jquery.com/jquery-latest.min.js"></script>
<script src="includes/js/jquery-latest.min.js"></script>

http://jQuery.com

Caution
Remember that you need to place the <script> element to load the
jQuery library before any script elements that are using it. Otherwise, those
libraries will not be able to link up to the jQuery code.

The jQuery library downloads can be found at the following location:

http://jquery.com/download/

The jQuery library hosted links can be found at the following location:

http://code.jquery.com/

Implementing Your Own jQuery and JavaScript
JQuery code is implemented as part of JavaScript scripts. To add jQuery and
JavaScript to your web pages, first add a <script> tag that loads the jQuery library,
and then add your own <script> tags with your custom code.
The JavaScript code can be added inside the <script> element, or the src attribute
of the <script> element can point to the location of a separate JavaScript document.
Either way, the JavaScript will be loaded in the same manner.
The following is an example of a pair of <script> statements that load jQuery and
then use it. The document.write() function just writes text directly to the browser
to be rendered:
Click here to view code image

<script src="http://code.jquery.com/jquery-latest.min.js"></script>
<script>
 function writeIt(){
 document.write("jQuery Version " + $().jquery + " loaded.");
 }
</script>

Note
The <script> tags do not need to be added to the <head> section of the
HTML document; they can also be added in the body. It’s useful to add
simple scripts directly inline with the HTML elements that are consuming
them.

Accessing HTML Event Handlers
So after you add your JavaScript to the web page, how do you get it to execute? The
answer is that you tie it to the browser events. Each time a page or element is loaded,

http://jquery.com/download/
http://code.jquery.com/

the user moves or clicks the mouse or types a character, an HTML event is triggered.
Each supported event is an attribute of the object that is receiving the event. If you set
the attribute value to a JavaScript function, the browser will execute your function when
the event is triggered.
For example, the following will execute the writeIt() function when the body of the
HTML page is loaded:

<body onload="writeIt()">

Try it Yourself: Implementing JavaScript and jQuery
Those are the basic steps. Now it is time to try it yourself. Use the following
steps to add jQuery to your project and use it dynamically in a web page:
1. In Eclipse, create a source folder named lesson05.
2. In the same folder as the lesson05 folder, add an additional directory called

js.
3. Now create a source file named jquery_version.html in the lesson05 folder.
4. Add the usual basic elements (html, head, body).
5. Inside the <head> element, add the following line to load the library you just

downloaded:
Click here to view code image

06 <script src="https://code.jquery.com/jquery-2.1.3.min.js">
</script>

6. Now you can add your own <script> tag with the following code to print
out the jQuery version to the browser windows:

Click here to view code image

07 <script>
08 function writeIt(){
09 document.write("jQuery Version " + $().jquery + "
loaded.");
10 }
11 </script>

7. To have your script execute when the document is loaded, tie the
writeIt() function to the <body> onload event using the following
line:

13 <body onload="writeIt()">

8. Save the file and view it in your web browser at the following location. The
output should be similar to Figure 5.1:

Click here to view code image

http://localhost/lesson06/jquery_version.html

FIGURE 5.1 The function writeIt() is executed when the body loads and writes
the jQuery version to the browser.

LISTING 5.1 jquery_version.html Very Basic Example of Loading Using jQuery in
a Web Page to Print Out Its Own Version

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>jQuery Version</title>
05 <meta charset="utf-8" />
06 <script src="https://code.jquery.com/jquery-2.1.3.min.js"></script>
07 <script>
08 function writeIt(){
09 document.write("jQuery Version " + $().jquery + " loaded.");
10 }
11 </script>
12 </head>
13 <body onload="writeIt()">
14 </body>
15 </html>

Accessing the DOM
One of the most important aspects of JavaScript, and especially jQuery, is the capability
to access and manipulate the DOM. Accessing the DOM is how you make the web page
dynamic by changing styles, size, position, and values of elements.
In the following sections, you learn about accessing the DOM through traditional
methods via JavaScript and the much improved methods using jQuery selectors. These
sections are a brief introduction. You will get plenty of practice as the lessons roll on.

Using Traditional JavaScript to Access the DOM

Traditionally, JavaScript uses the global document object to access elements in the
web page. The simplest method of accessing an element is to directly refer to it by id.
For example, if you have a paragraph with the id="question", you can access it via
the following JavaScript getElementById() function:
Click here to view code image

var q = document.getElementById("question");
...
<p id="question">Which method to you prefer?</p>

Another helpful JavaScript function that you can use to access the DOM elements is
getElementsByTagName(). This returns a JavaScript array of DOM elements that
match the tag name. For example, to get a list of all the <p> elements, use the following
function call:
Click here to view code image

var paragraphs = document.getElementsByTagName("p");

Using jQuery Selectors to Access HTML Elements
Accessing HTML elements is one of jQuery’s biggest strengths. jQuery uses selectors
that are very similar to CSS selectors to access one or more elements in the DOM;
hence the name jQuery. jQuery returns back either a single element or an array of
jQuerified objects. jQuerified means that additional jQuery functionality has been added
to the DOM object, allowing for much easier manipulation.
The syntax for using jQuery selectors is $(selector).action(), where selector is
replaced by a valid selector and action is replaced by a jQuerified action attached to
the DOM element(s).
For example, the following command finds all paragraph elements in the HTML
document and sets the CSS font-weight property to bold:
Click here to view code image

$("p").css('font-weight', 'bold');

Try it Yourself: Using jQuery and JavaScript to Access DOM Elements
Now to solidify the concepts, you’ll run through a quick example of accessing
and modifying DOM elements using both jQuery and JavaScript. Use the
following steps to build the HTML document shown in Listing 5.2:
1. Create a source file named dom_elements.html in the lesson05 folder.
2. Add the usual basic elements (html, head, body).
3. Inside the <head> element, add the following line to load the library you just

downloaded:
Click here to view code image

06 <script src="https://code.jquery.com/jquery-2.1.3.min.js">
</script>

4. Add the following <script> element that accesses the DOM using both the
JavaScript and jQuery methods. Notice that with jQuery, two actions are
chained together. The first sets the CSS font-weight property and the
second changes text contained in element. With JavaScript, you use the
getElementById() method, and then you set the innerHTML property
directly in the DOM to change the text displayed in the browser:

Click here to view code image

07 <script>
08 function writeIt(){
09 $("#heading").css('font-weight', 'bold').html("jQuery");
10 var q = document.getElementById("question");
11 q.innerHTML = "I Prefer jQuery!";
12 }
13 </script>

5. To have your script execute when the document is loaded, tie the
writeIt() function to the <body> onload event using the following
line:

Click here to view code image

15 <body onload="writeIt()">

6. Add the following <p> elements to the <body> to provide containers for the
JavaScript code to access:

Click here to view code image

16 <p id="heading">jQuery or JavaScript</p>
17 <p id="question">Which method to you prefer?</p>

7. Save the file and view it in a web browser. The output should be similar to
Figure 5.2.

FIGURE 5.2 The function writeIt() is executed when the body loads and
changes the content and appearance of the text.

LISTING 5.2 Very Basic Example of Using JavaScript and jQuery to Access DOM
Elements

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>DOM Changes</title>
05 <meta charset="utf-8" />
06 <script src="https://code.jquery.com/jquery-2.1.3.min.js"></script>
07 <script>
08 function writeIt(){
09 $("#heading").css('font-weight', 'bold').html("jQuery");
10 var q = document.getElementById("question");
11 q.innerHTML = "I Prefer jQuery!";
12 }
13 </script>
14 </head>
15 <body onload="writeIt()">
16 <p id="heading">jQuery or JavaScript</p>
17 <p id="question">Which method do you prefer?</p>
18 </body>
19 </html>

Understanding JavaScript Syntax
Like any other computer language, JavaScript is based on a rigid syntax where specific
words mean different things to the browser as it interprets the script. This section is
designed to walk you through the basics of creating variables, working with data types,
and using looping and functions in JavaScript to manipulate your web pages.

Tip
For the simple JavaScript examples in this lesson, you can test them by
starting Node.js using the node command from a console prompt to bring
up the Node.js interpreter. From the interpreter, you can type in JavaScript
code and have it execute as you type each line.

Creating Variables
The first place to begin with in JavaScript is variables. Variables are a means to name
data so that you can use that name to temporarily store and access data from your
JavaScript files. Variables can point to simple data types, such as numbers or strings, or
they can point to more complex data types, such as objects.

To define a variable in JavaScript, you must use the var keyword and then give the
variable a name; for example:

var myData;

You can also assign a value to the variable in the same line. For example, the following
line of code creates a variable myString and assigns it the value of “Some Text”:

var myString = "Some Text";

This works as well as the following:
var myString;
myString = "Some Text";

After you have declared the variable, you can use the name to assign the variable a
value and access the value of the variable. For example, the following code stores a
string into the myString variable and then uses it when assigning the value to the
newString variable:
Click here to view code image

var myString = "Some Text";
var newString = myString + " Some More Text";

Your variable names should describe the data that is stored in them so that it is easy to
use them later in your program. The only rule for creating variable names is that they
must begin with a letter, $, or _, and they cannot contain spaces. Also remember that
variable names are case sensitive, so using myString is different from MyString.

Understanding JavaScript Data Types
JavaScript uses data types to determine how to handle data that is assigned to a
variable. The variable type will determine what operations you can perform on the
variable, such as looping or executing. The following list describes the most common
types of variables that we will be working with through the book:

 String—Stores character data as a string. The character data is specified by
either single or double quotes. All the data contained in the quotes will be
assigned to the string variable. For example:

Click here to view code image

var myString = 'Some Text';
var anotherString = "Some Other Text";

 Number—Stores the data as a numerical value. Numbers are useful in counting,
calculations, and comparisons. Some examples are as follows:
var myInteger = 1;

var cost = 1.33;

 Boolean—Stores a single bit that is either true or false. Booleans are often used
for flags. For example, you might set a variable to false at the beginning of some
code and then check it on completion to see whether the code execution hit a
certain spot. The following shows an example of defining a true and a false
variable:
var yes = true;
var no = false;

 Array—An indexed array is a series of separate distinct data items all stored
under a single variable name. Items in the array can be accessed by their zero-
based index using the [index]. The following is an example of creating a
simple array and then accessing the first element, which is at index 0:

Click here to view code image

var arr = ["one", "two", "three"]
var first = arr[0];

 Associative Array/Objects—JavaScript does support the concept of an
associative array, meaning accessing the items in the array by a name instead of an
index value. However, a better method is to use an object literal. When you use an
object literal, you can access items in the object using object.property
syntax. The following example shows how to create and access an object literal:

Click here to view code image

var obj = {"name":"Brad", "occupation":"Hacker", "age", "Unknown"};
var name = obj.name;

 Null—At times, you do not have a value to store in a variable, either because it
hasn’t been created or you are no longer using it. At this time, you can set a
variable to null. That way, you can check the value of the variable in your code
and use it only if it is not null:
var newVar = null;

Note
JavaScript is a typeless language, meaning you do not need to tell the
browser what data type the variable is; the interpreter will automatically
figure out the correct data type for the variable.

Using Operators
JavaScript operators provide the capability to alter the value of a variable. You are

already familiar with the = operator because you used it several times in the book
already. JavaScript provides several operators that can be grouped into two types—
arithmetic and assignment.

Arithmetic Operators
Arithmetic operators are used to perform operations between variable and direct
values. Table 5.1 shows a list of the arithmetic operations along with the results that get
applied.

TABLE 5.1 Table Showing JavaScripts’ Arithmetic Operators as Well as
Results Based on y=4 to Begin With

Tip
The + operator can also be used to add strings or strings and numbers
together. This allows you to quickly concatenate strings and add numerical
data to output strings. Table 5.1 shows that when adding a numerical value
and a string value, the numerical value is converted to a string, and then the
two strings are concatenated.

Assignment Operators
Assignment operators are used to assign a value to a variable. You are probably used to
the = operator, but there are several forms that allow you to manipulate the data as you
assign the value. Table 5.2 shows a list of the assignment operations along with the
results that get applied.

TABLE 5.2 JavaScripts’ Assignment Operators as Well as Results Based on
x=10 to Begin With

Applying Comparison and Conditional Operators
Conditionals are a way to apply logic to your applications so that certain code will be
executed only under the correct conditions. This is done by applying comparison logic
to variable values. The following sections describe the comparisons available in
JavaScript and how to apply them in conditional statements.

Comparison Operators
A comparison operator evaluates two pieces of data and returns true if the evaluation is
correct or false if the evaluation is not correct. Comparison operators compare the
value on the left of the operator against the value on the right.
The simplest way to help you understand comparisons is to provide a list with some
examples. Table 5.3 shows a list of the comparison operators along with some
examples.

TABLE 5.3 JavaScripts’ Comparison Operators as Well as Results Based on
x=10 to Begin With

You can chain multiple comparisons together using logical operators. Table 5.4 shows a
list of the logical operators and how to use them to chain comparisons together.

TABLE 5.4 JavaScripts’ Comparison Operators as Well as Results Based on
x=10 and y=5 to Begin With

If
An if statement enables you to separate code execution based on the evaluation of a
comparison. The syntax is shown in the following lines of code where the conditional
operators are in () parenthesis and the code to execute if the conditional evaluates to
true is in {} brackets:

if(x==5){
 do_something();
}

In addition to executing code only within the if statement block, you can specify an
else block that will get executed only if the condition is false. For example:

if(x==5){
 do_something();
} else {
 do_something_else();
}

You can also chain if statements together. To do this, add a conditional statement along
with an else statement. For example:

if(x<5){
 do_something();
} else if(x<10) {
 do_something_else();
} else {
 do_nothing();
}

switch
Another type of conditional logic is the switch statement. The switch statement
allows you to evaluate an expression once and then, based on the value, execute one of
many sections of code.
The syntax for the switch statement is the following:
Click here to view code image

switch(expression){
 case value:
 <code to execute>
 break;
 case value2:
 <code to execute>
 break;
 default:
 <code to execute if not value or value2>
}

This is what is happening. The switch statement will evaluate the expression entirely
and get a value. The value may be a string, a number, a Boolean, or even an object. The
switch value is then compared to each value specified by the case statement. If the
value matches, the code in the case statement is executed. If no values match, the
default code is executed.

Note

Typically, each case statement will include a break command at the end
to signal a break out of the switch statement. If no break is found, code
execution will continue with the next case statement.

Try it Yourself: Applying If Conditional Logic in JavaScript
To help you solidify using JavaScript conditional logic, use the following steps
to build conditional logic into the JavaScript for a dynamic web page. The final
version of the HTML document is shown in Listing 5.3:
1. Create a source file named if_logic.html in the lesson05 folder.
2. Create a folder under lesson05 named images.
3. Add your own images for day.png and night.png to the ./images folder in your

project or download the ones from the book’s website.
4. Add the usual basic elements (html, head, body).
5. Add the following <script> element that gets the lesson value using the
Date().getLessons() JavaScript code. The code uses if statements to
determine the time of day and does two things: it writes a greeting onto the
screen and sets the value of the timeOfDay variable:

Click here to view code image

06 <script>
07 function writeIt(){
08 var lesson = new Date().getLessons();
09 var timeOfDay;
10 if(lesson>=7 && lesson<12){
11 document.write("Good Morning!");
12 timeOfDay="morning";
13 } else if(lesson>=12 && lesson<18) {
14 document.write("Good Day!");
15 timeOfDay="day";
16 } else {
17 document.write("Good Night!");
18 timeOfDay="night";
19 }
32 }
33 </script>

6. Now add the following switch statement that uses the value of timeOfDay
to determine which image to display in the web page:

Click here to view code image

20 switch(timeOfDay){
21 case "morning":
22 case "day":
23 document.write("");

24 break;
25 case "night":
26 document.write("");
27 break;
28 default:
29 document.write("");
30 }

7. Save the file and view it in a web browser. The output should be similar to
Figure 5.3, depending on what time of day it is.

FIGURE 5.3 The function writeIt() is executed when the body loads and
changes the greeting and image displayed on the web page.

LISTING 5.3 if_logic.html Simple Example of Using Conditional Logic Inside
JavaScript

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>If Logic</title>
05 <meta charset="utf-8" />
06 <script>
07 function writeIt(){
08 var hour = new Date().getHours();
09 var timeOfDay;
10 if(hour>=7 && hour<12){
11 document.write("Good Morning!");

12 timeOfDay="morning";
13 } else if(hour>=12 && hour<18) {
14 document.write("Good Day!");
15 timeOfDay="day";
16 } else {
17 document.write("Good Night!");
18 timeOfDay="night";
19 }
20 switch(timeOfDay){
21 case "morning":
22 case "day":
23 document.write("");
24 break;
25 case "night":
26 document.write("");
27 break;
28 default:
29 document.write("");
30 }
31 }
32 </script>
33 </head>
34 <body onload="writeIt()">
35 </body>
36 </html>

Implementing Looping
Looping is a means to execute the same segment of code multiple times. This is
extremely useful when you need to perform the same tasks on a set of DOM objects, or
if you are dynamically creating a list of items.
JavaScript provides functionality to perform for and while loops. The following
sections describe how to implement loops in your JavaScript.

while Loops
The most basic type of looping in JavaScript is the while loop. A while loop tests
an expression and continues to execute the code contained in its {} brackets until the
expression evaluates to false.
For example, the following while loop executes until the value of i is equal to 5:
Click here to view code image

var i = 1;
while (i<5){
 document.write("Iteration " + i + "
");
 i++;
}

The resulting output to the browser is as follows:
Iteration 1
Iteration 2
Iteration 3
Iteration 4

do/while Loops
Another type of while loop is the do/while loop. This is useful if you always want
to execute the code in the loop at least once and the expression cannot be tested until the
code has executed at least once.
For example, the following do/while loop executes until the value of day is equal to
Wednesday:
Click here to view code image

var days = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"];
var i=0;
do{
 var day=days[i++];
 document.write("It's " + day + "
");
} while (day != "Wednesday");

The resulting output to the browser is as follows:
It's Monday
It's Tuesday
It's Wednesday

for Loops
The JavaScript for loop allows you to execute code a specific number of times by
using a for statement that combines three statements into one using the following
syntax:
Click here to view code image

for (statement 1; statement 2; statement 3;){
 code to be executed;
}

The for statement uses those three statements as follows when executing the loop:
 statement 1—Executed before the loop begins and not again. This is used to
initialize variables that will be used in the loop as conditionals.
 statement 2—Expression that is evaluated before each iteration of the loop. If the
expression evaluates to true, the loop is executed; otherwise, the for loop
execution ends.
 statement 3—Executed each iteration after the code in the loop has executed.

This is typically used to increment a counter that is used in statement 2.
To illustrate a for loop, check out the following example. The example not only
illustrates a basic for loop, it also illustrates the capability to nest one loop inside
another:
Click here to view code image

for (var x=1; x<=3; x++){
 for (var y=1; y<=3; y++){
 document.write(x + " X " + y + " = " + (x*y) + "
");
 }
}

The resulting output to the web browser is as follows:
1 X 1 = 1
1 X 2 = 2
1 X 3 = 3
2 X 1 = 2
2 X 2 = 4
2 X 3 = 6
3 X 1 = 3
3 X 2 = 6
3 X 3 = 9

for/in Loops
Another type of for loop is the for/in loop. The for/in loop executes on any data
type that can be iterated on. For the most part, you will use the for/in loop on arrays
and objects. The following example illustrates the syntax and behavior of the for/in
loop on a simple array:
Click here to view code image

var days = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"];
for (var idx in days){
 document.write("It's " + days[idx] + "
");
}

Notice that the variable idx is adjusted each iteration through the loop from the
beginning array index to the last. The resulting output is as follows:

It's Monday
It's Tuesday
It's Wednesday
It's Thursday
It's Friday

Interrupting Loops
When working with loops, at times you need to interrupt the execution of code inside the
code itself without waiting for the next iteration. There are two ways to do this using the

break and continue keywords.
The break keyword stops execution of the for or while loop completely. The
continue keyword, on the other hand, stops execution of the code inside the loop and
continues on with the next iteration. Consider the following examples:
Using a break if the day is Wednesday:
Click here to view code image

var days = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"];
for (var idx in days){
 if (days[idx] == "Wednesday")
 break;
 document.write("It's " + days[idx] + "
");
}

When the value is Wednesday, loop execution stops completely:
It's Monday
It's Tuesday

Using a continue if the day is Wednesday:
Click here to view code image

var days = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"];
for (var idx in days){
 if (days[idx] == "Wednesday")
 continue;
 document.write("It's " + days[idx] + "
");
}

Notice that the write is not executed for Wednesday because of the continue; however,
the loop execution did complete:

It's Monday
It's Tuesday
It's Thursday
It's Friday

Creating Functions
One of the most important parts of JavaScript is making code that is reusable by other
code. To do this, you combine your code into functions that perform specific tasks. A
function is a series of code statements combined in a single block and given a name. The
code in the block can then be executed by referencing that name.

Defining Functions
Functions are defined using the keyword function followed by a function name that
describes the use of the function, list of zero or more arguments in () parentheses, and a
block of one or more code statements in {} brackets. For example, the following is a

function definition that writes “Hello World” to the browser:
Click here to view code image

function myFunction(){
 document.write("Hello World");
}

To execute the code in myFunction(), all you need to do is add the following line to
the main JavaScript or inside another function:

myFunction();

Passing Variables to Functions
Frequently, you will need to pass specific values to functions that they will use when
executing their code. Values are passed in comma-delimited form to the function. The
function definition will need a list of variable names in the () parentheses that match
the number being passed in. For example, the following function accepts two arguments,
a name and city, and uses them to build the output string:
Click here to view code image

function greeting(name, city){
 document.write("Hello " + name);
 document.write(". How is the weather in " + city);
}

To call the greeting() function, we need to pass in a name value and a city
value. The value can be a direct value or a previously defined variable. To illustrate
this, the following code will execute the greeting() function with a name variable
and a direct string for the city:

var name = "Brad";
greeting(name, "Florence");

Returning Values from Functions
Often, functions will need to return a value to the calling code. Adding a return
keyword followed by a variable or value will return that value from the function. For
example, the following code calls a function to format a string, assigns the value
returned from the function to a variable, and then writes the value to the browser:
Click here to view code image

function formatGreeting(name, city){
 var retStr = "";
 retStr += "Hello " + name + "
";
 retStr += "Welcome to " + city + "!";
 return retStr;
}
var greeting = formatGreeting("Brad", "Rome");

document.write(greeting);

You can include more than one return statement in the function. When the function
encounters a return statement, code execution of the function is stopped immediately.
If the return statement contains a value to return, that value is returned. The following
example shows a function that tests the input and returns immediately if it is zero:
Click here to view code image

function myFunc(value){
 if (value == 0)
 return;
 code_to_execute_if_value_nonzero;
}

Try it Yourself: Creating JavaScript Functions
To help solidify functions, use the following steps to integrate some functions into
a JavaScript application. The following steps take you through the process of
creating a function, calling it to execute code, and then handling the results
returned:
1. Create a source file named js_functions.html in the lesson05 folder.
2. Add the usual basic elements (html, head, body).
3. Add a <script> tag to the <head> element to house the JavaScript.
4. Insert the following object literal definition at the beginning of the script. The

object will have planet names for attributes, and each hero name is a reference
to an array of villains:

Click here to view code image

07 var superData = {"Super Man":["Lex Luther"],
08 "Bat Man":["Joker", "Riddler",],
09 "Spider Man":["Green Goblin",
10 "Vulture", "Carnage"],
11 "Thor":["Loki", "Frost Giants"]};

5. Add the following function that will be called by the onload event. In this
function, you use a nested for/in loop to iterate through the superData
object attributes. The outer loop gets the hero name and the inner loop loops
through the index of the villains array:

Click here to view code image

12 function writeIt(){
13 for (hero in superData){
14 var villains = superData[hero];
15 for (villainIdx in villains){
16 var villain = villains[villainIdx];
17 var listItem = makeListItem(hero, villain);

18 document.write(listItem);
19 }
20 }
21 }

6. Notice that on line 16 of the writeIt() function is a call to
makeListItem(). That function needs to return a value that can be used in
line 17 to write to the document. Add the following code to create the function.
The function takes two arguments: a name and a value, then generates an
HTML string to create a element and returns the string:

Click here to view code image

22 function makeListItem(name, value){
23 var itemStr = "" + name + ": " + value + "";
24 return itemStr;
25 }

7. Save the file and open it in a web browser. You should see the results shown
in Figure 5.4. You have just created two JavaScript functions: one that takes no
arguments and does not return a value and the other that takes two arguments
and returns a formatted HTML string containing the argument strings.

FIGURE 5.4 The function writeIt() is executed, which iterates through the
moonData object and makes calls to the makeListItem() function to format the

planet and moon names as an HTML element.

LISTING 5.4 js_functions.html Simple Example of JavaScript Functions

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>JavaScript Functions</title>

05 <meta charset="utf-8" />
06 <script>
07 var superData = {"Super Man":["Lex Luther"],
08 "Bat Man":["Joker", "Riddler"],
09 "Spider Man":["Green Goblin",
10 "Vulture", "Carnage"],
11 "Thor":["Loki", "Frost Giants"]};
12 function writeIt(){
13 for (hero in superData){
14 var villains = superData[hero];
15 for (villainIdx in villains){
16 var villain = villains[villainIdx];
17 var listItem = makeListItem(hero, villain);
18 document.write(listItem);
19 }
20 }
21 }
22 function makeListItem(name, value){
23 var itemStr = "" + name + ": " + value + "";
24 return itemStr;
25 }
26 </script>
27 </head>
28 <body onload="writeIt()">
29 </body>
30 </html>

Understanding Variable Scope
After you start adding conditions, functions, and loops to your JavaScript applications,
you need to understand variable scoping. Variable scope is simply this: “what is the
value of a specific variable name at the current line of code being executed.”
JavaScript enables you to define both a global and a local version of the variable. The
global version is defined in the main JavaScript, and local versions are defined inside
functions. When you define a local version in a function, a new variable is created in
memory. Within that function, you will be referencing the local version. Outside that
function, you will be referencing the global version.
To understand variable scoping a bit better, consider the following code:
Click here to view code image

01 <script>
02 var myVar = 1;
03 function writeIt(){
04 var myVar = 2;
05 document.write(myVar);
06 writeMore();
07 }
08 function writeMore(){

09 document.write(myVar);
10 }
11 </script>

The global variable myVar is defined on line 2. Then on line 4, a local version is
defined within the writeIt() function. So, line 5 will write to the document. Then in
line 6, writeMore() is called. Because there is no local version of myVar defined
in writeMore(), the value of the global myVar is written in line 9.

Adding Error Handling
An important part of JavaScript coding is adding error handling for instances where
there may be problems. By default, if a code exception occurs because of a problem in
your JavaScript, the script fails and does not finish loading. This is not usually the
desired behavior.

Try/Catch Blocks
To prevent your code from totally bombing out, use try/catch blocks that can handle
problems inside your code. If JavaScript encounters an error when executing code in a
try/catch block, it will jump down and execute the catch portion instead of
stopping the entire script. If no error occurs, all of the try will be executed and none of
the catch.
For example, the following try/catch block will execute any code that replaces
your_code_here. If an error occurs executing that code, the error message followed
by the string “: happened when loading the script” will be written to the document:
Click here to view code image

try {
 your_code_here
} catch (err) {
 document.write(err.message + ": happened when loading the script");
}

Throw Your Own Errors
You can also throw your own errors using a throw statement. The following code
illustrates how to add throws to a function to throw an error, even if a script error
does not occur:
Click here to view code image

01 <script>
02 function sqrRoot(x) {
03 try {
04 if(x=="") throw "Can't Square Root Nothing";
05 if(isNaN(x)) throw "Can't Square Root Strings";
06 if(x<0) throw "Sorry No Imagination";

07 return "sqrt("+x+") = " + Math.sqrt(x);
08 } catch(err){
09 return err;
10 }
11 }
12 function writeIt(){
13 document.write(sqrRoot("four") + "
");
14 document.write(sqrRoot("") + "
");
15 document.write(sqrRoot("4") + "
");
16 document.write(sqrRoot("-4") + "
");
17 }
18 </script>

The function sqrRoot() accepts a single argument x. It then tests x to verify that it is
a positive number and returns a string with the square root of x. If x is not a positive
number, the appropriate error is thrown and returned to writeIt().

Using finally
Another valuable tool in exception handling is the finally keyword. A finally
keyword can be added to the end of a try/catch block. After the try/catch blocks
are executed, the finally block is always executed. It doesn’t matter if an error
occurs and is caught or if the try block is fully executed.
Following is an example of using a finally block inside a web page:
Click here to view code image

function testTryCatch(value){
 try {
 if (value < 0){
 throw "too small";
 } else if (value > 10){
 throw "too big";
 }
 your_code_here
 } catch (err) {
 document.write("The number was " + err.message");
 } finally {
 document.write("This is always written.");
 }
}

Summary
In this lesson, you learned the basics of adding jQuery and JavaScript to web pages.
The basic data types that are used in JavaScript and, consequently, jQuery were
described. You learned some of the basic syntax of applying conditional logic to
JavaScript applications. You also learned how to compartmentalize your JavaScript
applications into functions that can be reused in other locations. Finally, you learned
some ways to handle JavaScript errors in your script before the browser receives an

exception.

Q&A
Q. When should you use a regular expression in string operations?
A. That depends on your understanding of regular expressions. Those who use

regular expressions frequently and understand the syntax well would almost
always rather use a regular expression because they are so versatile. If you are
not familiar with regular expressions, it takes time to figure out the syntax, and so
you will want to use them only when you need to. The bottom line is that if you
need to manipulate strings frequently, it is absolutely worth it to learn regular
expressions.

Q. Can I load more than one version of jQuery at a time?
A. Sure, but there really isn’t a valid reason to do that. The one that gets loaded last

will overwrite the functionality of the previous one. Any functions from the first
one that were not overwritten may be completely unpredictable because of the
mismatch in libraries. The best bet is to develop and test against a specific
version and update to a newer version only when there is added functionality that
you want to add to your web page.

Workshop
The workshop consists of a set of questions and answers designed to solidify your
understanding of the material covered in this lesson. Try to answer the questions before
looking at the answers.

Quiz
1. What is the difference between == and === in JavaScript?
2. What is the difference between the break and continue keywords?
3. When should you use a finally block?
4. What is the resulting value when you add a string “1” to a number 1, (“1”+1)?

Quiz Answers
1. == compares only the relative value; === compares the value and the type.
2. break will stop executing the loop entirely, whereas continue will only stop

executing the current iteration and then move on to the next.
3. When you have code that needs to be executed even if a problem occurs in the
try block.

4. The string “11” because the number is converted to a string and then
concatenated.

Exercises
1. Open js_functions.html and modify it to create a table instead of a list. You will

need to add code to the writeIt() function that writes the <table> open tag
before iterating through the planets and then the closing tag after iterating through
the planets. Then modify the makeListItem() function to return a string in the
form of:

Click here to view code image

<tr><td>planent</td><td>moon</td></tr>

2. Modify if_logic.html to include some additional times with different messages
and images. For example, between 8 and 9, you could add the message “go to
work” with a car icon, and between 5 and 6, you could add the message “time to
go home” with a home icon. You will need to add some additional cases to the
switch statement and set the timeOfDay value accordingly.

Lesson 6. Understanding and Using JavaScript Objects

What You’ll Learn in This Lesson:
 How to access JavaScript objects
 Creating and manipulating strings
 Sorting JavaScript arrays
 Searching arrays and strings
 How to create your own custom objects

Much of the code in JavaScript revolves around objects. Objects are a convenient and
easy way to group functionality and data together for a variety of purposes. Objects
allow you to more easily write code that is clear and easy to implement.
There are four main types of objects that you will be working with in jQuery and
JavaScript: DOM, built-in, user-defined, and jQuery. You will also be working with
these types of objects in AngularJS along with some additional objects that are
described in later lessons in the AngularJS section.
The following sections define object syntax, take you through the most common built-in
objects, and show you how to create your own custom objects. DOM objects and
jQuery objects are covered in upcoming lessons.

Tip
For the simple JavaScript examples in this lesson, you can test them by
starting Node.js using the node command from a console prompt to bring
up the Node.js interpreter. From the interpreter, you can type in JavaScript
code and have it execute as you type each line.

Using Object Syntax
To use objects in JavaScript effectively, you need to have an understanding of their
structure and syntax. An object is really a container to group multiple values and, in
some instances, functions together. The values of an object are called properties, and
functions are called methods. Object syntax is very straightforward—you use the object
name, then a dot, then the property or method name.

Creating a New Object Instance
To use a JavaScript object, you must first create an instance of the object. Object
instances are created using the new keyword with the object constructor name. For
example, to create a Number object, you use the following line of code:

var x = new Number("5");

Accessing Object Properties
Almost all JavaScript objects have values that are accessible via a standard dot-naming
syntax. For example, consider an object with the variable name user that contains a
property firstName. The following statement accesses the value of the firstName
property of the user object:

user.FirstName

Accessing Object Methods
Many JavaScript objects also have methods. An object method is a function that is
attached to the object as a name. The function can be called by using the dot syntax to
reference the method name. For example, if the object named user had a method called
getFullName(), that function can be called by the following statement:

user.getFullName()

Assigning New Values and Methods to Objects
One of the coolest things about objects in JavaScript is that you can assign new property
and method values to them at any point using the dot syntax. It doesn’t matter if it is a
built-in object or one of your own custom objects. That value can then be accessed later
using the same dot syntax.
The following is an example of adding a method and property to the main document
object that we have been using for several examples. Notice that we define a simple
function that writes the document.me property to the browser. Then we assign a
value to document.me and the function writeMe() without the () as
document.writeMe. At that point, we can call document.writeMe and access
the property document.me:
Click here to view code image

<script>
 function writeMe(){
 document.write(document.me);
 }
 document.me = "Brad Dayley";
 document.writeMe = writeMe;
 document.writeMe();
</script>

Caution
If you assign a new value to an object, the existing properties or methods
with the same name will be overwritten. When assigning values to objects,

be careful that you do not accidentally overwrite an existing property or
method.

Understanding Built-in Objects
JavaScript has several built-in objects that provide a specific set of functionality. Using
these built-in objects will save time because they provide already coded and tested
methods to handle data. The following sections don’t include all the JavaScript objects,
but cover the ones that you need for this book.

Number
The Number object provides functionality that is useful when dealing with numbers.
Creating a number object is different from just assigning a number to a variable. When
you create a Number object, you also get a set of methods that can be used with it.
The Number object provides the methods listed in Table 6.1. Follow the output results
for each of these methods in Table 6.1 based on the following object creation:
Click here to view code image

var x = new Number("5.55555555");

TABLE 6.1 Using the Built-In Number Object Methods
We chose to pass the number 5.555555555 in as a string instead of a number to
illustrate that Number() can accept a string, a number, or a variable representing a
string or a number. The string must be a number string or the value of the Number
objects will be NaN (not a number).
It is a good idea to test values before creating the Number object. To test a value and
determine whether it is a number, use the isNaN() function. isNaN() returns
false if the value is a number or a string that can be a number.

Note
You can use a hexadecimal string when checking for numbers. This is very
useful if you are working with hex color values, such as #e0ffff. The string

format to use in JavaScript is “0xe0ffff”.

String
The String object is by far the most commonly used in JavaScript. JavaScript
automatically creates a String object anytime you define a variable that has a string
data type. For example:

var myStr = "Teach Yourself jQuery & JavaScript in 24 Lessons";

When you create a string, several special characters can’t be directly added to the
string. For these characters, JavaScript provides a set of escape codes described in
Table 6.2.

TABLE 6.2 Escape Codes Used in JavaScript Strings
To get the length of the string, you can use the length property of the String object, for
example:

var numOfChars = myStr.length;

The String object has several functions that allow you to access and manipulate the
string in various ways. The methods for string manipulation are described in Table 6.3.

TABLE 6.3 String Object Methods Used to Manipulate JavaScript Strings
To get you started on using the functionality provided in the String object, the
following sections describe some of the common tasks that can be done using String
object methods.

Combining Strings
Multiple strings can be combined either by using a + operation or by using the
concat() function on the first string. For example, in the following code,
sentence1 and sentence2 will be the same:
Click here to view code image

var word1 = "Today ";
var word2 = "is ";
var word3 = "tomorrows\' ";
var word4 = "yesterday.";
var sentence1 = word1 + word2 + word3 + word4;
var sentence2 = word1.concat(word2, word3, word4);

Searching a String for a Substring
To tell if a string is a substring of another, you can use the indexOf() method. For
example, the following code writes the string to the browser only if it contains the word
“think”:
Click here to view code image

var myStr = "I think, therefore I am.";
if (myStr.indexOf("think") != -1){
 document.write(myStr);
}

Replacing a Word in a String
Another common String object task is replacing one substring with another. To
replace a word/phrase in a string, use the replace() method. The following code
replaces the text "<username>" with the value of the variable username:
Click here to view code image

var username = "Brad";
var output = "<username> please enter your password: ";
output = output.replace("<username>", username);

Splitting String into an Array
A common task with strings is to split them into arrays using a separator character. For
example, the following code splits a time string into an array of its basic parts using the
split() method on the ":" separator:

var t = "12:10:36";
var tArr = t.split(":");
var lesson = tArr[0];
var minute = tArr[1];
var second = tArr[2];

Try it Yourself: Manipulating Strings in JavaScript
In this section, you follow step by step the process of manipulating some strings
to produce a mini-madlib. It is just a basic example, but it should help solidify
String objects a bit for you. The full code is in Listing 6.1, and the results are
displayed in Figure 6.1.

FIGURE 6.1 Outputted madlib text.

1. In Eclipse, create a source folder named lesson06.
2. Create a source file named string_manipulation.html in the lesson06 folder.
3. Add the usual basic elements (html, head, body).
4. Inside the <head> element, add a <script> element with a function named
writeIt() and link it to the onload event of the <body> element, as
shown next:

Click here to view code image

06 <script>
07 function writeIt(){
...
19 }
20 </script>
21 </head>
22 <body onload="writeIt()">

5. Add the following three string definitions that will house each line of the
madlib text:

Click here to view code image

08 var line1 = "In a [place] a long time ago, ";
09 var line2 = "there lived an [animal] that liked to ";
10 var line3 = "[action] people.";

6. Add the following three string definitions be used to populate items in the

madlib:
Click here to view code image

11 var place = "crater";
12 var animal = "elephant";
13 var action = "smell";

7. Add the following line to combine the lines of text as a single string:
Click here to view code image

14 var madlib = line1.concat(line2, line3);

8. Fill in the blanks in the madlib string by replacing them with the appropriate
variable value. The following lines use the replace() method to replace
the value of the variable with the correct location in the string:

Click here to view code image

15 madlib = madlib.replace("[place]", place);
16 madlib = madlib.replace("[animal]", animal);
17 madlib = madlib.replace("[action]", action);

9. Add the following command to write the fully processed madlib string to the
browser:

Click here to view code image

18 document.write(madlib);

10. Open the page in the browser, and the string should be formatted as shown in
Figure 6.1.

LISTING 6.1 string_manipulation.html Example of Combining Multiple Lines of
Text into a Single String and Using replace() to Fill in Specifically Formatted
Sections of the String with Variable Values

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>String Manipulation</title>
05 <meta charset="utf-8" />
06 <script>
07 function writeIt(){
08 var line1 = "In a [place] a long time ago, ";
09 var line2 = "there lived an [animal] that liked to ";
10 var line3 = "[action] people.";
11 var place = "crater";
12 var animal = "elephant";

13 var action = "smell";
14 var madlib = line1.concat(line2, line3);
15 madlib = madlib.replace("[place]", place);
16 madlib = madlib.replace("[animal]", animal);
17 madlib = madlib.replace("[action]", action);
18 document.write(madlib);
19 }
20 </script>
21 </head>
22 <body onload="writeIt()">
23 </body>
24 </html>

Array
The Array object provides a means of storing and handling a set of other objects.
Arrays can store numbers, strings, or other JavaScript objects. You can use a couple of
methods to create JavaScript arrays; for example, the following statements create three
identical versions of the same array:
Click here to view code image

var arr = ["one", "two", "three"];
var arr2 = new Array();
arr2[0] = "one";
arr2[1] = "two";
arr3[2] = "three";
var arr3 = new Array();
arr3.push("one");
arr3.push("two");
arr3.push("three");

To get the number of elements in the array, you can use the length property of the
Array object. For example:

var numOfItems = arr.length;

Arrays are a zero-based index, meaning that the first item is at index 0, and so on. You
can access the array backward by subtracting using the length attribute. For example,
in the following code, the value of variable first will be Monday and the value of
variable last will be Friday:
Click here to view code image

var week = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"];
var first = week[0];
var last = week[week.length-1];

The Array object has several built-in functions that allow you to access and
manipulate the array in various ways. Table 6.4 describes the method attached to the

Array object that enables you to manipulate the array contents.

TABLE 6.4 Array Object Methods Used to Manipulate JavaScript Arrays
To get you started on using the functionality provided in the Array object, the
following sections describe some of the common tasks that can be done using Array
object methods.

Combining Arrays
You can combine arrays the same way that you combine String objects, using +
statements or using the concat() method. In the following code, arr3 ends up being
the same as arr4:
Click here to view code image

var arr1 = [1,2,3];
var arr2 = ["three", "four", "five"]
var arr3 = arr1 + arr2;
var arr4 = arr1.concat(arr2);

Tip
You can combine an array of numbers and an array of strings. Each item in
the array will keep its own object type. However, as you use the items in
the array, you need to keep track of arrays that have more than one data type
so that you do not run into problems.

Iterating Through Arrays
You can iterate through an array using a for or a for/in loop. The following code
illustrates iterating through each item in the array using each method:
Click here to view code image

var week = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"];
for (var i=0; i<week.length; i++){
 document.write("" + week[i] + "");
}
for (dayIndex in week){
 document.write("" + week[dayIndex] + "");
}

Converting an Array into a String
A useful feature of Array objects is the capability to combine the elements of a string
to make a String object separated by a specific separator using the join() method.
For example, the following code results in the time components being joined together
into the format 12:10:36:
Click here to view code image

var timeArr = [12,10,36];
var timeStr = timeArr.join(":");

Checking to See Whether an Array Contains an Item
Often, you will need to check to see whether an array contains a certain item. You can
do this by using the indexOf() method. If the item is not found in the list, a –1 will be
returned. The following function writes a message to the browser if an item is in the
week array:
Click here to view code image

function message(day){
 var week = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"];
 if (week.indexOf(day) != -1){

 document.write("Happy " + day);
 }
}

Adding Items to and Removing Items from Arrays
You can use several methods to add items or remove them from Array objects using
the various built-in methods. Table 6.5 gives you some ideas on the various methods
used in this book.

TABLE 6.5 Array Object Methods Used to Add or Remove Elements from
Arrays

Try it Yourself: Creating and Manipulating Arrays
In this exercise, you learn the creation and manipulation of arrays using various
methods attached to the Array object. Use the following steps to build the file in
Listing 6.2:
1. Create a source file named array_manipulation.html in the lesson06 folder.
2. Add the usual basic elements (html, head, body).
3. Inside the <head> element, add a <script> element with a function named
writeIt() and link it to the onload event of the <body> element, as
shown next:

Click here to view code image

06 <script>
11 function writeIt(){
...
29 }
30 </script>
31 </head>
32 <body onload="writeIt()">

4. Add the following JavaScript function that accepts a message and an array
argument as msg and arr. The array is converted to a string using the
join() method. The method also writes the message and joined array string
to the browser with some HTML formatting:

Click here to view code image

07 function writeArray(msg, arr){
08 var arrString = arr.join(" | ");
09 document.write(""+ msg + ": " + arrString + "

");
10 }

5. Add the following lines of code to the writeIt() function to create a
couple of arrays and call the writeArray() function to write them to the
browser. The weekDays array is created by the declaration; the weekEnd
array is generated by creating a blank array and then pushing items into it:

Click here to view code image

12 var weekDays = ["Monday", "Tuesday", "Wednesday", "Thursday",
"Friday"];
13 writeArray("Week Days", weekDays);
14 var weekEnd = new Array();
15 weekEnd.push("Saturday");
16 weekEnd.push("Sunday");
17 writeArray("Weekend", weekEnd);

6. Use the following lines to create a new array with the full week array by
combining the weekEnd. In line 18, the concat([]) is a way of creating a
copy of weekDays. We want Sunday at the first and Saturday at the end, so
we use unshift() to push Sunday on to the front of the array and push()
to append Saturday to the end:

Click here to view code image

18 var week = weekDays.concat([]);
19 week.unshift(weekEnd[1]);
20 week.push(weekEnd[0]);
21 writeArray("Week", week);

7. Create a midWeek array using the slice() function, as follows:
Click here to view code image

22 var midWeek = week.slice(2,5);
23 writeArray("Mid Week", midWeek);

8. Use the following code to create a sorted version of the full week and then
iterate through each item in the sortedWeek array and write them out to the
browser:

Click here to view code image

24 var sortedWeek = week.sort();
25 document.write("Sorted Days :
");
26 for (dayIndex in sortedWeek){
27 document.write(sortedWeek[dayIndex] + "
");
28 }

9. Open the page in the browser, and the output of the arrays that you created
should be displayed, as shown in Figure 6.2.

FIGURE 6.2 Output of Listing 6.2.

LISTING 6.2 array_manipulation.html Example of Creating and Manipulating
Array Objects in JavaScript

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Array Manipulation</title>
05 <meta charset="utf-8" />
06 <script>
07 function writeArray(msg, arr){
08 var arrString = arr.join(" | ");
09 document.write(""+ msg + ": " + arrString + "

");
10 }
11 function writeIt(){

12 var weekDays = ["Monday", "Tuesday", "Wednesday", "Thursday",
"Friday"];
13 writeArray("Week Days", weekDays);
14 var weekEnd = new Array();
15 weekEnd.push("Saturday");
16 weekEnd.push("Sunday");
17 writeArray("Weekend", weekEnd);
18 var week = weekDays.concat([]);
19 week.unshift(weekEnd[1]);
20 week.push(weekEnd[0]);
21 writeArray("Week", week);
22 var midWeek = week.slice(2,5);
23 writeArray("Mid Week", midWeek);
24 var sortedWeek = week.sort();
25 document.write("Sorted Days :
");
26 for (dayIndex in sortedWeek){
27 document.write(sortedWeek[dayIndex] + "
");
28 }
29 }
30 </script>
31 </head>
32 <body onload="writeIt()">
33 </body>
34 </html>

Date
The Date object provides access to the current time on the browser’s system. This can
be useful in a lot of ways, such as displaying time on the page, comparing time with the
server via AJAX, timing certain events, and the like.
To get the current time on the system, use the following syntax:

var cDate = new Date();
document.write(cDate);

The string version of the date will be similar to the following:
Click here to view code image

Mon Dec 10 2012 17:30:27 GMT-0700 (Mountain Standard Time)

You can create a Date object using a string or a set of values based on the following
syntax:
Click here to view code image

Date(year, month, day, lessons, minutes, seconds, milliseconds)

For example, the following will create the same Date object:
Click here to view code image

var d1 = Date("2012, 12, 12, 12, 12, 12, 00");
var d2 = Date("December 12, 2012 12:12:12");

JavaScript enables you to compare dates using the normal logical comparisons (<, >,
==, and so on). For example, you could use the following code to compare the current
time on the browser with what has been sent from the server as a timestamp: “December
12, 2012 12:12:12”:
Click here to view code image

var currentTime = new Date();
var serverTime = new Date("December 12, 2012 12:12:12");
if (currentTime>serverTime){
 alert("Mayans Wrong?");
}

Math
The Math object is really an interface to a mathematical library that provides a ton of
time-saving functionality. The math library is much too large to go over in this book, but
Table 6.6 introduces you to some of the more useful functions.

TABLE 6.6 Using the Math Object in JavaScript

RegExp
When dynamically processing user input or even data coming back from the web server,
an important tool is regular expressions. Regular expressions allow you to quickly
match patterns in text and then act on those patterns.
JavaScript enables you to create a RegExp object that can be used to match patterns in
strings using the following syntax:
Click here to view code image

var re = new RegExp(pattern,modifiers);

Or, more simply:
var re =/pattern/modifiers;

The pattern is a standard regular expression pattern, and the modifiers define the scope
to apply the expression. Following is a list of the available modifiers in JavaScript:

 i—Perform matching that is not case sensitive.
 g—Perform a global match on all instances rather than just the first.
 m—Perform multiline match rather than stopping on the first LF/CR character.

The following shows an example of using a regular expression with a string
replace() function to do a search for “yourself” that is not case sensitive and
replace it with “Your Friends”:
Click here to view code image

var myStr = "Teach Yourself jQuery & JavaScript in 24 Lessons";
var re = /yourself/i;
var newStr = myStr.replace(re, "Your Friends");

The value of newStr:
Click here to view code image

Teach Your Friends jQuery & JavaScript in 24 Lesson

If you are not familiar with regular expressions, consider doing some research into it.
There are some good books on the topic and several resources on the Web.

Creating Custom-Defined Objects
As you have seen so far, using the built-in JavaScript objects has several advantages.
As you begin to write code that uses more and more data, you will find that you want to
build your own custom objects with specific properties and methods. The following
sections take you through the process of building custom JavaScript objects.

Defining JavaScript Objects
JavaScript objects can be defined using a couple of ways. The simplest is the on-the-fly
method, meaning that you create a generic object and then add properties to it as you
need it.
For example, to create a user object and assign a first and a last name, you use the
following code:

var user = new Object();
user.first="Brad";
user.last="Dayley";

You could also accomplish the same effect through a direct assignment using the
following syntax where the object is enclosed in {} brackets and the properties are
defined using property:value syntax, as shown next:
Click here to view code image

var user = {'first':'Brad','last':'Dayley'};

These first two options work very well for simple objects that you do not need to reuse
later. A better method is to enclose the object inside its own function block. This has the
advantage of enabling you to keep all the code pertaining to the object local to the
object itself. For example:
Click here to view code image

function User(first, last){
 this.first = first;
 this.last = last;
}
var user = new User("Brad", "Dayley");

The end result of these methods is essentially the same. You have an object with
properties that that can be referenced using dot syntax, as shown next:
Click here to view code image

document.write(user.first + " " + user.last);

Adding Methods to JavaScript Objects
If there is code specific to a custom object, you want to attach that code as methods to
the object itself. There are a couple of ways to do this depending on how the object was
created.
The first way is to define a static function and then assign it as a property of the object.
Following is an example of assigning a static function when defining objects on-the-fly:
Click here to view code image

var user = new Object();

user.first="Brad";
user.last="Dayley";
user.getFullName = makeFullName;
var user2 = {'first':'Brad', 'last':'Dayley',
 'getFullName':makeFullName};
function makeFullName(){
 return this.first + " " + this.last;
}
document.write(user.getFullName());

The function makeFullName() combines and returns the first and last properties of
the object as a string. Notice that the function accesses the properties using the this
keyword. this refers to the current instance of the object. Also notice that the
assignment of the makeFullName() to getFullName omits the () parentheses;
this sets user.getFullName equal to the function itself instead of the value it
returns.
If you created the object using the better enclosed method, the function can be defined
inside the object using the following syntax. Notice that getFullName is set to a
newly defined function that returns the value in the same way that the static function
makeFullName() did:
Click here to view code image

function User(first, last){
 this.first = first;
 this.last = last;
 this.getFullName = function(){
 return this.first + " " + this.last;
 };
}

Using a Prototyping Object Pattern
An even more advanced method of creating objects is using a prototyping pattern. The
prototyping pattern is implemented by defining the functions inside the prototype
attribute of the object instead of the object itself. The reason prototyping is better is that
the functions defined in the prototype are created only once when the JavaScript is
loaded, instead of each time a new object is created.
The following example shows the code necessary to implement the prototyping pattern.
Notice that you define the object UserP and then you set UserP.prototype to
include the getFullName() function. You can include as many functions in the
prototype as you like. Each time a new object is created, those functions will be
available:
Click here to view code image

function UserP(first, last){
 this.first = first;

 this.last = last;
}
UserP.prototype = {
 getFullName: function(){
 return this.first + " " + this.last;
 }
};

To call the getFullName() function, you would then use something similar to the
following:
Click here to view code image

var me = UserP("Brad", "Dayley");
var myFullName = me.getFullName();

Try it Yourself: Creating and Using Custom Objects
In this section, you use the prototyping pattern to create and use an array of
custom JavaScript objects. Use the following steps to build the file in Listing 6.3:
1. Create a source file named custom_objects.html in the lesson06 folder.
2. Add the usual basic elements (html, head, body).
3. Inside the <head> element, add a <script> element with a function named
writeIt() and link it to the onload event of the <body> element, as
shown next:

Click here to view code image

06 <script>
07 function writeIt(){
...
40 }
41 </script>
42 </head>
43 <body onload="writeIt()">

4. Add the following function below writeIt(). This function will be used to
create custom Character objects. The function accepts a first and last
name, the land where the character is from, and the race:

Click here to view code image

27 function Character(first, last, land, race){
28 this.first = first;
29 this.last = last;
30 this.race = race;
31 this.land = land;
32 }

5. Add the following prototype definition that provides two functions,
getFullName() and getDetails():

Click here to view code image

33 Character.prototype = {
34 getFullName: function(){
35 return this.first + " " + this.last;
36 },
37 getDetails: function(){
38 return "is a " + this.race + " from the " + this.land;
39 }
40 };

6. Inside the writeIt() function, add the following lines of code that create
the characters array and populate it with character objects. The objects are
created using the new keyword:

Click here to view code image

08 var characters = new Array();
09 characters.push(new Character("John 117", "Master Chief",
10 "Earth", "Spartan"));
11 characters.push(new Character("vadam", "The Arbitor",
12 "High Charity", "Elite"));
13 characters.push(new Character("Gravemind", "", "Precursors",
14 "Flood"));

7. Add the following code to create the sgtJohnson object. Notice that we
pass in only the first name. Lines 14 and 15 assign the additional land and
race values. This provides an example of another method to assign values to
objects:

Click here to view code image

15 sgtJohnson = new Character("Sgt Johnson", "", "", "");
16 sgtJohnson.land = "Earth";
17 sgtJohnson.race = "Human";
18 characters.push(sgtJohnson);

8. Add the following for loop that iterates through each element of the
characters array and writes information about the character to the browser.
Line 19 assigns a new property value of number to the Character object.
Notice that after it is assigned, we are able to access character.number
to write it out as part of the string:

Click here to view code image

19 for (var i=0; i<characters.length; i++){
20 var character = characters[i];
21 character.number = i+1;
22 document.write(character.number + ". " +
23 character.getFullName() + " " +
24 character.getDetails() + "
");
25 }

9. Open the page in the browser, and the output of the objects that you created
should be displayed, as shown in Figure 6.3.

FIGURE 6.3 Output of Listing 6.3.

LISTING 6.3 custom_objects.html Example of Creating and Manipulating Custom
Objects in JavaScript

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Custom Objects</title>
05 <meta charset="utf-8" />
06 <script>
07 function writeIt(){
08 var characters = new Array();
09 characters.push(new Character("John 117", "Master Chief",
10 "Earth", "Spartan"));
11 characters.push(new Character("vadam", "The Arbitor",
12 "High Charity", "Elite"));
13 characters.push(new Character("Gravemind", "", "Precursors",
14 "Flood"));
15 sgtJohnson = new Character("Sgt Johnson", "", "", "");
16 sgtJohnson.land = "Earth";
17 sgtJohnson.race = "Human";
18 characters.push(sgtJohnson);
19 for (var i=0; i<characters.length; i++){
20 var character = characters[i];
21 character.number = i+1;
22 document.write(character.number + ". " +
23 character.getFullName() + " " +
24 character.getDetails() + "
");
25 }
26 }
27 function Character(first, last, land, race){
28 this.first = first;
29 this.last = last;

30 this.race = race;
31 this.land = land;
32 }
33 Character.prototype = {
34 getFullName: function(){
35 return this.first + " " + this.last;
36 },
37 getDetails: function(){
38 return "is a " + this.race + " from the " + this.land;
39 }
40 };
41 </script>
42 </head>
43 <body onload="writeIt()">
44 </body>
45 </html>

Summary
In this lesson, we discussed how JavaScript objects provide a way to create much
cleaner and more efficient code. You learned how objects support attaching properties
and methods to a single variable name.
You also were introduced to several built-in objects such as Array and String. The
built-in objects provide properties and methods that provide quick functionality with
little code—for example, using the Date object to get the system time, compare times,
and create time-based output to the browser.
Finally, you got a chance to create and manipulate your own JavaScript objects with
properties and methods. Creating custom objects will help you organize your scripts to
be more efficient.

Q&A
Q. What is the difference between built-in, custom, DOM objects, and jQuery

objects?
A. Only how they are defined. Built-in objects are automatically defined and

available as part of the language sometimes; as with arrays or strings, they are
automatically instantiated during an assignment statement. DOM objects are also
built in to the JavaScript language. You can create an instance of them in
JavaScript, but they are also created based on the tags in the HTML file. jQuery
objects are defined and created inside the jQuery library. At the low level, they
are all just JavaScript objects. Each has properties and methods that can be used
to simplify JavaScript tasks.

Q. The new keyword creates a new instance of an object, but how do I get rid

of an instance of an object to free up memory and such?
A. JavaScript automatically cleans up memory for you when a variable goes out of

scope. To clean up an instance of a JavaScript object, make it go out of scope.
For example, if it is part of an array, you can us the pop() function to remove it,
or, if you want all of an array of objects to be freed up, set the array variable to
null.

Workshop
The workshop consists of a set of questions and answers designed to solidify your
understanding of the material covered in this lesson. Try to answer the questions before
looking at the answers.

Quiz
1. What is the new keyword for?
2. How do you find the length of a JavaScript array?
3. True or false: The following statement creates a copy of the Array object named
myArr:
var newArr = myArr.concat([])

4. True or false: You cannot assign new properties to an existing JavaScript object.

Quiz Answers
1. The new keyword is used to create a new instance of an object.
2. The length of JavaScript String and Array objects can be found using the
length property. For example:
myArr.length

3. True.
4. False.

Exercises
1. Extend the code in Listing 6.1 to include a much more complete madlib. Add

several attributes that should be included in the final string.
2. Use the code in Listing 6.2 as an outline to create and display arrays that contain

the summer months, winter months, autumn months, and spring months. Then
combine the arrays into a single array containing all the months of the year.

3. Extend Listing 6.3 to add additional characters. Also include additional attributes

such as weapon, age, or height.

Part II: Implementing jQuery and
JavaScript in Web Pages

Lesson 7. Accessing DOM Elements Using JavaScript and
jQuery Objects

What You’ll Learn in This Lesson:
 The difference between jQuery and JavaScript DOM objects
 How to tell if an object is jQuery or DOM
 How to get a jQuery object from a DOM object
 How to get a DOM object from a jQuery object
 How to use jQuery selectors to quickly find DOM elements

The most important part of dynamic web development is the capability to access the
DOM elements quickly and efficiently. JavaScript inherently provides functionality to
access the DOM elements. It can be useful at times; however, this is the area where
jQuery really stands out and you understand the need for jQuery on top of JavaScript.
In the following sections, you learn about the basic structure of jQuery and JavaScript
DOM objects, how to determine whether an object is jQuery or DOM, and how to
switch between them. The rest of the lesson discusses methods you can use to find and
access the DOM elements using jQuery and JavaScript.

Understanding DOM Objects Versus jQuery Objects
You need to understand the difference between DOM objects and jQuery objects and
how to manipulate and use both to be effective when creating dynamic web pages. In
this section, you learn about these types of objects and how to navigate between them.

Introducing JavaScript DOM Objects
DOM objects are the objects that the web browser is using to render elements on the
web page. Consequently, DOM objects have a great deal of functions and attributes. The
advantage with working with DOM objects is that you have direct access to everything
you need to manipulate the HTML element.
The disadvantage of DOM objects is that most of the attached functions and attributes
are things that the browser needs and are not necessarily useful when you’re working
with JavaScript. That means that the DOM object has a lot of properties and methods
that encumber your debugging environment, such as the Chrome development tools or
other JavaScript consoles.
Table 7.1 provides a list of some of the important attributes and methods of DOM
objects that you should be aware of. The list is not comprehensive; it is intended to give
you an idea of things that you can access from a DOM object.

TABLE 7.1 Some of the More Commonly Used Attributes/Methods Attached to
DOM Objects

Introducing jQuery Objects

jQuery objects are basically wrapper objects around a set of DOM elements. The
jQuery objects are still JavaScript objects and provide access to the DOM elements—
however, in a much different, much easier, and often much more effective way.
The most important thing to remember is that a jQuery object may represent a single
DOM object, or it may represent a set of many DOM objects. So if you apply an
operation on the jQuery object, it may apply to many DOM objects.
The biggest advantage to jQuery objects is how easy it is to search HTML elements in a
web page. Another advantage is that the jQuery library wraps methods and attributes
specifically to make it easier for JavaScript and jQuery developers to manipulate and
work with different groups of objects. Calling a method on jQuery objects can apply to
one or many DOM elements without the need to iterate through a list.
Table 7.2 provides a list of some of the important methods of jQuery objects that you
should be aware of. The list is not comprehensive; it is intended to give you an idea of
things that you can access from a jQuery object.

TABLE 7.2 Some of the More Commonly Used Methods Attached to jQuery
Objects

Determining Whether an Object Is DOM or jQuery
Occasionally, you may find yourself in a situation where you have an object and you are
not sure whether it is a jQuery object, a DOM object, or some other JavaScript object.
There is a simple way to tell the difference.
To tell whether an object is a jQuery object, use the following if syntax to check to see
whether the object has the jquery attribute:

if(obj.jquery) {
 ...

To tell whether an object is a DOM object, use the following if syntax to check
whether the object has the nodeType attribute:

if(obj.nodeType) {
 ...

Changing an Object from DOM to jQuery and Back
What do you do if you have a jQuery object but you want to use code intended for DOM
objects, or vice versa? The answer is to convert the object to the other type.
The .get() method returns the JavaScript version of the jQuery element set in the
form of an array of DOM objects. Use the following code to call the get() function
that returns the DOM object of the HTML element represented by the jQuery object:
Click here to view code image

var domObj = jqueryObj.get();

Conversely, the $() or jquery() method creates a new jQuery object from
JavaScript. Use the following code to execute the $() function to wrap the DOM object
as a jQuery object:

var jqueryObj = $(domObj);

Accessing DOM Objects from JavaScript
To be able to manipulate HTML elements from JavaScript, you first need to gain access
to the DOM object. You can use a few methods to accomplish that.

Finding DOM Objects by ID
The simplest is to find an HTML element using the value of the id attribute using the
getElementById(id) function. getElementById(id) searches the DOM for
an object with a matching id attribute.
For example, the following code searches for the HTML element with
id="container":
Click here to view code image

var containerObj = document.getElementById("container");

Finding DOM Objects by Class Name
You can also search for HTML elements by their class attribute using the
getElementsByClassName(class). This function returns a list of DOM
objects with matching class attributes. You can then iterate over that list using a

JavaScript loop and apply changes to each DOM element.
For example, the following retrieves a list of HTML elements with
class="myClass" and then iterates through them:
Click here to view code image

var objs = document.getElementsByClassName("myClass");
for (var i=0; i<objs.length; i++){
 var htmlElement = objs[i];
 ...
}

Finding DOM Objects by Tag Name
Another way to search for HTML elements is by their HTML tag, using the
getElementsByTagName(tag). This function returns a list of DOM objects with
matching HTML tags. You can then iterate over that list using a JavaScript loop and
apply changes to each DOM element.
For example, the following code retrieves a list of the <div> HTML elements and then
iterates through them:
Click here to view code image

var objs = document.getElementsByTagName("div");
for (var i=0; i<objs.length; i++){
 var htmlElement = objs[i];
 ...
}

Try it Yourself: Using JavaScript to Access DOM Objects
In this example, you use JavaScript to find different elements and read values and
write values to them. This is a basic example designed to give you a chance to
use JavaScript to access DOM objects. The full scripts used in the example are
shown in Listings 7.1, 7.2, and 7.3:
1. In Eclipse, create a source folder named lesson07. Inside the lesson07 folder,

create a js and css folder.
2. Create a source file named dom_objects.html in the lesson07 folder.
3. Add the usual basic elements (html, head, body).
4. Inside the <head> element, add the following <script> and <link>

elements, shown in Listing 7.1, which will be used to load the JavaScript and
CSS rules that will be defined later:

Click here to view code image

06 <script type="text/javascript" src="js/dom_objects.js">
</script>

07 <link rel="stylesheet" type="text/css"
href="css/dom_objects.css">

5. Add the following <input> elements to define a text box and a button.
Notice that on the button, you need to add the onclick handler, which allows
you to run your dynamic script when the button is clicked. The text input has
the id="textIn":

Click here to view code image

10 <input id="textIn" type="text"/>
11 <input type="button" onclick="textChange()" value="Update" />

6. Add the following and <p> elements. For now, they are empty; the
dynamic code will update them:

Click here to view code image

12
13 <p id="p1"></p>
14
15 <p id="p2"></p>

7. Create a file called lesson07/js/dom_objects.js.
8. Create a function called textChange(), as shown in Listing 7.2. This

function will be called when the button is clicked.
9. Add the following variable definition to the textChange() function to find

the text input by the id "textIn":
Click here to view code image

02 var inElement = document.getElementById("textIn");

10. Add the following variable definition to get all the <p> elements by tag name:
Click here to view code image

03 var outElements = document.getElementsByTagName("p");

11. Add the following variable definition to get all the elements with the
class="heading":

Click here to view code image

04 var headingElements = document.getElementsByClassName("heading");

12. Add the for loop shown in Listing 7.2 that iterates through the
outElements that were found in the document. For each element, you set
the innerHTML text to the inElement.value, which is what is typed into
the text box.

13. Create a file called lesson07/css/dom_objects.css and add the code shown in
Listing 7.3. This stylizes the out elements a bit.

14. Save the three files and open the dom_objects.html file in a web browser to
check out the web page shown in Figure 7.1. Try typing in some text and
clicking the Update button.

FIGURE 7.1 A simple JavaScript web page that allows the user to enter text and
update components.

LISTING 7.1 dom_objects.html HTML File That Loads JavaScript and Attaches
an Event Handler to a Button Element to Update the Page

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>DOM Objects</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="js/dom_objects.js"></script>
07 <link rel="stylesheet" type="text/css" href="css/dom_objects.css">
08 </head>
09 <body>
10 <input id="textIn" type="text"/>
11 <input type="button" onclick="textChange()" value="Update" />

12
13 <p id="p1"></p>
14
15 <p id="p2"></p>
16 </body>
17 </html>

LISTING 7.2 dom_objects.js JavaScript File Contains a Function Showing
Examples of Accessing Variables by id, tag, and class Attributes

Click here to view code image

01 function textChange(){
02 var inElement = document.getElementById("textIn");
03 var outElements = document.getElementsByTagName("p");
04 var headingElements = document.getElementsByClassName("heading");
05 for(var i=0; i<outElements.length; i++){
06 var outItem = outElements[i];
07 headingElements[i].innerHTML = "Updating " + (i+1) +
08 " to " + inElement.value;
09 outItem.innerHTML = inElement.value;
10 }
11 }

LISTING 7.3 dom_objects.css CSS That Styles <p> Elements

01 p{
02 font-weight:bold;
03 font-size:50px;
04 margin:5px;
05 color:blue;
06 }

Using jQuery Selectors
Unlike JavaScript, jQuery enables you to find HTML elements in countless ways using
selectors. Yes, just like CSS selectors. In fact, most of the jQuery selectors were taken
from CSS, providing a more seamless transition between the two.
As you will find in upcoming sections, jQuery selectors make it very easy to select just
about any group of HTML elements. Keep in mind, though, that jQuery selectors return
jQuery objects, not DOM objects.
jQuery selector syntax is very straightforward. After the jQuery library is loaded, use
$(selector). For example:

$("#myElement")

Caution
Several metacharacters are used in jQuery selector syntax. If you want to
use any of the meta characters, such as !"#$%&'()*+,./:;<=>?

@[\]^`{|}~), as a part of a class/id/name, you will need to escape the
character with \\ two backslashes. For example, if you have an element
with id="my.element", you would use the selector
$("#my\\.element").

As with CSS selectors, the best way to introduce you to jQuery selectors is to show you
some examples. The following sections take you through some examples of different
types of jQuery selectors. These sections only scratch the surface. You can go to the
following location to review the selector documentation when you get a chance:

http://api.jquery.com/category/selectors/

Applying Basic Selectors
The most commonly used selectors are the basic ones. The basic selectors focus on the
id attribute, class attribute, and tag name of HTML elements. Table 7.3 list some
examples to show you how to define some of the basic selectors.

TABLE 7.3 Examples of Using Basic jQuery Selectors

Applying Attribute Selectors

http://api.jquery.com/category/selectors/

Another way to use jQuery selectors is to select HTML elements by their attribute
values. It can be a default attribute or one that you have added to the HTML elements.
Attribute values are denoted in the selector syntax by being enclosed in [] brackets.
Table 7.4 shows some of the ways that attribute selectors can be applied.

TABLE 7.4 Examples of Using Attribute jQuery Selectors

Applying Content Selectors
Another set of useful jQuery selectors are the content filter selectors. These selectors
allow you to select HTML elements based on the content inside the HTML element.
Table 7.5 shows examples of using content selectors.

TABLE 7.5 Examples of Using Content jQuery Selectors

Applying Hierarchy Selectors
An important set of jQuery selectors are the hierarchy selectors. These selectors allow
you to select HTML elements based on the DOM hierarchy. This enables you to write
dynamic code that is more content aware by only selecting elements based on parents,
children, or other elements around them in the DOM tree. Table 7.6 shows some
examples of hierarchy selectors.

TABLE 7.6 Examples of Using Hierarchy jQuery Selectors

Note
It is always best to be as specific as possible when designing your jQuery
selectors. For example, if you want to select all the span elements with
class="menu" and these elements are only under the <div> element
with id="menuDiv", then $("div#menuDiv .menu") would be
much more efficient than $(".menu") because it would limit the search

to the <div> element before checking from the menu class attribute.

Applying Form Selectors
An extremely useful set of selectors when working with dynamic HTML forms are the
form jQuery selectors. These selectors enable you to select elements in the form based
on the state of the form element. Table 7.7 shows some examples of form selectors.

TABLE 7.7 Examples of Using Attribute jQuery Selectors

Applying Visibility Selectors
If you are using visibility to control the flow and interactions of your web page
components, using the visibility jQuery selectors makes it simple to select the HTML
elements that are hidden or visible. Table 7.8 shows some examples of visibility
selectors.

TABLE 7.8 Examples of Using Attribute jQuery Selectors

Applying Filtered Selectors
Often you will need to refine your jQuery selectors down to a more specific subset. One
way to accomplish that is to use filtered selectors. Filtered selectors append a filter on
the end of the selector statement that limits the results returned by the selector. Table 7.9
shows some examples of adding filters to selectors.

TABLE 7.9 Examples of Using Filtered jQuery Selectors

Try it Yourself: Using jQuery to Access DOM Objects
In this example, you use jQuery to find different elements and read values and
write values to them. This is another basic example designed to help solidify the
concepts of how jQuery selectors enable you to find and access DOM elements.
You see some more advanced examples later in this lesson. The full scripts used
in the example are shown in Listings 7.4, 7.5, and 7.6:
1. In the lesson07 folder, create the source files named jquery_selectors.html,

js/jquery_selectors.js, and css/jquery_selectors.css.
2. Open jquery_selectors.html and add the usual basic elements (html, head,

body).
3. Inside the <head> element, add the following <script> and <link>

elements, shown in Listing 7.4, that will be used to load the jQuery,
JavaScript, and CSS:

Click here to view code image

06 <script src="https://code.jquery.com/jquery-2.1.3.min.js">
</script>
07 <script type="text/javascript" src="js/jquery_selectors.js">
</script>
08 <link rel="stylesheet" type="text/css"
href="css/jquery_selectors.css">

4. Now add the following elements that will be styled as buttons. Each

 element contains a different onclick handler that will allow you to
run your dynamic script when it is clicked:

Click here to view code image

11 Even
12 Odd
13 First 4

5. Add the <p> and elements shown in Listing 7.4 to add a list of ancient
gods to the page.

6. Open the file jquery_selectors.css and add the contents of Listing 7.6 that style
the elements as buttons and the <p> element as a list header.

7. Open the jquery_selectors.js files so that you can add the event handlers for
the elements.

8. Add a JavaScript function named setEven() to act as an event handler.
9. Add the following line that uses jQuery to select all and

elements and clears the CSS font-weight value:
Click here to view code image

02 $("li, span").css("font-weight","");

10. Add the following lines that define a variable named $evenItems to the
results of the selector that selects all elements and then filters the list to
only those with an even index. Line 3 uses the $evenItems variable to set
the CSS font-weight property of those items to bold:

Click here to view code image

03 var $evenItems = $("li:even");
04 $evenItems.css("font-weight","bold");

11. Add the following line that uses jQuery to select all elements that
contain "Even" in their contents and sets the CSS font-weight property
to bold:

Click here to view code image

05 $("span:contains(Even)").css("font-weight","bold");

12. Add the following line that uses jQuery to select the elements with
class="label" to select the <p> element. The .html("Even") part of
the statement changes the innerHTML property of the selection to "Even",
thus changing the heading:

Click here to view code image

06 $(".label").html("Even");

13. Add the other two event handlers, setOdd() and setFirst4(), shown in
Listing 7.5, which basically do the same thing, but for a different set of list
items.

14. Save the three files and open the jquery_selectors.html file in a web browser
to check out the web page shown in Figure 7.2. Try clicking the different
buttons and watch the button, heading, and list items change.

FIGURE 7.2 A simple JavaScript web page that uses jQuery to dynamically change
page elements based on user interaction.

LISTING 7.4 jquery_selectors.html HTML File That Loads jQuery and JavaScript
and Attaches Event Handlers Elements to Provide User Interaction

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>jQuery Selectors</title>

05 <meta charset="utf-8" />
06 <script src="https://code.jquery.com/jquery-2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/jquery_selectors.js">
</script>
08 <link rel="stylesheet" type="text/css"
href="css/jquery_selectors.css">
09 </head>
10 <body>
11 Even
12 Odd
13 First 4
14 <p class="label">Planets</p>
15
16 Poseidon
17 Ares
18 Apollo
19 Hermes
20 Nike
21 Nemesis
22 Zeus
23 Hades
24
25 </body>
26 </html>

LISTING 7.5 jquery_selectors.js JavaScript File Containing Event Handler
Functions That Use jQuery in Various Ways to Select and Alter Page Elements

Click here to view code image

01 function setEven(){
02 $("li, span").css("font-weight","");
03 var $evenItems = $("li:even");
04 $evenItems.css("font-weight","bold");
05 $("span:contains(Even)").css("font-weight","bold");
06 $(".label").html("Even");
07 }
08 function setOdd(){
09 $("li, span").css("font-weight","");
10 var $oddItems = $("li:odd");
11 $oddItems.css("font-weight","bold");
12 $("span:contains(Odd)").css("font-weight","bold");
13 $(".label").html("Odd");
14 }
15 function setFirst4(){
16 $("li, span").css("font-weight","");
17 var $first4 = $("li:lt(4)");
18 $first4.css("font-weight","bold");
19 $("span:contains('First 4')").css("font-weight","bold");
20 $(".label").html("First 4");
21 }

LISTING 7.6 jquery_selectors.css CSS That Styles Elements and
Elements with class=”label”

01 span{
02 padding:2px;
03 border:3px ridge blue;
04 color:white;
05 background:blue;
06 cursor:pointer;
07 }
08 .label{
09 font-size:25px;
10 margin:10px;
11 }

Summary
In this lesson, you learned about using jQuery and JavaScript objects to find and access
DOM elements. This is the most critical piece of dynamic programming because you
must be able to provide efficient access to the DOM elements to be able to manipulate
them dynamically. You learned the basic syntax and structure of JavaScript DOM
objects, as well as a few of the methods and attributes attached to those objects.

Q&A
Q. When should I use the getObjectById() rather than $(“#id”)?
A. It’s likely that you will rarely use getObjectById(). The only time you

might use it is when you don’t want to take the time to link the jQuery library to
your HTML docs. jQuery is so much more extensible.

Workshop
The workshop consists of a set of questions and answers designed to solidify your
understanding of the material covered in this lesson. Try to answer the questions before
looking at the answers.

Quiz
1. How to would you convert a DOM object named myDiv into a jQuery object?
2. True or false: A jQuery selector returns a list of DOM objects.
3. How can you tell if an object is a jQuery object?

4. What jQuery selector would you use if you wanted all elements with
class="heading"?

5. What jQuery selector would you use to get all <p> elements that are children of
<div> elements?

6. How can you get a JavaScript array of the DOM elements represented in a jQuery
object?

Quiz Answers
1. Use $(myDiv) to create a new jQuery object with the DOM element as the only

item in the set.
2. False. A jQuery selector returns a jQuery object that contains a set of DOM

elements.
3. Test to see whether it has the jquery property set.
4. $(".heading")
5. $(div p)
6. Use the get() method on the jQuery object.

Exercise
1. Add an additional button to the example in jquery_selectors.html that will select

only the first and last items in the list. You will need to add the HTML and
JavaScript code necessary to do so.

Lesson 8. Navigating and Manipulating jQuery Objects
and DOM Elements with jQuery

What You’ll Learn in This Lesson:
 Chaining jQuery operations together for efficiency
 Ways to filter the DOM elements in a jQuery object
 Methods to use jQuery objects to traverse the DOM
 Iterating through each element in the jQuery object set

jQuery selectors return a jQuery object that represents zero or more elements that match
the selector definition. Simple selectors are great for a lot of things. However, as your
web pages become more complex, you will find that the selectors do not do everything
that you need.
jQuery objects provide additional functionality and enhance the selector results by
allowing you to easily refine the list of DOM elements represented, navigate the DOM
tree to find other elements, and manipulate the values of the HTML elements. The
following sections cover how to chain jQuery operations together to efficiently find,
filter, and navigate around the DOM elements in the web page.

Chaining jQuery Object Operations
One of the great things about jQuery objects is that you can chain multiple jQuery
operations together into a single statement. Each consecutive statement will operate on
the results of the previous operation in the chain. This can help reduce and simplify your
selectors and reduce the amount of class and id definitions required in your CSS.
Think of the results of the chained jQuery operations as a stack of jQuery objects, with
each object representing a set of DOM elements. Each operation in the chain will place
a jQuery object onto the stack, but the current operation will be applied only to the top
jQuery.
To help illustrate this, consider the following statements. The code first finds the
<div> element with id="content" and then finds the first <p> element inside and
changes the font-weight to bold. Then it finds the elements inside the
<p> and sets the color to red:
Click here to view code image

var $contentDiv = $("div#content");
var $firstP = $contentDiv.children("p:first");
$firstP.css("font-weight","bold");
var $spans = $firstP.children("span");
$spans.css("color","red");

The preceding code took five lines to accomplish all the tasks it does. The following
single line of chained jQuery operations does the same things but with only a single
line:
Click here to view code image

$("div#content").children("p:first").css("font-
weight","bold").children("span"). css("color","red");

Because each of the operations returns a jQuery object, you can chain as many jQuery
operations together as you would like. Even though the .css() operation is designed
to alter the DOM objects and not find them, it still returns the same jQuery object so you
can perform other operations on the results.

Filtering the jQuery Object Results
jQuery objects provide a good set of methods that allow you to alter the DOM objects
represented in the query. Reducing the results is helpful when you are trying to pinpoint
a specific set of elements within a jQuery selector result. Table 8.1 provides some
examples of chaining jQuery selectors.

TABLE 8.1 jQuery Object Methods with Examples That Filter the DOM
Elements Represented

Tip
The jQuery selectors that are the same as the CSS selectors are able to use
the native DOM method querySelectorAll(), which has some
advanced optimizations on DOM objects. Other jQuery selectors cannot
take advantage of that optimization, so it is better to use a CSS-based

selector first and then add the filter as a chained selector. For example,
rather than using $("div:animated"), you should use
$("div").filter(":animated"):
http://api.jquery.com/category/selectors/jquery-selector-extensions/

Traversing the DOM Using jQuery Objects
Another important set of methods attached to the jQuery object are the DOM traversing
methods. DOM traversal enables you to select elements based on their relationship to
other elements.
The DOM is sometimes referred to as the DOM tree because it is organized in a tree
structure, with the document as the root and nodes that can have both parents, siblings,
and children. To visualize this better, check out the following HTML code:

<body>
 <div>
 <p>Paragraph 1</p>
 <p>Paragraph 2</p>

 Item 1
 Item 2

 </div>
</body>

The <p> elements and element are siblings to each other, and they are all
children of the <div> element. The <div> element is the parent of the <p> and
elements, and the element is the parent of the elements, and so forth.
jQuery DOM traversing methods enable you to move from one layer in the DOM to
another to select elements—for example, if you want to access all <p> elements that are
children of <div> elements or if you want to find a <label> element that is a sibling
of an <input> element.
jQuery objects provide an incredible set of methods that allow you to traverse the DOM
in almost innumerable ways by allowing you to use the current selection of DOM
elements in the jQuery object to select other sets of DOM elements in the tree. Table 8.2
lists the methods that you can use to traverse the DOM.

http://api.jquery.com/category/selectors/jquery-selector-extensions/

TABLE 8.2 jQuery Object Methods with Examples That Allow You to Traverse
the DOM to Select Elements

Looking at Some Additional jQuery Object Methods
When filtering the jQuery object or using it to traverse the DOM, you should be aware
of some additional methods. Table 8.3 lists a set of methods that you can use in
conjunction with filtering and traversing elements, to iterate through the DOM elements
in the jQuery object, add additional elements to the set, end filtering, and test items. You
will find that you’ll use these methods more and more frequently as your jQuery code
becomes more natural to you.

TABLE 8.3 A Few Additional Methods and Examples That Allow You to Work
with jQuery Objects

Note
When using functions with jQuery methods that iterate through the DOM
elements, you can use the this keyword to access the current DOM object
that is being iterated on. This is a DOM object and not a jQuery object. If
you need to use the jQuery form of the DOM object, use $(this) instead.
Keep in mind, though, that it takes work in the browser’s rendering engine
to build the jQuery form of the DOM object, so create the jQuery form only
if you want the functionality that is provided.

Using .each()
The .each(function) method is one of the most important jQuery object methods
because it allows you to traverse all elements in the jQuery set and perform actions on
each of them individually. This is different from just applying the same action to all
items in the query.
The .each() method allows you to specify a function that will be run for each
element in the jQuery object set. The function will be passed an index number as the
first argument. Inside the function, the this variable will point to the current DOM
element.
The following snippet of code illustrates using .each(). It iterates through all
paragraph elements and sets the content, including the index number of the element:
Click here to view code image

$("p").each(function (idx){
 $(this).html("This is paragraph " + idx);
 });

Notice that idx is passed in as an index number; 0 for the first <p> element, 1 for the
second, and so on. Also note that this was converted to a jQuery object using
$(this) so that the .html() method could be called.

Using .map()
The .map(function) method also iterates through each element in the jQuery object
set. Although very similar to .each(), there is one big difference, which is that
.each() will return the same jQuery object, but .map() will return a new jQuery
object with the values returned by each iteration.
The following snippet of code illustrates using .map(). It will iterate through all
 elements and return a comma-separated string of the elements’ text:
Click here to view code image

var liValues = $("li").map(function (idx){
 return $(this).html();
 }).get().join(",");

Notice that for each iteration, the function returns the HTML content in the
element. You call .get() to return a JavaScript array version of the new jQuery
object returned by .map() and then call .join(",") on that array to build the
comma-separated string.

Try it Yourself: Using the jQuery .map() and .each() Methods to Navigate,
Access, and Manipulate the DOM Elements

In this example, you learn the process of using a jQuery selector to find all
paragraph elements. You then use the .map() function to read the content and
use it to create a new box. You also use .each() to iterate through
the <p> elements and restyle them. The full sample files can be found in Listings
8.1, 8.2, and 8.3. Use the following steps to implement the example:
1. In Eclipse, create a source folder named lesson08. Inside the lesson08 folder,

create a js and css folder.
2. In the lesson08 folder, create the source files named dom_manipulation.html,

js/dom_manipulation.js, and css/dom_manipulation.css.
3. Open dom_manipulation.html and add the usual basic elements (html, head,

body).
4. Inside the <head> element, add the following <script> and <link>

elements, shown in Listing 8.1, that will be used to load the jQuery,

JavaScript, and CSS:
Click here to view code image

06 <script type="text/javascript" src="https://code.jquery.com/
jquery-2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/dom_manipulation.js">
</script>
08 <link rel="stylesheet" type="text/css"
href="css/dom_manipulation.css">

5. Add the code shown in lines 11–19 of Listing 8.1 to the
css/dom_manipulation.css file. This code defines two input buttons, a bunch of
<p> elements, and a <div> that will be used to place content.

6. Add the styling code from Listing 8.3 to the dom_manipulation.css file. The
styling code will style the elements so that they will display as
inline-block so that you can set their size.

7. Open the js/dom_manipulation.js file and add the following lines that will
create a .ready() function that will be executed when the page is loaded:

Click here to view code image

01 $(document).ready(function (){
. . .
21 });

8. Add the following code that will add a click event handler to the first
button. The function uses a simple .each() function to iterate through the
<p> elements; it gets the string, splits it into a color and size, and then sets the
font-size and color CSS properties:

Click here to view code image

02 $("input:eq(0)").click(function (){
03 $("p").each(function(){
04 var parts = $(this).html().split(" ");
05 $(this).css({"font-size":parts[1]+"px", color:parts[0]});
06 });
07 });

9. Add the following code that will add a click event handler to the second
button. The function uses a simple .map() function to iterate through the <p>
elements; it gets the string and splits it into a color and size. This time,
however, the function returns a JavaScript object with a color and size
attribute. The .get() at the end converts the results of the .map() to a
JavaScript array named items:

Click here to view code image

08 $("input:eq(1)").click(function (){

09 var items = $("p").map(function(){
10 var parts = $(this).html().split(" ");
11 return {color:parts[0], size:parts[1]};
12 }).get();

10. Add the following for loop that iterates through items and creates a new
 element with the color and size based on the values read from the
<p> elements:

Click here to view code image

13 for (var idx in items){
14 var item = items[idx];
15 var span = $("" + item.color + "");
16 var size = item.size*5;
17 span.css({"background-color":item.color, "font-size":
item.size+"px", width:size, height:size});
18 $("div").append(span);
19 }

11. Save the three files and open the HTML document in a web browser. When
you click the .each() button, the text of the <p> elements should change, as
shown in Figure 8.1. When you click the .map() button, new boxes should be
displayed in the <div>.

FIGURE 8.1 A simple JavaScript web page that uses .map() and .each() to
read the text in <p> elements and make dynamic changes to the web page for each of

those elements.

LISTING 8.1 dom_manipulation.css HTML File That Loads jQuery and JavaScript

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>DOM Manipulation</title>

05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/dom_manipulation.js">
</script>
08 <link rel="stylesheet" type="text/css"
href="css/dom_manipulation.css">
09 </head>
10 <body>
11 <input type="button" value=".each()">
12 <input type="button" value=".map()">
13 <p>red 10</p>
14 <p>orange 15</p>
15 <p>yellow 20</p>
16 <p>green 25</p>
17 <p>blue 30</p>
18 <p>indigo 35</p>
19 <p>violet 40</p>
20 <div></div>
21 </body>
22 </html>

LISTING 8.2 dom_manipulation.js jQuery and JavaScript Code Gets the <p>
Elements and Iterates Through Them Using .map() and .each() to Apply
Different Changes for Each Element

Click here to view code image

01 $(document).ready(function (){
02 $("input:eq(0)").click(function (){
03 $("p").each(function(){
04 var parts = $(this).html().split(" ");
05 $(this).css({"font-size":parts[1]+"px", color:parts[0]});
06 });
07 });
08 $("input:eq(1)").click(function (){
09 var items = $("p").map(function(){
10 var parts = $(this).html().split(" ");
11 return {color:parts[0], size:parts[1]};
12 }).get();
13 for (var idx in items){
14 var item = items[idx];
15 var span = $("" + item.color + "");
16 var size = item.size*5;
17 span.css({"background-color":item.color, "font-size":
item.size+"px",
18 width:size, height:size});
19 $("div").append(span);
20 }
21 });
22 });

LISTING 8.3 dom_manipulation.css CSS Code That Styles the and <p>
Elements

Click here to view code image

01 p{margin:0px; padding:0px;}
02 span{
03 display:inline-block;
04 color: white;
05 text-align:center;
06 }

Try it Yourself: Using jQuery Objects to Traverse the DOM
In this example, you use jQuery objects to dynamically access DOM elements
relative to their position from each other. The purpose of this example is to
illustrate how easy it is use jQuery objects to navigate and find other related
DOM elements. The results will be a simple web page that allows users to input
ratings and provides a graphical indicator of their value. The full scripts used in
the example are shown in Listings 8.4, 8.5, and 8.6:
1. In the lesson08 folder, create the source files named traverse_dom.html,

js/traverse_dom.js, and css/traverse_dom.css.
2. Open traverse_dom.html and add the usual basic elements (html, head, body).
3. Inside the <head> element, add the following <script> and <link>

elements, shown in Listing 8.4, that will be used to load the jQuery,
JavaScript, and CSS:

Click here to view code image

06 <script type="text/javascript"
src="https://code.jquery.com/jquery-2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/traverse_dom.js">
</script>
08 <link rel="stylesheet" type="text/css"
href="css/traverse_dom.css">

4. Add the code shown in lines 11–25 of Listing 8.4. This code defines a set of
<div> elements containing a label, a text input, and a set of five
elements. The onkeyup="update()" attribute of the <input> elements
provides the dynamic interaction when the user types into the text box.

5. Add the styling code from Listing 8.6 to the traverse_dom.css file. The styling
code styles the elements with a certain height and width and

adds the margin and padding necessary.
6. Open the traverse_dom.js file in Eclipse and create a JavaScript function

named update() to be called by the onkeyup event handler.
7. Add the following line to set the background-color of all

elements to lightgrey:
Click here to view code image

2 $("span").css("background-color","lightgrey");

8. Add the following jQuery code to select all <div> elements, and then use
.each() to iterate on each of them and apply a function:

Click here to view code image

3 $("div").each(function(i){
...
8 })

9. Inside the function, add the following line that gets the first <input> child of
the <div> element:

Click here to view code image

4 var $input = $(this).children("input:first");

10. Add the following lines that get the value of the <input> element and create
a jQuery selector string to filter on only the first n number of
elements, where n is the value of <input>:

Click here to view code image

5 var $value = $input.val();
6 var filter = "span:lt(" + $value + ")";

11. Add the following line that uses the $input jQuery object to search for
siblings based on the filter defined in step 10. The css() method changes
the background color to blue. Notice the simplicity of the function. You can
add as many <div> sections as you want. As long as they follow the same
structure, <div><input>...</div>, the jQuery code will work
on all of them:

Click here to view code image

7 $input.siblings(filter).css("background-color","blue");

12. Save the files and open traverse_dom.html in a web browser. Notice that as
you type into the text boxes, the elements are changed to blue to
match the value of the input.

FIGURE 8.2 A simple JavaScript web page that allows users to input a rating and
dynamically changes based on the value typed in.

LISTING 8.4 traverse_dom.html HTML File That Loads jQuery and JavaScript
and Attaches Event Handler Elements to Provide User Interaction

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Traversing the DOM</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/traverse_dom.js"></script>
08 <link rel="stylesheet" type="text/css" href="css/traverse_dom.css">
09 </head>
10 <body>
11 <p>How satisfied are you 1-5</p>
12 <div>
13 <label>Quality</label>
14 <input type="text" onkeyup="update()"></input>
15
16 </div>
17 <div><label>Taste</label>
18 <input type="text" onkeyup="update()"></input>
19
20 </div>
21 <div>
22 <label>Server</label>
23 <input type="text" onkeyup="update()"></input>
24
25 </div>

26 </body>
27 </html>

LISTING 8.5 traverse_dom.js JavaScript Code That Handles the Key Up Event
and Uses jQuery to Manipulate the Color of the Elements Based on the
Input Value

Click here to view code image

01 function update(){
02 $("span").css("background-color","lightgrey");
03 $("div").each(function(i){
04 var $input = $(this).children("input:first");
05 var $value = $input.val();
06 var filter = "span:lt(" + $value + ")";
07 $input.siblings(filter).css("background-color","blue");
08 })
09 }

LISTING 8.6 traverse_dom.css CSS Code That Styles the , <input>,
and <label> Elements

Click here to view code image

01 span{
02 display:inline-block;
03 height:15px;
04 width:10px;
05 background-color:lightgrey;
06 margin:1px;
07 border-radius:50%;
08 }
09 input {
10 width:20px;
11 }
12 label {
13 display:inline-block;
14 width:60px;
15 }

Summary
In this lesson, you learned about using jQuery and JavaScript objects to find and
navigate through the DOM elements. This adds a critical piece in implementing dynamic
code because often you will want to act, not on the elements that you search for, but for

elements related to them.
You learned how to chain jQuery requests together to apply multiple operations to the
same set of DOM elements. This reduces the number of statements required in your
scripts.
You also learned how to iterate through the DOM element set associated with the
jQuery objects returned by the selector. This allows you to apply a different set of
operations to each individual element in a set without the need to look up each one
individually.

Q&A
Q. What is the difference between $(“div:eq(n)”) and $(“div”).eq(n)?
A. The biggest difference is that .eq() enables you to specify a negative number

and count backward from the end. For example, .eq(-1) is the last element in
the list. :eq() does not allow negative indexes.

Q. How many jQuery options should be chained together?
A. Good question. It depends on the circumstances. It is really a question of

performance versus readability/reusability. Keep in mind that there is a bit of
code behind each jQuery lookup, so the more you can use the same jQuery stack,
the better off you are. At some point, it can get very confusing about what is
really in the current stack; however, at that point, you should save yourself future
headaches and move on. A better approach is to break the operations into
separate groups that can be reused and then define variable names for those.

Workshop
The workshop consists of a set of questions and answers designed to solidify your
understanding of the material covered in this lesson. Try to answer the questions before
looking at the answers.

Quiz
1. What jQuery method would you use to filter out elements that have a <p> element

as a child?
2. What jQuery method would you use to get all sibling <p> elements before an

element with id="middleEarth"?
3. What is the difference between .map() and .each()?

Quiz Answers
1. .has("p");

2. $("#middleEarth").prevAll("p");
3. .map() is used to iterate through the set of elements and return a new object

containing the results of the specified function of each iteration. .each() will
just iterate through the elements applying the function specified.

Exercise
1. Extend the HTML code in dom_manipulation.html to include more <div>

sections like the others. Notice that the same functionality is automatically applied
to each.

Lesson 9. Applying JavaScript and jQuery Events for
Richly Interactive Web Pages

What You’ll Learn in This Lesson:
 Ways that events can be triggered by the user and browser
 What properties are accessible on event objects
 How to add handlers that are able to dynamically respond to events
 Ways to pass extra data to event handlers
 Methods to manually trigger events
 Ways to create your own custom events
 How to implement and fire off callback functions in your code

One of the major goals of AngularJS, jQuery, and JavaScript is to provide developers
with the capability to create incredibly sophisticated and richly active web pages. At
the heart of interactive web pages are events. An event is basically anytime anything
happens in the browser environment, from a page loading, to a mouse movement or
click, to keyboard input, to resizing the window.
Understanding events, the objects that represent them, and how to apply them in your
web pages will enable to you to create some spectacular user interaction. In this lesson,
you learn the concepts required to understand events and how to utilize them in building
rich, interactive web pages. You will be using the concepts in this lesson throughout the
rest of the book.
AngularJS utilizes the underlying JavaScript and jQuery event functionality discussed in
this lesson, but also delivers additional functionality, such as data watching, for more
robust event handling. Those concepts are covered in the AngularJS section of lessons.

Understanding Events
You have already been using events in several of the examples in this book. However,
to get the most out of them, you need to understand what is happening in the entire
process from the physical interaction to the AngularJS, jQuery, and JavaScript
interactions that will modify screen elements and data. The following sections describe
the event process, the components involved, and how to implement events in web pages.

Understanding the Event Process
The event handling concept is pretty easy to catch at a high level; you click a button on
the web page and things happen. This section delves a little bit deeper so you can
understand what is going on. The following list describes the important things that

happen when a user interacts with the web page or browser window.
1. A physical event happens—A physical event occurs; for example, a user clicks

or moves the mouse or presses a key.
2. Events are triggered in the browser—The user interaction results in events

being triggered by the web browser—often, multiple events at the same time. For
example, when a user types a key on the keyboard, three events are triggered: the
keypressed, keydown, and keyup events.

3. The browser creates an object for the event—The web browser creates a
separate object for each event that is triggered. The objects contain information
about the event that can be used by handlers.

4. User event handlers are called—User-defined event handlers are called. You
have the capability to create handlers in JavaScript that will interact with the
event objects and/or page elements to provide interactivity with HTML elements.
There are three phases that the event handlers can be acting in. The following
describes the three phases shown in Figure 9.1:

 Capturing—The capturing phase is on the way down to the target HTML
element from the document directly through each of the parent elements. By
default, behavior for event handlers for the capturing phase is disabled.
 Target—The target phase occurs when the event is in the HTML element where
it was initially triggered.
 Bubbling—The bubbling phase is on the way up through each of the parents of
the target HTML element, all the way back to the document. By default, the
bubbling phase is enabled for events.

FIGURE 9.1 Events are handled first in the capturing phase from the document down
to the target, then in the target phase, and finally, the bubbling phase from the target up

through the document.

5. Browser handlers are called—In addition to user event handlers, the browser
has default handlers that do different things based on the event that was triggered.
For example, when the user clicks a link, the browser has an event handler that
gets called and navigates to the href location specified in the link.

Looking at Event Objects
Event objects get created by the browser when it detects that an event has occurred. If
the event handler was defined by AngularJS or jQuery, the event object is converted to
a jQuery event object that has a few more attributes and methods. Therefore, you need to
be aware of which event object type you are working with.
The event object provides you with additional information about the event, such as what
type the event was—for instance, a click or keypress—which key(s) were
pressed, the position of the mouse, what HTML element the event occurred on, and so

on. Table 9.1 describes the most commonly used event attributes that you will be
working with.

TABLE 9.1 JavaScript and jQuery Event Object Attributes
Events also provide a few methods that allow you some control into the behavior of the
event—for example, stopping propagation and default web behavior. Table 9.2
describes the important methods on event objects.

TABLE 9.2 JavaScript and jQuery Event Object Attributes

Reviewing Event Types
An event type is a keyword that is used by JavaScript, jQuery, and AngularJS to identify
the physical event that took place. These keywords are used to attach handlers to specify
types of events. Also, as you will see later, the keywords are used in the names of
methods that can be used to attach event handlers or trigger events manually.
JavaScript provides several event types that correspond to the different events that
occur during dynamic page interaction. jQuery event handling supports all the
JavaScript and also adds a few of its own events. Table 9.3 lists the different event
types supported by JavaScript and jQuery.

TABLE 9.3 JavaScript and jQuery Event Types

Using the Page Load Events for Initialization
When the HTML document loads, the JavaScript code specified in the <script> tags
will be loaded and executed. Typically, the JavaScript and jQuery logic will be inside
functions that will be executed later. However, there will be some code that does
initialization work, such as attaching event handlers to page elements or even adding
additional elements to existing ones.
The problem is that the HTML element objects may not have been built by the browser
at the point when the JavaScript code is loaded. An exception will be thrown if you try
to reference the HTML object before it is created, so you need to wait until the page has
fully loaded.
That is where the load event is extremely handy. Placing your initialization code inside
of an event handler that gets triggered when the page is loaded allows you to be sure all
HTML objects have been created and the DOM is fully ready.

Using the JavaScript onload Event
To add initialization code that runs when pages are loaded in JavaScript, create a
function in JavaScript that performs the initialization. For example, consider the
following JavaScript code that shows a simple skeleton initialization function:
Click here to view code image

function onloadHandler(){
 (initialization code here...)
}

Now you have two options to cause the onloadHandler() to trigger when the page
is fully loaded. The first is to attach your initialization code to the onload attribute of
the <body> element in the HTML. For example:
Click here to view code image

<body onload="onloadHandler()>

The second method is to assign it directly to the window object in your JavaScript
code. For example:
Click here to view code image

window.onload = onloadHandler;

Adding Initialization Code in jQuery
In jQuery, initialization code can be triggered and executed at two different times: when
the DOM is ready and when the document and its resources have fully loaded. Which of
these options you use will depend on what needs to happen in your initialization code.
Using the .ready() jQuery method will trigger the initialization code to run when the
DOM is fully ready. All of the DOM objects will have been created and the page will
be displayed to users. All page resources, such as images, may not have fully
downloaded at this point, however. This is the option that enables you to add
interactions and functionality as soon as possible. The following shows an example of
using .ready() to attach a simple initialization function:
Click here to view code image

$(document).ready(function(){
 (initialization code here...)
}

Using the .load() jQuery method will trigger the initialization code to run after all
page resources have loaded and are rendered to the user. On occasion, you might use
this option if you need resources such as images available as part of the initialization
code. The following shows an example of using load() to attach a simple
initialization function:
Click here to view code image

$(window).load(function(){
 (initialization code here...)
}

Caution

The .ready() and .load() methods are not compatible with using the
onload="..." attribute in the <body> tag. If you are using jQuery, use
.ready() or .load(); if not, use the onload attribute.

Adding and Removing Event Handlers to DOM Elements
To provide interaction to events that occur in a web page, an event handler must be
added for each specific event type you want to interact with. An event handler is a
JavaScript function that adds, removes, or alters DOM elements, or whatever else is
necessary to complete the interaction. For example, the following code is an example of
an event handler that changes the text displayed in the <p> elements to "clicked":

function clickHandler(){
 $("p").html("clicked");
}

Several methods enable you to add event handlers to DOM elements. The following
section describes each of these methods along with their advantages and disadvantages.

Assigning Event Handers in HTML
The most basic methods of adding an event handler to a DOM element is directly in the
HTML code. The advantage of this method is that it is simple and easy to see what event
handler gets assigned to a particular DOM object.
Event handlers are added to DOM objects in HTML by setting the value of the handler
attribute in the tag statement. For each event that the element supports, there is an
attribute that starts with “on” followed by the name of the event. For example, the
click event attribute is onclick and the load event attribute is onload. To see a
list of the events, see Table 9.1.
The following example shows how easy it is to add a click event handler to DOM
element in the HTML code:
Click here to view code image

<div onclick="clickHandler()">Click Here</div>

This would call the following function when the <div> element is clicked:
function clickHandler(){
 $("div").html("clicked");
}

You can also include the DOM event object as a parameter to the event handler using
the event keyword. This allows you to access the event information in event handler;
for example:
Click here to view code image

<div onclick="clickHandler(event)">Click Here</div>

Would call the following function when the <div> element is clicked and change the
text to display the x coordinate of the mouse cursor by reading e.screenX:
Click here to view code image

function clickHandler(e){
 $("div").html("clicked at X postion: " + e.screenX);
}

You can also define that specific arguments are passed to an event, allowing you to
distinguish specific functionality. The parameters can be numbers or strings surrounded
by single quotes or even the id value of DOM objects, in which case the DOM element
will be passed. For example, the following code adds event handlers that pass the event
object, as well as the DOM object for the <h1> element with id="heading" along
with a number and string:
Click here to view code image

<h1 id="heading"></h1>
<div onclick="clickHandler(event,heading,1,"Yes")">Click Here</div>
<div onclick="clickHandler(event,heading,2,"No")">Or Here</div>

When clicked, the elements would call the following function and use the DOM objects’
innerHTML property to change the text to display the number, message, and x
coordinate of the mouse cursor:
Click here to view code image

function clickHandler(e,obj,num,msg){
 obj.innerHTML = "DIV " + num + " says " + msg +" at X postion: " +
e.screenX;
}

There are a couple of major disadvantages to this method, though. The first is that the
DOM element has to be defined in the HTML and never removed and read dynamically.
The second is that if you want the same event handler assigned to several DOM
elements, you have to add code to the tag to every one of them in the HTML.
Typically, you use the HTML method of assigning event handlers only for basic
examples with very little JavaScript.

Adding Event Handlers in JavaScript
You can also add and remove event handlers dynamically to DOM objects inside of
JavaScript code. This method provides the advantage that you can dynamically add
event handlers at any point in time, not just when the page is loaded. Thus, it enables
you to add event listeners to elements created after the page load.
To add an event handler in JavaScript, call addEventListener() on the DOM

object. The addEventListener() function takes three parameters: the first is the
event type (event types are defined in Table 9.1), the second is the function to call,
and the third is a Boolean that specifies true if the handler should be called during the
capturing phase and the bubbling phase, or false if the handler should be called only
during the bubbling phase.
The trick with using addEventListener() is how to pass custom data into the
handler call. One method is to wrap the actual function handler inside of a simple
wrapper function that passes the arguments to the event handler. The following code
illustrates this:
Click here to view code image

function clickHandler(e,objId,num,msg){
 var obj = document.getElementById(objId);
 obj.innerHTML = "DIV " + num + " says " + msg +" at X postion: " +
e.screenX;
}
...
document.getElementById("div1").addEventListener('click',
 function(e){
 clickHandler (e, "heading", 1, "yes");
 },false);

So here is what is going on in the addEventListener() calls in the preceding
code. The event type 'click' is specified, and then a new anonymous function
with no name is defined that accepts the event object as the only parameter represented
by e. Inside the wrapper function, the actual event handler is called with the custom
parameters, including the e variable to pass the event object along. In the example, false
is used to indicate that the handler should be called only during the bubbling phase.
You can also remove event handlers from the event using the
removeEventListener() function on the DOM object. You will need to specify
the event type and the name of the event handler to remove. For example, the following
code adds an event handler and then removes it:
Click here to view code image

var obj = document.getElementById("div1");
obj.addEventListener('click', clickHandler);
obj.removeEventListener('click', clickHandler);

Tip
You can also set the access event handler on the DOM object itself using
the handler attribute. The handler attribute will be “on” plus the event type.
For example, for the click event, the attribute is obj.onclick. You can
call the event handler using obj.onclick() or assign it directly using
obj.onclick= function handler(){ ...};.

Try it Yourself: Adding Event Handlers to DOM Objects via JavaScript
In this example, you attach event handlers to DOM objects dynamically using the
JavaScript method. Use the following steps to create the files shown in Listings
9.1, 9.2, and 9.3:
1. In Eclipse, create the lesson09, lesson09/js, and lesson09/css folders.
2. Create the lesson09/broken_event.html, lesson09/js/broken_event.js, and

lesson09/css/broken_event.css files.
3. Add the code shown in Listing 9.1 to the HTML file. You should recognize

almost everything in this file. Notice the onload event handler for the
<body> tag is set to onloadHandler().

4. Add the css from Listing 9.3 to the CSS file. You should also recognize the
CSS statements by now.

5. Open the broken_event.js file and the following function that will be used to
handle click events. Notice that it takes several arguments. The first argument
is the DOM event object, which is used to get the x position via e.screenX.
It also accepts an object id that is used to get the object that should be written
to. The rest of the arguments are used to write out the message the
innerHTML of the object specified by objId:

Click here to view code image

01 function clickHandler(e,objId,num,msg){
02 var obj = document.getElementById(objId);
03 obj.innerHTML = "DIV " + num + " says " + msg +" at X postion: "
+ e.screenX;
04 }

6. Create the following wrapper functions that will be used to pass arguments to
the actual event handler. The wrapper functions only accept the event object as
argument e. Then they call the clickHandler() function with the
appropriate values. In this example, the event handler is then removed from the
target object by calling removeEventListener(). It is not typical to
remove event handlers; this is just to provide an example:

Click here to view code image

05 function yesWrapper(e){
06 clickHandler(e, "heading", 1, "yes");
07 e.target.removeEventListener('click', yesWrapper);
08 }
09 function noWrapper(e){
10 clickHandler(e, "heading", 1, "no");
11 e.target.removeEventListener('click', noWrapper);

12 }

7. Add the following onloadHander() function that calls
addEventListener() to add a click event handler to each of the
<div> elements:

Click here to view code image

13 function onloadHandler(){
14 document.getElementById("div1").addEventListener('click',
yesWrapper, false);
15 document.getElementById("div2").addEventListener('click',
noWrapper, false);
16 }

8. Save all three files and then open the HTML document in a web browser and
play around with the Say Yes and Say No buttons shown in Figure 9.2. Notice
that the buttons work only once because the event handler was removed. If we
had not removed the event handler, the buttons would continue to handle the
event and change the <h1> element text.

FIGURE 9.2 A simple JavaScript web page that dynamically adds event handlers to
<div> elements and responds to mouse clicks.

LISTING 9.1 broken_event.html HTML File That Loads jQuery and JavaScript,
Attaches Event Handlers Elements to Provide User Interaction, and Then Defines
the <div> and <h1> Elements Used in the Example

Click here to view code image

01 <!DOCTYPE html>
02 <html>

03 <head>
04 <title>Broken Event</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/broken_event.js"></script>
08 <link rel="stylesheet" type="text/css" href="css/broken_event.css">
09 </head>
10 <body onload="onloadHandler()">
11 <div id="div1")">Say Yes</div>
12 <div id="div2")">Say No</div>
13 <h1 id="heading"></h1>
14 </body>
15 </html>

LISTING 9.2 broken_event.js JavaScript Code That Defines an Event Handler
and Dynamically Attaches It to the <div> Elements

Click here to view code image

01 function clickHandler(e,objId,num,msg){
02 var obj = document.getElementById(objId);
03 obj.innerHTML = "DIV " + num + " says " + msg +" at X postion: " +
e.screenX;
04 }
05 function yesWrapper(e){
06 clickHandler(e, "heading", 1, "yes");
07 e.target.removeEventListener('click', yesWrapper);
08 }
09 function noWrapper(e){
10 clickHandler(e, "heading", 2, "no");
11 e.target.removeEventListener('click', noWrapper);
12 }
13 function onloadHandler(){
14 document.getElementById("div1").addEventListener('click', yesWrapper,
false);
15 document.getElementById("div2").addEventListener('click', noWrapper,
false);
16 }

LISTING 9.3 broken_event.css CSS Code That Styles the <div> Elements

Click here to view code image

1 div{
2 border-radius:5px;
3 margin:3px;
4 padding:5px;
5 background-color:lightgrey;

6 font-weight:bold;
7 display:inline-block;
8 cursor:pointer;
9 }

Applying Event Handlers in jQuery
The best method of attaching event handlers to DOM elements is using jQuery. Using
jQuery objects makes it simple to select different sets of objects and apply the same
event handler to all of them at the same time.
In the past, jQuery has had a couple of ways to add and remove event handlers,
including bind()/unbind() and delegate()/undelegate(). The bind()
method mimicked the behavior of addEventListener(), and delegate() made
it possible to add an event to a jQuery object and then, as additional child elements
were added to the event handler, would automatically be delegated to those as well.
As of jQuery 1.7, these methods have all been replaced by a simple pair, on() and
off(). Event handlers are attached to jQuery objects using the on() method. The
on() method can be called in one of the two following formats:
Click here to view code image

on(events [, selector] [, data], handler(eventObject))
on(events-map [, selector][, data])

The following list describes the purpose of each of the arguments that can be added to
the on() method when adding event handlers to jQuery objects:

 events—One or more space-separated event types and optional namespaces
denoted by dot syntax; for example, "click", "mouseenter
mouseleave", or "keydown.myPlugin". The list of event types can be
found in Table 9.1.
 events-map—A mapping object in which the string keys specify one or more
space-separated event types, and then the values specify handler functions that
will be called when the event is triggered; for example,
{'click':myhandler} or {'click':function myHandler(e)
{return true;}}.
 selector—Optional. Selector string that specifies which descendants should
also call the event handler when the event is triggered. This replaces the
functionality of the delegate() method. If you add the event handler to a set of
parent objects that will always exist in the page, any of their descendants that
match the selector will also call the handler when the event is triggered, even if
they get added after the event is attached.

 data—Optional. This can be a number, a string, or an object that will get passed
to the handler as the data part of the event as event.data when an event is
triggered.
 handler(eventObject)—If you are not using an events-map, you will
need to specify the handler function that will be executed when the event is
triggered.

To remove an event handler from elements using jQuery, call the off() method on the
jQuery object. The syntax for the off method is one of the following:
Click here to view code image

off(events [, selector] [, handler(eventObject]))
off(events-map [, selector])

If no handler is specified, the off() function removes all event handlers for the events
specified. The following example shows a basic example of adding an event handler to
all <div> elements using on() and then removing it using off():
Click here to view code image

$("div").on("click",clickHandler);
$("div").off("click",clickHandler);

Note
The on() and off() methods work for all jQuery event types, including
your own custom events. jQuery also provides some simple helper
functions that are discussed later in the lesson to make it easier to attach
handlers for certain events.

Tip
Often you will want an event handler to run only once, the first time the
event occurs. jQuery provides the very helpful one() method that will
add an event, then automatically remove it after it triggers for the first time.
The one() method uses the same syntax as the on() method.

Try it Yourself: Adding Event Handlers Using jQuery
In this example, you attach event handlers to DOM objects dynamically using the
jQuery method. Use the following steps to create the files shown in Listings 9.4,
9.5, and 9.6:
1. In Eclipse, create the lesson09/working_event.html,

lesson09/js/working_event.js, and lesson09/css/working_event.css files.
2. Add the code shown in Listing 9.4 to the HTML file. You should recognize

almost everything in this file.
3. Add the css from Listing 9.6 to the CSS file.
4. Open the working_event.js file and the following function that will be used to

handle click events. The event takes only the event object as argument e. It
relies on the data portion of the event object to provide the objId of the
element that text should be added to. It also uses the e.target.id,
e.screenX, and e.data.answer values as part of the message written to
the <h1> element:

Click here to view code image

01 function clickHandler(e){
02 $("#"+e.data.objId).html(e.target.id + " says " + e.data.answer +
03 " at X postion: " + e.screenX);
04 }

5. Create the following ready() function that will automatically be called
when the document has been loaded and is ready:

Click here to view code image

05 $(document).ready(function(){
...
12 });

6. Add the following jQuery code that finds the #div1 element and then uses
on() to add an event handler. In this example, an events-map object is
passed specifying clickHandler() for the click event type. In addition, an
object is passed in that it will add the heading and answer attributes to the
event object data. This is where the values came from that we used in step 4:

Click here to view code image

06 $("#div1").on({"click":clickHandler},
07 {"objId":"heading", "answer":"yes"});

7. Add the following jQuery code that gets the document object and then adds
the event handler to the #div2 element. The difference between this method
and the one in step 6 is that we use a selector. By using a selector, you can
delete and re-add the #div2 element, and it will still call the event handler.
Also notice that, rather than an event-map, you use the events method and
add the hander as the final argument:

Click here to view code image

08 $(document).on("click",

09 "#div2",
10 {"objId":"heading", "answer":"no"},
11 clickHandler);

8. Save all three files and then open the HTML document in a web browser and
play around with the Say Yes and Say No buttons shown in Figure 9.3.

FIGURE 9.3 A simple JavaScript web page that uses jQuery to dynamically add
event handlers to <div> elements and responds to mouse clicks.

LISTING 9.4 working_event.html HTML File That Loads jQuery and JavaScript,
Attaches Event Handlers Elements to Provide User Interaction, and Defines the
<div> and <h1> Elements Used in the Example

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Working Events</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/working_event.js"></script>
08 <link rel="stylesheet" type="text/css"
href="css/working_event.css">
09 </head>
10 <body>
11 <div id="div1")">Say Yes</div>
12 <div id="div2")">Say No</div>
13 <h1 id="heading"></h1>
14 </body>
15 </html>

LISTING 9.5 working_event.js jQuery and JavaScript Code That Defines an
Event Handler and Dynamically Attaches It to the <div> Elements

Click here to view code image

01 function clickHandler(e){
02 $("#"+e.data.objId).html(e.target.id + " says " + e.data.answer +
03 " at X postion: " + e.screenX);
04 }
05 $(document).ready(function(){
06 $("#div1").on({"click":clickHandler},
07 {"objId":"heading", "answer":"yes"});
08 $(document).on("click",
09 "#div2",
10 {"objId":"heading", "answer":"no"},
11 clickHandler);
12 });

LISTING 9.6 working_event.css CSS Code That Styles the <div> Elements

Click here to view code image

1 div{
2 border-radius:5px;
3 margin:3px;
4 padding:5px;
5 background-color:lightgrey;
6 font-weight:bold;
7 display:inline-block;
8 cursor:pointer;
9 }

Using jQuery Event Helper Function to Assign Event Handlers
In addition to using the addEventListener() method to add event handlers,
jQuery also provides helper functions that enable you to set the event handler. These
helper functions are named after the event, so it helps your code look a bit cleaner.
The helper functions use the following syntax similar to addEventListener() but
without the need to specify the event type:
Click here to view code image

.<event type>([eventData], handler(eventObject))

The eventData argument is optional and, as with addEventListener(), will

set the data value for the event object. The handler argument is required and specifies
the function to call. Replace <event type> with the event name listed in Table 9.3.
For example, the following two jQuery statements are equivalent ways to assign a
handler to the click event:
Click here to view code image

obj.click(dataObj, function myHandler(e){...});
obj.addEventListener("click", dataObj, function myHandler(e){...});

In addition to the helper functions based on the event type name, jQuery also provides
one additional helper function that is useful for mouse hovering events. The hover()
helper function allows you to set the handlers for the mouseenter and mouseleave
events at the same time. For example:
Click here to view code image

obj.hover(function enterHandler(e){...}, function leaveHandler(e){...});

Is equivalent to
Click here to view code image

obj.addEventListener("mouseenter", function enterHandler(e){...});
obj.addEventListener("mouseleave", function leaveHandler (e){...});

You can also set the same handler for both the mouseenter and mouseleave by
specifying only one handler. For example:
Click here to view code image

obj.hover(function hoverHandler(e){...});

Triggering Events Manually
JavaScript and jQuery allow you to trigger events manually. This provides advantages
such as simulating user interactions, tying page element interactions together, or
interactions with your own custom events.
The following sections describe how to trigger events in both JavaScript and jQuery.

Triggering Events in JavaScript
The simplest way to trigger an event in JavaScript is to use the event method attached to
the DOM object if there is one. Simple events such as click, select, blur, and
focus have corresponding methods attached to DOM objects that support them. For
example, you can trigger the click event on most DOM objects using the following
syntax:

obj.click();

The more advanced method of triggering events in JavaScript is to create an event
object and then use the document.dispatchEvent() call to trigger the event
mechanism. This method provides much more control over event information and is the
only way to trigger many of the events. The dispatchEvent() method involves a
three-step process.
The first step is to create an event object using the document.createEvent()
method. The createEvent() method requires that you specify the event type for
the object that is being created. Table 9.4 lists some of the common event types
accepted by createEvent(). For example, to create a mouse click event object,
use the following statement:
Click here to view code image

var clickEvent = document.createEvent("MouseEvents");

TABLE 9.4 Common Event Types Supported by createEvent()
The next step is to initialize the event object with values by calling the events’
initialization function. Table 9.4 lists the corresponding initialization function for the
event types along with the parameters supported.
For example, to initialize the click event object, use the following statement. The type is
specified as "click", and bubbling and cancelable attributes are both true.
Here, window is used as the view element. The coordinates don’t really matter, so

they remain at 0, and the additional keyboard keys don’t matter, so those are set to false.
The button argument is set to 0 for the left-click, and no related target is specified:
Click here to view code image

clickEvent.initMouseEvent("click", true, true, window, 0, 0, 0, 0, 0, 0,
 false, false, false, false, 0, null);

For the most part, the parameters to the initialization functions should be self-
explanatory. However, you will likely need to check on some of the specific arguments.
You can find the definitions for the event objects and methods at
www.w3.org/TR/DOM-Level-2-Events/events.html.
The final step is to call dispatchEvent() on the HTML object that you want to
trigger the event for. For example, the following code looks up an object and then
triggers the click event:
Click here to view code image

var obj = document.getElementById("someId");
obj.dispatchEvent(clickEvent);

Caution
Prior to IE9, IE used a different set of methods to create and trigger an
event. Instead of createEvent(), you need to use
createEventObject(), and instead of dispatchEvent(), you
need to use fireEvent(). If you need to trigger events and support
earlier IE browsers, you should review the documentation at MSDN on
using fireEvent().

Try it Yourself: Triggering Events Manually in JavaScript
In this example, you step through the process of using an event handler from a
 element to trigger a click event on a different element. The result will
be that you can click the span element to select or deselect a check box. Use the
following steps to create the files shown in Listings 9.7, 9.8, and 9.9:
1. In Eclipse, create the lesson09/manual_event.html,

lesson09/js/manual_event.js, and lesson09/css/manual_event.css files.
2. Add the code shown in Listing 9.7 to the HTML file. This is just a basic

HTML file that loads additional JavaScript and CSS files. There are two
check boxes and two elements added to the web page.

3. Add the css from Listing 9.9 to the CSS file. This code stylizes the
element to look like a button.

http://www.w3.org/TR/DOM-Level-2-Events/events.html

4. Open the manual_event.js file and the following onloadHandler()
initialization function that attaches an event listener to both of the
elements:

Click here to view code image

01 function onloadHandler(){
02 var employee = document.getElementById("Employee");
03 employee.addEventListener('click', simpleClick, false);
04 var registered = document.getElementById("Registered");
05 registered.addEventListener('click', eventClick, false);
06 }

5. Create the simpleClick() handler function added to the first button. The
code uses the target.id from the event to find the corresponding check box
element. Then the click() function is called on the check box object, which
triggers the click event just as if the mouse had clicked it:

Click here to view code image

07 function simpleClick(e){
08 var cb = document.getElementById("check"+e.target.id);
09 cb.click();
10 }

6. Add the following eventClick() handler function to the second button.
This code first creates a "MouseEvents" object and then initializes it to a
"click" type with the appropriate parameters. This code also uses the
target.id from the event to find the corresponding check box element, then
calls dispatchEvent() on the check box element’s object, triggering a
mouse click event:

Click here to view code image

11 function eventClick(e){
12 var event = document.createEvent("MouseEvents");
13 event.initMouseEvent("click", true, true, window,
14 0, 0, 0, 0, 0, false, false,
15 false, false, 0, null);
16 var cb = document.getElementById("check"+e.target.id);
17 cb.dispatchEvent(event);
18 }

7. Save all three files and then open the HTML document in a web browser, as
shown in Figure 9.4. Play around with the check boxes and buttons. Notice that
the buttons provide the same interaction with the check box as directly clicking
the check box.

FIGURE 9.4 A simple web page that triggers the click event for check boxes from
 elements.

LISTING 9.7 manual_event.html HTML File That Loads CSS and JavaScript and
Defines the Check Boxes and Elements

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Manual Event</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="js/manual_event.js"></script>
07 <link rel="stylesheet" type="text/css" href="css/manual_event.css">
08 </head>
09 <body onload="onloadHandler()">
10 <input id="checkAvailable" type="checkbox" />
<label>Available</label>

11 <input id="checkAllWeek" type="checkbox" /><label>All Week</label>

12 <input id="checkWeekDays" type="checkbox" /><label>Week
Days</label>

13 I'm Available
14 All Week
15 Week Days
16 </body>
17 </html>

LISTING 9.8 manual_event.js JavaScript Code Manually Triggers the Click Event
for the Check Box Elements from the Elements

Click here to view code image

01 function onloadHandler(){
02 var available = document.getElementById("Available");
03 Available.addEventListener('click', simbleClick, false);
04 var allWeek = document.getElementById("AllWeek");
05 AllWeek.addEventListener('click', eventClick, false);
06 var weekDays = document.getElementById("WeekDays");
07 WeekDays.addEventListener('click', eventClick, false);
08 }
09 function simbleClick(e){
10 var cb = document.getElementById("check"+e.target.id);
11 cb.click();
12 }
13 function eventClick(e){
14 var event = document.createEvent("MouseEvents");
15 event.initMouseEvent("click", true, true, window,
16 0, 0, 0, 0, 0, false, false,
17 false, false, 0, null);
18 var cb = document.getElementById("check"+e.target.id);
19 cb.dispatchEvent(event);
20 }

LISTING 9.9 manual_event.css CSS Code That Styles the Elements

01 span{
02 border-radius:5px;
03 margin:3px;
04 padding:5px;
05 background-color:#C0C0C0;
06 border:3px ridge;
07 display:inline-block;
08 cursor:pointer;
09 }

Using jQuery to Trigger Events Manually
Now that you’ve had a chance to trigger events from JavaScript, you are ready to
discover how much easier jQuery will make your life if you are able to use it. jQuery
also supports two methods to trigger events manually.
As with JavaScript, jQuery objects also have methods that correspond to many of the
event types that you can call directly. For example, most elements have click() and
dblclick() methods. Form elements add additional methods such as blur(),
focus(), keypress(), keydown(), and keyup() that can be called to trigger
specific events. For example, the following statement triggers the click event for all

 elements:
$("span").click();

jQuery also provides a way to trigger events while specifying the values of the event
object using the trigger() method. There are two different syntaxes for the
trigger() method, as listed next:
Click here to view code image

trigger(eventType [, extraParameters])
trigger(eventObject)

Following is an example of using the first method to trigger the click event for all
elements with class="checkbox":
Click here to view code image

$(".checkbox").trigger("click");

The following is an example of using the second method on all input items with
class="bigText". This method passes in a simple event object for the keypress
event, and then sets the charCode attribute of the event object to 13, or the Return key:
Click here to view code image

$("input.bigText").trigger({'type':'keypress', 'charCode':13});

Notice that this is much simpler than the JavaScript method because trigger()
accepts a simple object with the appropriate attribute names to set whatever values in
the event object you might want to pass in. Occasionally, you might end up having to use
the JavaScript method, but you should use jQuery as often as possible.

Try it Yourself: Triggering Events Manually in jQuery
In this example, you step through the process of using an event handler from a
 element to trigger a keypress event on a text <input> element. The
result is that the click on the will pass through the same event handler as
a keystroke in the <input> element. Use the following steps to create the files
shown in Listings 9.10, 9.11, and 9.12:
1. In Eclipse, create the lesson09/card_suits.html, lesson09/js/ card_suits.js, and

lesson09/css/card_suits.css files.
2. Add the code shown in Listing 9.10 to the HTML file. This is a basic HTML

file that loads additional jQuery, JavaScript, and CSS files. There is a <p>
element, an <input> element, and a series of elements that act as
buttons.

3. Add the CSS from Listing 9.12 to the CSS file. This code stylizes the

element to look like a button and the <p> element to provide nice formatting.
4. Open the card_suits.js file and add the following ready() initialization

function that attaches a keypress event handler to the <input> element
and a click handler to all the elements:

Click here to view code image

09 $(document).ready(function(){
10 $("input").keypress(function (e){inputHandler(e)});
11 $("span").click(function (e){spanHandler(e)});
12 });

5. Create the inputHandler() handler function that gets the charCode
from the event object and appends the string form to the <p> element. At this
point as you type in the text <input>, it will be displayed in the <p> element
as well:

Click here to view code image

01 function inputHandler(e){
02 var chr = String.fromCharCode(e.charCode);
03 $("p").append(chr);
04 }

6. Add the following spanHandler () handler function that gets the
innerHTML of the element and converts the first character to a
code. Line 7 then triggers a keypress event on the <input> element
passing in the character code for the button as the charCode value. This
allows the user to click a button and apply the card symbol using the event
handler for the text <inputs>:

Click here to view code image

05 function spanHandler(e){
06 var chrCode = e.target.innerHTML.charCodeAt(0);
07 $("input").trigger({'type':'keypress', 'charCode':chrCode});
08 }

7. Save all three files and then open the HTML document in a web browser, as
shown in Figure 9.5. Type some text into the input and also click the
elements and notice that the result is the same.

FIGURE 9.5 A simple web page that triggers the keypress event for the
<input> element from the elements’ event handler.

LISTING 9.10 card_suits.html HTML File That Loads CSS and JavaScript and
Defines the <p>, text <input>, and Elements

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Event Based Manipulation</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/card_suits.js"></script>
08 <link rel="stylesheet" type="text/css" href="css/card_suits.css">
09 </head>
10 <body>
11 <p>Card and Suit: </p>
12 <input type="text" />
13 ♠
14 ♣
15 ♥
16 ♦
17 </body>
18 </html>

LISTING 9.11 card_suits.js JavaScript Code That Triggers the keypress Event
for the <input> Element from the Elements’ Event Handler

Click here to view code image

01 function inputHandler(e){
02 var chr = String.fromCharCode(e.charCode);
03 $("p").append(chr);
04 }
05 function spanHandler(e){
06 var chrCode = e.target.innerHTML.charCodeAt(0);
07 $("input").trigger({'type':'keypress', 'charCode':chrCode});
08 }
09 $(document).ready(function(){
10 $("input").keypress(function (e){inputHandler(e)});
11 $("span").click(function (e){spanHandler(e)});
12 });

LISTING 9.12 card_suits.css CSS Code That Styles the and <p>
Elements

Click here to view code image

01 span{
02 border-radius:5px;
03 margin:3px;padding:5px;
04 background-color:#C0C0C0;
05 border:3px ridge;
06 display:inline-block;
07 cursor:pointer;
08 }
09 p{
10 border:4px outset steelblue;
11 padding:3px;
12 color:white;background-color:skyblue;
13 font-size:30px;font-weight:bold;
14 }

Creating Custom Events
An extremely powerful aspect of the JavaScript and jQuery event handling mechanism
is the capability to add custom events. This solves the problem that the built-in events
are all tied to DOM elements and specific behaviors supported by the browser. What if
you want an event for every time the number of items in an array is greater than 100?
Custom events enable you to extend the events that can be added to elements. Custom
events do not directly correspond to the physical interaction with the user, but rather to
events that happen in your code based on the interactions that the user is performing.
The advantage of creating custom events is that you can use the already in-place event-

handling system that allows you to add/remove events, bubble them up, and trigger them.
The following sections describe the different methods you can use in JavaScript and
jQuery to add your own custom events.

Adding Custom Events Using JavaScript
Adding a custom event in JavaScript is similar to triggering an event in that you create a
custom event object and then initialize it. The following code shows an example of
creating a basic custom event:
Click here to view code image

var myEvent = document.createEvent("CustomEvent");
myEvent .initCustomEvent(
 "worldEnds",
 true,
 false,
 {
 'fire': false,
 'ice': false,
 'time': new Date()
 }
);

The first parameter defines the type name, the second sets the bubbles property to
true, the third sets cancelable to false, and the fourth defines the details of the
event. The values of fire, ice, and time will be available via the details
attribute of the event object.
After the event has been created, you can trigger the event by calling the
dispatchEvent() method on a DOM object. For example:
Click here to view code image

var obj = document.getElementById("#notify");
obj.dispatchEvent(myEvent);

Event handlers for the event can be added to DOM elements in the normal way using the
addEventListener() method. For example:
Click here to view code image

document.addEventListener("worldEnds ", endOfWorldHandler, false);

Adding Custom Events Using jQuery
Adding custom events in jQuery is a simple process. It is a matter of calling
$.event.trigger() and passing in the new event object. You must specify a type
attribute for the event object, but after that, you can define whatever default values for
the event object that you would like. For example, the following code defines a new

event:
Click here to view code image

var custEvent = $.Event("worldEnds", {
 fire: false,
 ice: false,
 time: new Date()
});

The next line of code triggers the event in the event system:
$.event.trigger(custEvent);

After the event has been added to the system, you can attach event handlers for it. For
example:
Click here to view code image

$(document).on("worldEnds", endOfWorldHandler);

Implementing Callbacks
Although they are not really events, callbacks have some similarities. A callback is a
function that can be registered in jQuery and then fired off at specific times from your
code. When a callback list is fired, each of the functions are executed in order.
An example where callbacks are useful is if you want users to have the option to specify
that they want a notification when a background process, such as downloading data via
AJAX, completes. If a user selects the option to enable the notification, a callback can
be added. Then, anytime a download completes, the callback function will execute and
display a notification to the user.

Understanding the Callback Mechanism
The callback mechanism is used by calling $.Callbacks(flags) to create a
callbacks object. The purpose of the flags attribute is to provide the capability to
specify the behavior that should occur when different callback functions are executed.
The possible values for flags are as follows:

 once—Functions added are fired only once.
 memory—As new functions are added, they are fired right away with the same
values as the last time callbacks were fired.
 unique—Allows the callback functions to be added only once.
 stopOnFalse—Stops firing other callback functions if one of the functions fired
returns a false.

The callbacks object supports adding functions using the add(functionName)

method and removing functions using the remove(functionName) method. To fire
the callback list, call the fire() method. You can also disable the list using the
disable() method.
The simplest way to understand implementing callbacks is to look at some examples.
The following code defines a list of callbacks that must have unique function names and
that also stop if one of the functions returns false:
Click here to view code image

function functionA(){return true;}
function functionB(){return true;}
function functionC(){return true;}
var callbacks = $Callbacks("unique stopOnFalse");
callbacks.add(functionA);
callbacks.add(functionB);
callbacks.fire()
callbacks.remove(functionB);
callbacks.add(FunctionC);
callbacks.fire();
callbacks.disable();
callbacks.fire();

The first time that callbacks is fired, functionA and functionB are executed.
The second time, functionA and functionC are executed because functionB
was removed. The third time, no functions are executed because the list has been
disabled.

Using Deferred Objects
jQuery provides an intriguing option to implement callbacks in a different way, the
deferred object. A deferred object is an object that contains a set of functions that can
be run at a later time. The actual arguments passed to the function are not added until the
deferred object is resolved and the functions are executed.
This allows you to apply a set of functions to a single object that can be applied at any
time.
The following code illustrates creating a simple deferred object with multiple functions
and then executing those functions:
Click here to view code image

var resultString = "";
function function1(n1, n2, p3) { resultString += "Problem: "; }
function function2(n1, n2) { resultString += n1 + " + "; }
function function3(n1, n2) { resultString += n2 + " = "; }
var deferredObj = $.Deferred();
deferredObj.done([function1, function2], function3).done(function(n1, n2)
{
 resultString += n1 + n2;
 $("div").append(resultString);

 });
deferredObj.resolve(5,6);

This is what is happening in the preceding code: The three defined functions all add to
the resultString variable. A new deferred object named deferredObj is
created. The .done(functions [, functions]) method is called to add the
functions to the deferred object. All three ways were used to add functions. The first
argument is a list of functions to execute, the second is a single function, and the third is
an anonymous function.
The functions are not executed until .resolve(args) is called. Notice that the
arguments of .resolve() match those required by the functions. Each function is
executed in order. The result is that the following string is appended to the <div>
element:

Problem: 5 + 6 = 11

Summary
This lesson focused on the different ways to implement event handling in web pages.
Event handling is at the heart of interactive web pages. JavaScript and jQuery differ in
how you create and add events to DOM elements. You learned the methods used to add
event handlers in both.
You also learned how to access the event object and pass your own custom objects into
event handlers, and you learned how to create and trigger your own custom events.

Q&A
Q. When is it better to use JavaScript to create and trigger custom functions

rather than jQuery?
A. Never. Okay, not necessarily. jQuery has a lot more cross-browser support right

now for events. Also, it is much easier to create the objects necessary. For those
reasons, you should almost always use jQuery. If jQuery isn’t an option for your
environment because of backward compatibility or the like, then use JavaScript.

Q. Can’t you do everything with custom events that you can do with callbacks?
A. Not very easily. Remember that you can create as many callback lists as you

want with different flags and only fire off the functions tied to a specific list.
Trying to manage all of that in event handlers would get out of hand pretty quickly

Workshop
The workshop consists of a set of questions and answers designed to solidify your
understanding of the material covered in this lesson. Try to answer the questions before
looking at the answers.

Quiz
1. What HTML attribute of the <body> tag can be used to call JavaScript code

when the page has finished loading?
2. True or false: An event will trigger the hander function only for the target element

in which it occurs.
3. When would you use the .ready() method rather than the .load() method?
4. True or false: Mouse events can be triggered only by mouse movement or mouse

clicks.

Quiz Answers
1. onload.
2. False. Most events will bubble up through ancestor objects all the way through

the document object.
3. .ready() is used when you need only the DOM to be loaded. .load() is

used if you also require other resources, such as images, to be finished loading as
well.

4. False. Mouse events can be manually triggered in both jQuery and JavaScript.

Exercises
1. Extend the example in Listings 9.10, 9.11, and 9.12 to add additional buttons for

other nonstandard characters. You will need to get the Unicode character codes
from the Web.

2. Extend the example in Listings 9.7, 9.8, and 9.9 to include another button that will
trigger the events for all check boxes.

Lesson 10. Dynamically Accessing and Manipulating Web
Pages with JavaScript and jQuery

What You’ll Learn in This Lesson:
 Tracking the mouse position and other information
 Manipulating the size and other attributes of page elements
 How to show and hide elements dynamically
 Layering page elements
 Dynamically creating DOM elements and adding them to web pages
 Adding and removing classes in jQuery
 Modifying the layout of the web page

This lesson is a big one. So far you have been given most of the tools that you will need
to implement highly dynamic and interactive web pages. In this lesson, you take the next
step and learn how to use those tools and some new ones to access information about
web page elements. Then you use that information to manipulate and arrange them.
The ability to access and modify the properties and values of the different page elements
will allow you to change basic web pages into true web applications.
You will learn in this lesson that the JavaScript and jQuery methods for web page
manipulation are wide open. You can manipulate any page element from anywhere in
your JavaScript code. This has the advantage of allowing you to easily transform pages
with only a little bit of JavaScript/jQuery code. The disadvantage is that you need to be
disciplined to keep your code easily maintainable so that you know where everything is
being manipulated from. AngularJS has a much different approach that you will learn in
the AngularJS section of lessons. For now, enjoy the ride of fast and easy dynamic web
page manipulation.

Accessing Browser and Page Element Values
One of the core fundamentals of both jQuery and JavaScript is access to the DOM
objects that represent the elements on the web page. This section guides you through
accessing property values, position, size, and other attributes of the elements, as well as
showing you how to modify many of them.

Getting Mouse Position
Mouse movement is one of the most common web interactions that you will be dealing
with. Often, you will need to make adjustments to elements on the page based on the
position of the mouse.

The mouse position is accessible from the event object when a mouse event is triggered.
Keep in mind that three mouse coordinates are specified by the event. Table 10.1
describes each of these.

TABLE 10.1 Event Object Attributes That Specify the Mouse Position
The following code shows an example of getting the mouse coordinates from an event
object named e and applying them to a string variable:
Click here to view code image

var screenPosition = e.screenX + ", " + e.screenY;
var pagePosition = e.pageX + ", " + e.pageY;
var browserPosition = e.clientX + ", " + e.clientY;

Getting and Setting Values
Several HTML elements, especially input elements, have values that are associated
with them. It is a simple matter in both jQuery and JavaScript to access the values of
elements.
In JavaScript, the value can be accessed directly by accessing the value attribute of
the object. For example:
Click here to view code image

domObject.value = 5;
var value = domObject.value;

jQuery, on the other hand, provides the .val() method to retrieve and set the value.
For example, the following code sets and then gets the value of a jQuery object
representing the HTML <input> element with id="textInput":
Click here to view code image

$("#textInput").val(5);
var value = $("#textInput ").val();

Getting and Setting Attributes and Properties in jQuery
DOM objects provide direct access to the DOM object attributes and the DOM element
properties of the HTML elements they represent. This is not reasonable in jQuery,
because jQuery objects often represent multiple elements with varying attributes. For
that reason, jQuery provides the .attr() and .prop() methods to get and set the
attributes and properties of these elements.
The .attr(attribute, [value]) method allows you to specify an attribute
name only to get the current value, as well as an optional value to set the current value.
For example, the following code gets the src value for a specific image element with
id="bannerImg":
Click here to view code image

var state = $("#bannerImg").attr("src");

Then the following statement sets the src attribute value for all elements:
Click here to view code image

$("img").attr("src","images/default.jpg");

The .prop(property, [value]) method allows you to specify the property to
get the current value and an optional value to set the current value. For example, the
following code gets the checked state for a specific element with
id="firstCheckbox":
Click here to view code image

var state = $("#firstCheckbox").prop("checked");

And the following statement will set the checked value of all <input> elements to
true:
Click here to view code image

$("input").prop("checked", true);

Note
The only difference between a property and an attribute in jQuery is that
attributes are values that define the HTML structure and properties are
values that affect the dynamic state of the object. For example, in an
<input> element, "type" is an attribute because it defines the structure,
whereas "checked" is a property because it affects only the state.

Getting and Setting CSS Properties
Another important aspect of dynamic web programming is the dynamic manipulation of
CSS.
JavaScript enables you to access the CSS properties via the style attribute of the DOM
object. For example, you can get the color and background-color CSS
properties of an element from a DOM object using the following code. Notice that you
need to use style["background-color"] syntax because
style.background-color is not valid in JavaScript:
Click here to view code image

var domObj = document.getElementById("banner");
var color = domObj.style.color;
var color = domObj.style.["background-color"];

Another example is that you can set position, top, and left CSS properties for an
element using the following code:
Click here to view code image

domObj.style.position = "absolute";
domObj.style.top = "100px";
domObj.style.left = "100px";

jQuery also makes it extremely easy to get and set CSS values using the
.css(property, [value]) method. For example, the following code retrieves
the cursor CSS property value of an element:
Click here to view code image

$("#buttonA").css("cursor");

Then the following sets the border-radius value:
Click here to view code image

$("#buttonA").css("border-radius", "10px 15px");

The .css() method also allows you to pass a map object with properties and values.
This enables you to set several settings at once. For example, the following code uses
.css() to set the margin, padding, float, and font-weight attributes at the
same time:
Click here to view code image

$("span").css({margin:0, padding:2, float:"left", "font-weight":"bold"});

Notice that the property names can either be enclosed in quotes or not. You need to use
quotes if the property name contains a – or other character that is not valid in a
JavaScript object name. The values can be numbers or strings. For the numerical values

representing distance, which can be expressed in px, cm, or %; the default is px, so if
you want to specify pixels, you need only to enter the number. If you want to specify cm,
%, or some other value type, you need to use a string—for example, "100%".

Getting and Setting Element Size
Another important aspect when dynamically working with HTML elements is the
capability to get the element’s size. jQuery makes this very simple. Table 10.2 shows
the methods provided in the jQuery object that enable you to get the height and width of
an element.

TABLE 10.2 jQuery Object Methods to Get and Set the Element Size

Caution
The height and width methods return only the size of the first element in the
jQuery objects’ set. For single object sets, that is not a problem. Just keep
in mind that other objects in the set may have different sizes.

Getting and Setting Element Position
In addition to the size of HTML elements, you often need to get their position. When
you’re working with HTML elements, there are two types of positions. The first is the
position relative to the full document. The second is the position relative to the HTML
element that acts as an offset parent. Which element is the offset parent depends on the
position settings in CSS.

jQuery provides the .position([position]) method to get the position relative
to the offset parent. The .offset([position]) method provides the position
relative to the document. Both of these methods can be called with no argument. They
return a simple object with a left and right attribute that represent the number of
pixels from the left and top of document when using .position() or offset parent
when using .offset(). They can also be called with a simple position attribute,
which is an object that has left and right attributes. When called with a
position parameter, they will set the position of the element.
For example, the following code will get the number of pixels from the top and the left
of the document and the offset parent to an element with id="myElement". Notice
that to get the statements on one line, you reference the top and left attributes
directly after the call:
Click here to view code image

var pixelsFromPageTop = $("#myElement").offset().top;
var pixelsFromPageLeft = $("#myElement"). offset ().left;
var pixelsFromParentTop = $("#myElement").position().top;
var pixelsFromParentLeft = $("#myElement"). position ().left;

To set the distance of that element exactly 10 pixels down and 10 pixels to the right of
the top-left corner of the document, use the following statement that defines a simple
object with left and top values and passes it to the .offset() method:
Click here to view code image

$("#myElement").offset({"top":10,"left":10});

Accessing the Class
The simplest way to get the classes associated with an HTML element is to look at the
className attribute of the DOM object. The className attribute is a string
containing the names of the class(es) attached to the element. Keep in mind that an
element may have more than one class name attached to it. In those cases, the names will
be separated by a space.
The following example shows how to get the className attribute of an element with
id="mainList" from jQuery:
Click here to view code image

var class = $("#mainList").get().className;

Getting Browser and Screen Size and Color Information
An important part of dynamically manipulating web pages is the capability to access
information about the screen and browser. This section focuses on the size and color
capability.

Getting the screen or browser window size allows you to adjust the size of HTML
elements based on the available area on the screen or browser window.
You can access the screen size using the Screen object in JavaScript. The Screen
object provides the width and height attributes that are the screen resolution
dimensions. For example, the following code stores the screen width and height in
variable:
Click here to view code image

var sWidth = screen.width;
var sHeight = screen.height;

To get the supported colors by the screen and thus the web browser, use the
colorDepth attribute of the Screen object. This returns a value of the number of
bits supported—for example, 8, 16, 24. Following is an example of getting the color
depth supported by the screen:
Click here to view code image

var colorBits = screen.colorDepth;

Even if the screen is large, the browser window may not be taking up the full screen
amount. Although the browser window provides scrollbars for web pages that exceed
the size of the window, it often looks better to resize elements on the page or adjust the
layout as the browser size changes.
The browser dimensions can be accessed from the innerWidth, outerWidth,
innerHeight, and outerHeight attributes of the window object available in
JavaScript. The innerHeight and innerWidth values refer to the actual area
available for the web page. The outerWidth and outerHeight refer to the total
area, including the browser menu, borders, and bars. The following is an example of
getting the web page display area dimensions:
Click here to view code image

var pageWidth = window.innerWidth;
var pageHeight = window.innerHeight;

Try it Yourself: Getting Screen, Browser, Mouse, and Element Info Using
jQuery and JavaScript

Now it’s time to put everything together. In this example, you build a basic web
page with some different HTML elements. One of the elements will be a <div>
that displays screen, browser, mouse, and element information and is updated
with each movement of the mouse. The code is shown in Listings 10.1, 10.2, and
10.3. It may look like a lot of code at first, but it really is pretty basic and will
help you see how to get information from jQuery and JavaScript about the current

state of things.
Use the following steps to implement the example:
1. In Eclipse, create the lesson10, lesson10/js, and lesson10/css folders.
2. Create the lesson10/web_page_manipulation.html,

lesson10/js/web_page_manipulation.js, and
lesson10/css/web_page_manipulation.css files.

3. Add the code shown in Listing 10.1 to the HTML file. You should recognize
the HTML components. There are two main sections: the first part defines
several types of elements for you to interact with, and the second part, the
really long <div>, provides a place to display information about the mouse,
screen, browser, and elements.

4. Add the CSS from Listing 10.3 to the CSS file. You should also recognize the
CSS statements by now. Some of the lines in the CSS are combined to make it
fit better in the book.

5. Open the web_page_manipulation.js file and the following load() function
that adds event handlers for the mousemove, mouseover, change,
keypress, and resize events. You will create these event handlers in
later steps. The mousemove event handler is attached to the document to
catch the mouse movements at the document level. The resize handler is
attached to the window so that you can display info when the browser is
resized:

Click here to view code image

01 $(window).load(function(){
02 $(document).mousemove(mousePosition);
03 $("*").mouseover(elementInfo);
04 $("*").change(elementInfo);
05 $("*").keypress(elementInfo);
06 $(window).resize(windowResize);
07 });

6. Add the following handler that will be called on mouse movement. Notice that
propagation is stopped so that you try to display the information only once. The
Screen object is used to get and display the screen dimensions and color
bits. The event object e is used to get and display the various mouse position
coordinates:

Click here to view code image

08 function mousePosition(e){
09 e.stopPropagation();
10 $("#screenSize").html(screen.width + "x" + screen.height);
11 $("#colors").html(screen.colorDepth+"bit");

12 $("#browserSize").html(window.innerWidth + "x" +
window.innerHeight);
13 $("#mousePosition").html("X:" + e.screenX + " Y:" + e.screenY);
14 $("#pagePosition").html("X:" + e.pageX + " Y:" + e.pageY);
15 $("#scrollPosition").html("X:" + e.clientX + " Y:" + e.clientY);
16 }

7. Create the following functions that will display all the element information.
Propagation is stopped. The contents of the .infoContainer
elements are removed by line 19. Using the event object, the domObj variable
is assigned the target DOM object that the event occurred on, and jObj is
set to the jQuery version of the target object:

Click here to view code image

17 function elementInfo(e){
18 e.stopPropagation();
19 $(".infoContainer span").html("");
20 var domObj = e.target;
21 var jObj = $(domObj);
...
33 }

8. Add the following statements that use the DOM and jQuery objects to display
the id, tag, and class attributes:

Click here to view code image

22 $("#elementId").html(domObj.id);
23 $("#elementType").html(jObj.prop('tagName'));
24 $("#elementClass").html(domObj.className);

9. Add the following statements that display the element’s size and position:
Click here to view code image

25 $("#elementSize").html(jObj.width() + "x" + jObj.height());
26 $("#elementPosition").html(jObj.offset().top + ", "
+ jObj.offset().left);

10. Add the following miscellaneous statements. Line 27 uses the .css()
method to get the CSS color attribute, line 28 uses .val() to get the value of
the element if there is one, line 30 gets the checked state of the element if
available, and line 32 gets the src attribute of elements:

Click here to view code image

27 $("#elementColor").html(jObj.css("color"));
28 $("#elementValue").html(jObj.val());
29 try{
30 $("#elementChecked").html(jObj.prop('checked').toString());
31 } catch (e) {}
32 $("#elementSource").html(jObj.attr('src'));

11. Add the following handler that sets the browser window size each time you
resize the browser:

Click here to view code image

34 function windowResize(e){
35 $("#browserSize").html(window.innerWidth + "x" +
window.innerHeight);
36 }

12. Save all three files and then open the HTML document in a web browser. Play
around with the HTML elements and see the information change, as shown in
Figure 10.1. Mouse coordinates, screen, and browser size, as well as element
info, are displayed as available. Don’t forget to try resizing the browser and
scrolling.

FIGURE 10.1 A web page that displays the screen, browser, mouse, and element
info as you play around with the web page.

LISTING 10.1 web_page_manipulation.html HTML File That Provides Several
Elements to Play with, as Well as an Independent <div> That Displays Info

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Web Page Manipulation</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/web_page_manipulation.js">
</script>
08 <link rel="stylesheet" type="text/css"
href="css/web_page_manipulation.css">
09 </head>
10 <body>
11 <div>
12 <div id="banner" class="header">
13 Teach YourSelf AngularJS, JavaScript and jQuery</div>
14 <div id="menu" class="menu">
15 Lessons
16 Docs

17 Code
18 </div>
19 <div id="content">
20 <p class="imageArea">
21
22 Cliff</p>
23 <select>
24 <option value=1>lesson 1</option>
25 <option value=2>lesson 2</option>
26 <option value=3>lesson 3</option>
27 <input type=text />
28 </select>
29 <input type="checkbox" />
30 </div>
31 </div>
32 <div class=infoContainer>
33 <p>Screen & Browser Info</p>
34 <div>Screen Size: </div>
35 <div>Color Level: </div>
36 <div>Browser Size: </div>
37 <p>Mouse Position</p>
38 <div>Absolute Mouse: </div>
39 <div>Page Mouse: </div>
40 <div>Relative Mouse: </div>
41 <p>Element Info</p>
42 <div>Element ID: </div>
43 <div>Element Type: </div>
44 <div>Element Class: </div>
45 <div>Element Size: </div>
46 <div>Element Position: </div>
47 <div>Element Value: </div>
48 <div>Element Checked: </div>
49 <div>Image Source: </div>
50 <div>Element Color: </div>
51 </div>
52 </body>
53 </html>

LISTING 10.2 web_page_manipulation.js jQuery and JavaScript Code That
Retrieves and Displays Information About the Screen, Browser, Mouse, and
HTML Elements

Click here to view code image

01 $(window).load(function(){
02 $(document).mousemove(mousePosition);
03 $("*").mouseover(elementInfo);
04 $("*").change(elementInfo);
05 $("*").keyup(elementInfo);
06 $(window).resize(windowResize);
07 });

08 function mousePosition(e){
09 e.stopPropagation();
10 $("#screenSize").html(screen.width + "x" + screen.height);
11 $("#colors").html(screen.colorDepth+"bit");
12 $("#browserSize").html(window.innerWidth + "x" + window.innerHeight);
13 $("#mousePosition").html("X:" + e.screenX + " Y:" + e.screenY);
14 $("#pagePosition").html("X:" + e.pageX + " Y:" + e.pageY);
15 $("#scrollPosition").html("X:" + e.clientX + " Y:" + e.clientY);
16 }
17 function elementInfo(e){
18 e.stopPropagation();
19 $(".infoContainer span").html("");
20 var domObj = e.target;
21 var jObj = $(domObj);
22 $("#elementId").html(domObj.id);
23 $("#elementType").html(jObj.prop('tagName'));
24 $("#elementClass").html(domObj.className);
25 $("#elementSize").html(jObj.width() + "x" + jObj.height());
26 $("#elementPosition").html(jObj.offset().top + ", "
+ jObj.offset().left);
27 $("#elementColor").html(jObj.css("color"));
28 $("#elementValue").html(jObj.val());
29 try{
30 $("#elementChecked").html(jObj.prop('checked').toString());
31 } catch (e) {}
32 $("#elementSource").html(jObj.attr('src'));
33 }
34 function windowResize(e){
35 $("#browserSize").html(window.innerWidth + "x" + window.innerHeight);
36 }

LISTING 10.3 web_page_manipulation.css CSS Code That Styles the <div> and
Other Elements

Click here to view code image

01 .infoContainer{
02 border:3px ridge;
03 padding:3px;
04 position:fixed; display:inline-block;
05 top:100px; right:50px;
06 background-color:#C0C0C0;
07 width:200px; height:280px;
08 font:12px arial;
09 }
10 .infoContainer div{ margin-left:5px; }
11 .infoContainer div span{
12 color:blue;
13 float:right; }
14 .infoContainer p{
15 margin:0px; padding:0px;

16 font-size:14px; font-weight:bold;
17 }
18 #banner{
19 height:100;
20 color:white; background-color:blue;
21 font-size:40px; text-align:center;
22 }
23 #menu{ background-color:gray; padding:5px; }
24 .menuItem{
25 padding:3px; margin-left:3px;
26 background-image: -moz-linear-gradient(top, #0022ff 0%, #AACCFF 85%,
#0022ff 100%);
27 background-image: -webkit-linear-gradient(top, #0022ff 0%, #AACCFF
85%, #0022ff 100%);
28 background-image: -ms-linear-gradient(top, #0022ff 0%, #AACCFF 85%,
#0022ff 100%);
29 font:20px bold;
30 color:white;
31 }
32 .imageArea{color:firebrick;}

Dynamically Manipulating Page Elements
In the previous section, you not only learned how to access the components, but also
how to change values, attributes, properties, and CSS settings. This section extends
those concepts by discussing some additional ways to dynamically manipulate the web
page by adding and removing elements, changing classes, and toggling visibility.

Adding Page Elements Dynamically
Often, you will not know all the elements that belong on a web page until a user logs in,
or you receive addition information from a web service, or some other interaction. In
those cases, you must be able to add elements on-the-fly in your jQuery and JavaScript
code.

Adding Page Elements in JavaScript
There are several ways to add HTML elements dynamically. The most basic is to set the
innerHTML attribute of a container object to an HTML string. For example, the
following code sets the contents of an existing object to a new <p> element:
Click here to view code image

domObj.innerHTML = "<p>Paragraph 1 goes here</p>";
domObj.innerHTML += "<p>Paragraph 2 goes here</p>";

The problem with this method is that it lends itself to really ugly string statements that
will likely become a major headache later. So JavaScript provides a way to create the

DOM objects and then append them to the parent object.
The document.createElement(tag) method allows you to create an element
object, and the document.createTextNode(text) allows you to create the text
node that is part of the element. Then the appendChild(object) method can be
called on the DOM objects to append the newly created elements and nodes.
To illustrate this, check out the following code that adds a couple of paragraphs to an
existing object named domObj:
Click here to view code image

var newP = createElement("p");
var newT = createTextNode("Paragraph 1 goes here");
newP.appendChild(newT);
domObj.appendChild(newP);

It takes a bit more code, but the flow is much safer. Plus, the upside of creating objects
is that you have an actual DOM object that you can add additional values to the element.
For example, the following code allows you to add an element and set the src
and height attributes before appending it to the existing object:
Click here to view code image

var newImg = createElement("img");
newImg.src = "images/sunset.jpg";
newImg.height = 200;
domObj.appendChild(newImg);

Adding Page Elements in jQuery
Now you can look at how to add new elements in jQuery. You can apply the same
innerHTML shortcut in jQuery as in JavaScript by using the .html() method, which
will get or set the innerHTML string. For example:
Click here to view code image

$("#myDiv").html("<p>Paragraph 1 goes here</p>");

This method, however, has the same limitations and should be used sparingly. The
better method is to create a new jQuery object and append it. The following code takes
you through that process. The first step is to create the object by passing the tag name or
HTML string to the jQuery object $. For example, the following statement creates a new
jQuery object with one <p> element in the set:

var newP = $("<p></p>");

You can then add text to the paragraph using the following:
Click here to view code image

newP.html("Paragraph 1 goes here");

Then you can append an element to one or more existing elements using
.append(jQueryObject). For example, the following code adds the paragraph to
all <div> elements:

$("div").append(newP);

To illustrate this, the following code creates a new jQuery object with an
element in the set and adds it to all elements:
Click here to view code image

var newImg = $("");
newImg.attr("src", "images/sunset.jpg");
newImg.height(30);
$("li").append(newImg);

jQuery also provides the .appendTo(target) method, which allows you to
append an object to another object. This works the same way as .append() but in
reverse. The method is called from the child object and not the new parent. For
example, the newImg object from the preceding example could be appended by the
following statement instead:

newImg.appendTo("li");

Removing Page Elements
Page elements can be removed in a couple of ways. The most basic way is to get the
parent object and then set domObj.innerHTML = "" for DOM objects or call
jObj.html("") for jQuery objects. This erases all content inside the parent element
and thus removes any child elements.
Try to design your html components so that you can remove elements using the
.html("") method because it keeps the clean-up code so simple. Another advantage
is that adding new elements to the container is easier because you don’t have to deal
with existing elements.
In JavaScript, you can also call the .removeElement(child) on the parent
element. For example, the following code gets an element with id="container"
and then removes a child with id="paragraphA":
Click here to view code image

var parent=document.getElementById("container");
var child=document.getElementById("paragraphA");
child.parentNode.removeChild(child);

jQuery provides two methods to remove elements. The first is .empty(), which is
equivalent to .html(""). With .empty(), all child elements and text will be
removed. The second method is .remove([selector]), which removes elements

based only on the original query and an optional selector.
If no selector is specified, the elements from the original query are removed. For
example, to remove all <div> elements, use the following statement:

$("div").remove()

If a selector is specified, child elements from the original query that match the selector
will be removed. For example, to remove the <p> elements inside <div> elements,
use the following:

$("div").remove("p");

jQuery provides one additional method that is useful when removing elements: the
.detach([selector]) method. The detach method works the same way as the
.remove([selector]) method, with one important difference. The actual element
DOM data is not deleted, even though the elements are removed from the parents. You
still have the elements in the existing jQuery object and can insert them back into the
DOM at another location.
For example, the following code detaches all paragraphs from one element and appends
them to another:
Click here to view code image

var ps = $("#div1").detach("p");
ps.appendTo("#div2");

Replacing Elements in jQuery
As you have seen in the previous sections, you can easily add and remove elements via
jQuery. You also need to be aware of the capability to replace existing sets of elements
with other sets of elements. This is required in jQuery because after you remove the
elements, you will no longer be able to perform the same queries because the elements
will be gone.
You can use three methods to replace elements in jQuery. The simplest is to use
.html(). The .html() method in jQuery is extremely useful for replacing the
contents of an existing element with completely different content. The .html() method
accepts a string or an object and replaces the content of the set of elements in the jQuery
with the object or string. For example, the following statement replaces the contents of
all <div> elements with a new paragraph:
Click here to view code image

$("div").html($("<p>New Paragraph</p>"));

Another method of replacing a set of elements in the document with new content is the
.replaceAll(target) method. This method replaces the set of elements that

match the target selector with those of the current set. For example, to replace all
<div> elements in a parentB with elements from parentA, you could
use the following:
Click here to view code image

$("#parentA span").replaceAll("#parentB div");

The final method is to use .replaceWith(newContent), which does the
opposite of .replaceAll(). The .replaceWith() function replaces the
elements in the current set with the content specified. For example, to replace all
<div> elements with a single new blank <div>, you could use the following:
Click here to view code image

$("div").replaceWith($("<div></div>"));

Inserting Elements in jQuery
Another important feature of jQuery is the capability to easily insert elements into
existing content. You have already seen how to append items to the end; however, what
if you want to put content into the middle? That is where the .before() and
.after() methods come in handy.
The .after(content [,content]) method allows you to specify an element
that should be inserted after each element in the current jQuery object’s set. For
example, to insert a new paragraph after the third <p> element in the document, you
would use the following:
Click here to view code image

$("p:eq(2)").after($("<p>New Fourth Paragraph</p>"));

The .before(content [,content]) method allows you to specify an element
that should be inserted before each element in the current jQuery object’s set. For
example, to insert a new paragraph before the third <p> element in the document, you
would use the following:
Click here to view code image

$("p:eq(2)").before($("<p>New Third Paragraph</p>"));

Note
Both the .after() and .before() methods allow you to pass in
multiple objects to insert, separated by a comma. This enables you to
prepare sets of objects and then insert them all together in the correct spot.

Changing Classes

A very important part of rich interactive web pages is good CSS design. JavaScript and
jQuery can enhance the CSS design by dynamically adding and removing classes from
elements.
jQuery makes it extremely simple to add, remove, and toggle classes on and off. If you
design your CSS code well, it is very simple to apply some nice effects very easily.
Classes are added using the .addClass(className) method. For example, to add
a class named active to all elements, you could use the following statement:
Click here to view code image

$("span").addClass("active");

Classes are removed using the .removeClass([className]) method. For
example, to remove the active class from the elements, you would call the
following:
Click here to view code image

$("span").removeClass("active");

You can also use remove with no className, which removes all classes from the
elements. For example, the following statement removes all classes from <p> elements:

$("p").removeClass();

You can also toggle classes on and off using the .toggleClass(className [,
switch) method. In addition to the className, you can specify a true or false
for the optional switch parameter indicating to turn the class on or off.
For example, to turn the active class and the inactive class off for all elements,
the code would be the following:
Click here to view code image

$("span").toggleClass("active", true);
$("span").toggleClass("inactive", false);

Toggling Visibility
A simple way of changing the look and feel of web pages is to toggle the visibility of
elements. You can do this from JavaScript by setting the style.display property to
"none" or to ""; however, jQuery provides much more elegant and extensible
solutions.
To display an element using jQuery, call the .show() method on that object. Then to
hide the element, use the .hide() method. It’s as simple as that. For example, to hide
an object name jObj, use the following statement:

jObj.hide();

To display it again, use the following:
jObj.show();

One problem with .hide() is that after it is applied, the element will no longer take
up any page space. This may be the way that you want it, or in some instances, you may
want only the element to be invisible, but still take up space. To make an element
invisible, set the opacity CSS property to 0. For example:

jObj.css("opacity", "0");

To make the element visible again, set the opacity back to 1:
jObj.css("opacity", "1");

Tip
Setting the opacity lower but not to 0 can be a great way to show that
elements are not currently active while still showing them. For example,
you can set menu and button elements that are not yet implemented and
active to .5 opacity so that they still show up but are obviously not
clickable.

Try it Yourself: Dynamically Manipulating Web Page Elements
Now it’s time to put everything together again. In this example, you start with a
basic web page and then dynamically add, modify, and remove elements based on
user interactions, as shown in Figure 10.2. The purpose of this example is to get
you going on adding content dynamically, as well as accessing properties of
existing elements and manipulating the content, visibility, and classes.

FIGURE 10.2 A web page that dynamically builds the elements displayed in the left
pane and then changes the content based on user selections.

The code is shown in Listings 10.4, 10.5, and 10.6. After you grasp this example,
it should open up your mind to more elaborate and rich implementations. Use the
following steps to implement the example:
1. In Eclipse, create the lesson10/web_element_manipulation.html,

lesson10/js/web_element_manipulation.js, and
lesson10/css/web_element_manipulation.css files.

2. Add the code shown in Listing 10.4 to the HTML file. You should recognize
the HTML components. There is a set of elements that will be
buttons, a content <div> where you will dynamically place new elements,
and a free-floating menu that provides buttons with links to jQuery docs.

3. Add the CSS from Listing 10.6 to the CSS file. There is quite a bit of CSS
code to style the different elements. However, all of it should be familiar to
you by now.

4. Open the web_element_manipulation.js file and add the following load()

function. Line 2 hides the docMenu div, which will be shown only when the
user clicks the Docs button. The rest of the lines add click handlers for the
buttons:

Click here to view code image

01 $(window).load(function(){
02 $("docMenu").hide();
03 $("#lessons").click(setLessonNav);
04 $("#docs").click(setDocNav);
05 $("#fade").click(fade);
06 });

5. Add the code shown in lines 7 through 22. This provides two functions. The
setLessonNav() function is called when the user clicks the Lessons
button. This function goes through the process of creating a new <select>
element and adding 24 <option> elements to it. On line 16, a change event
handler is added to the <select> element to catch when the lesson changes.
The second function sets the content paragraph element to match the lesson
selected:

Click here to view code image

24 $("#content").append(select).append("
<p></p>");

6. Add the following function that will be called when a user clicks the Docs
button. This function shows the Doc menu, removes the active class from all
 elements, and then adds it to the Docs button to show it is active:

Click here to view code image

27 function setDocNav(){
28 $("docMenu").show();
29 $("span").removeClass("active");
30 $("#docs").addClass("active");
31 }

7. Add the following handler for when the user clicks one of the options in the
Doc menu. This function creates a new <iframe> element that points to the
selected doc and then replaces the contents of the #content <div> with that
new element:

Click here to view code image

32 function setDoc(doc){
33 var frame = $("<iframe></iframe>");
34 frame.attr("src", doc);
35 $("#content").html(frame);
36 }

8. Add the following handler for when the user clicks the Fade button. This

checks the current opacity CSS property and increases it or decreases it to
cause the content to fade in and out:

Click here to view code image

37 function fade(){
38 var opacity = $("#content").css("opacity");
39 if (opacity < 1){ $("#content").css("opacity", 1);}
40 else { $("#content").css("opacity", .5); }
41 }

9. Save all three files and then open the HTML document in a web browser. Play
around with the Lessons and Docs buttons to see the elements dynamically
displayed. Try the Fade button to fade the content in and out.

LISTING 10.4 web_element_manipulation.html HTML File Basic Web Page Used
in the Example

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Web Element Manipulation</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript"
src="js/web_element_manipulation.js"></script>
08 <link rel="stylesheet" type="text/css"
href="css/web_element_manipulation.css">
09 </head>
10 <body>
11 <div id="container">
12 <div id="menu" class="menu">
13 lessons
14 Docs
15 Fade
16 </div>
17 <div id="content"></div>
18 </div>
19 <div id="docMenu">
20 jQuery
21 jQueryUI
22 jQueryMobile
23 </div>
24 </body>
25 </html>

LISTING 10.5 web_element_manipulation.js jQuery and JavaScript Code That
Dynamically Builds the Left Navigation Items Based on the Button Clicked in the
Top Menu

Click here to view code image

01 $(window).load(function(){
02 $("#docMenu").hide();
03 $("#lessons").click(setHourNav);
04 $("#docs").click(setDocNav);
05 $("#fade").click(fade);
06 });
07 function setHour(e){
08 var hour = $("#lessonSelect").val();
09 $("#content p").html("Lesson "+ hour);
10 }
11 function setHourNav(){
12 $("#docMenu").hide();
13 $("span").removeClass("active");
14 $("#lessons").addClass("active");
15 var select = $('<select id="lessonSelect"></select>');
16 select.change(setHour);
17 for(var x=1; x<41; x++){
18 var option = $("<option></option");
19 option.val(x);
20 option.html("Lesson "+x);
21 select.append(option);
22 }
23 $("#content").html("");
24 $("#content").append(select).append("
<p></p>");
25 setLesson(5);
26 }
27 function setDocNav(){
28 $("#docMenu").show();
29 $("span").removeClass("active");
30 $("#docs").addClass("active");
31 }
32 function setDoc(doc){
33 var frame = $("<iframe></iframe>");
34 frame.attr("src", doc);
35 $("#content").html(frame);
36 }
37 function fade(){
38 var opacity = $("#content").css("opacity");
39 if (opacity < 1){ $("#content").css("opacity", 1);}
40 else { $("#content").css("opacity", .5); }
41 }

LISTING 10.6 web_element_manipulation.css CSS Code That Styles the Banner,
Buttons, and Other Elements

Click here to view code image

01 #banner{
02 height:100px;
03 color:white; background-color:blue;
04 font-size:40px; text-align:center;
05 }
06 #menu, #docMenu{
07 background-color:black;
08 padding:6px 4px 9px 4px;
09 }
10 .menuItem, #docMenu span{
11 padding:2px;
12 background-image: -moz-linear-gradient(top, #2244ff 0%, #AACCFF 85%,
#0022ff 100%);
13 background-image: -webkit-linear-gradient(top, #2244ff 0%, #AACCFF
85%, #0022ff 100%);
14 background-image: -ms-linear-gradient(top, #2244ff 0%, #AACCFF 85%,
#0022ff 100%);
15 font:20px bold;
16 cursor:pointer;
17 }
18 .active{ border:5px groove; }
19 #docMenu span{ display:block; margin-top:1px; }
20 #content, iframe{
21 display:inline-block;
22 width:700px; height:500px;
23 }
24 #container{ width:800px; background-color:#C0C0C0}
25 #docMenu{
26 position:fixed; right:60px; top:60px;
27 }
28 #content{
29 padding:2px;
30 color:blue;
31 font-size:20px;
32 }

Dynamically Rearranging Elements on the Web Page
One of the coolest interactions that you can make with web pages is to rearrange
elements based on user interaction. For instance, you can make elements bigger or
smaller, or change the position. These were already covered as part of getting and
setting element attributes in the first section of this lesson. This section builds further on
those concepts by discussing a final way to position page elements using the z-index;
then you step through an example that shows the different methods of rearranging the
elements.

Adjusting the z-index
The z-index is a CSS property that specifies the position of an HTML element with
respect to other elements, not vertically or horizontally but projected out toward the
user, as if it were papers stacked on top of one another on the screen. The element with
the highest z-index is displayed on top of other elements when the page is rendered
by the browser.
To get and set the z-index in jQuery, use the .css() method. For example, to get the
z-index for an item, use the following:
Click here to view code image

var zIndex = $("#item").css("z-index");

To set the z-index for an item to read 10, use the following statement:
Click here to view code image

$("#item").css("z-index", "10");

Try it Yourself: Dynamically Rearranging Page Elements
In this example, you learn the process of using jQuery and JavaScript to move,
resize, and rearrange images. You use images because they are one of most
commonly rearranged elements. You can apply these same principles to any
HTML element. The code for the example is shown in Listings 10.7, 10.8, and
10.9. Use the following steps to implement the example:
1. In Eclipse, create the lesson10/rearranging_elements.html,

lesson10/js/rearranging_elements.js, and
lesson10/css/rearranging_elements.css files.

2. Add the code shown in Listing 10.7 to the HTML file. You should recognize
the HTML components. The HTML code contains several elements
that will be styled as buttons and three images that will be rearranged as the
user clicks the buttons.

3. Add the CSS from Listing 10.9 to the CSS file. This code styles the buttons
and puts a frame around the images.

4. Open the rearranging_elements.js file and the following global definitions,
which will be used later to keep track of the starting coordinates when tiling
and stacking images, as well as the current image with the top z-index and
max image index:

01 var startX = startY = 60;
02 var topIndex, maxIndex;

5. Add the following load() function. Lines 3 and 4 set the current top index

and the max index to the number of files minus 1 to make it zero-based. Then
lines 6–12 add click handlers for each of the buttons:

Click here to view code image

03 $(window).load(function(){
04 topIndex = $(".photo").length-1;
05 maxIndex = topIndex;
06 $("#right").click(function(e){move(e, "right");});
07 $("#left").click(function(e){move(e, "left");});
08 $("#bigger").click(function(e){resize(e, "bigger");});
09 $("#smaller").click(function(e){resize(e, "smaller");});
10 $("#stack").click(stack);
11 $("#tile").click(tile);
12 $("#flip").click(flip);
13 stack();
14 });

Note
You will need to use the $(window).load() event handler rather than
the $(document).ready() for this exercise so the images are loaded
for certain prior to running the stack() function.

6. Add the following resize handler that accepts a direction and uses the value to
either enlarge or shrink the image by adjusting the width using the width()
method. Notice that the topIndex variable is used to determine which image
to adjust:

Click here to view code image

15 function resize(e, direction){
16 var img = $("img:eq(" + topIndex + ")");
17 if (direction == "bigger"){ img.width(img.width()+20); }
18 else { img.width(img.width()-20); }
19 }

7. Add the following move handler that adjusts the offset() of the image to
the left or right based on the direction argument. Also startX and startY
are adjusted to the new position:

Click here to view code image

20 function move(e, direction){
21 var img = $("img:eq(" + topIndex + ")");
22 var pos = img.offset();
23 if (direction == "right"){ pos.left += 10;}
24 else {pos.left -= 10;}
25 img.offset(pos);
26 startX = pos.left;
27 startY = pos.top;

28 }

8. Add the following stack() function that iterates through all the .photo
elements and stacks them by adjusting the top and left offset values during
each iteration:

Click here to view code image

29 function stack(){
30 var x = startX, y = startY;
31 $(".photo").each(function(indx){
32 $(this).offset({ top:y, left:x });
33 x += 20;
34 y += 20;
35 });
36 }

9. Add the following tile() function that also iterates through all the .photo
elements and places them next to each other, rotating to the next line if the
current set has surpassed 400 pixels. Notice that I use several variables
through each iteration to keep track of the max height and current x and y
coordinates:

Click here to view code image

37 function tile(){
38 var x = startX, y = currTop = startY;
39 var maxH = 0;
40 $(".photo").each(function(indx){
41 maxH = Math.max(maxH, $(this).outerHeight());
42 $(this).offset({ top:y, left:x });
43 x += $(this).outerWidth();
44 if (x > 400){
45 y = currTop + maxH;
46 x = startX;
47 maxH = 0;
48 }
49 });
50 }

10. Add the flip() function that will adjust the z-index so that when images
overlap each other, you can change which is on top:

Click here to view code image

51 function flip(){
52 topIndex++;
53 if (topIndex > $(".photo").length-1){ topIndex=0; }
54 $(".photo").each(function(indx){
55 if (indx <= topIndex){ z = maxIndex - (topIndex - indx); }
56 else { var z = indx - topIndex - 1; }
57 $(this).css("z-index", z);
58 });

59 }

11. Save all three files and then open the HTML document in a web browser, as
shown in Figure 10.3. Play around with the buttons and notice how the
interactions of the images matches the rearrangements made by the click
handler functions.

FIGURE 10.3 Using the width(), offset(), and css("z-index") methods
on image objects; you can easily rearrange them on the web page.

LISTING 10.7 rearranging_elements.html HTML File Basic Web Page Used in the
Example That Defines Several Elements Used for Buttons and
Elements

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Rearranging Elements</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/rearranging_elements.js">
</script>
08 <link rel="stylesheet" type="text/css"
href="css/rearranging_elements.css">
09 </head>
10 <body>
11 <div id="container">
12 Left
13 Right
14 Bigger
15 Smaller
16 Stack
17 Flip
18 Tile
19 <div id="photos">
20
21
22
23
24 </div>
25 </div>
26 </body>
27 </html>

LISTING 10.8 rearranging_elements.js jQuery and JavaScript Code That
Dynamically Moves, Resizes, and Adjusts the z-index of Several
Elements

Click here to view code image

01 var startX = startY = 60;
02 var topIndex, maxIndex;

03 $(window).load(function(){
04 topIndex = $(".photo").length-1;
05 maxIndex = topIndex;
06 $("#right").click(function(e){move(e, "right");});
07 $("#left").click(function(e){move(e, "left");});
08 $("#bigger").click(function(e){resize(e, "bigger");});
09 $("#smaller").click(function(e){resize(e, "smaller");});
10 $("#stack").click(stack);
11 $("#tile").click(tile);
12 $("#flip").click(flip);
13 stack();
14 });
15 function resize(e, direction){
16 var img = $("img:eq(" + topIndex + ")");
17 if (direction == "bigger"){ img.width(img.width()+20); }
18 else { img.width(img.width()-20); }
19 }
20 function move(e, direction){
21 var img = $("img:eq(" + topIndex + ")");
22 var pos = img.offset();
23 if (direction == "right"){ pos.left += 10;}
24 else {pos.left -= 10;}
25 img.offset(pos);
26 startX = pos.left;
27 startY = pos.top;
28 }
29 function stack(){
30 var x = startX, y = startY;
31 $(".photo").each(function(indx){
32 $(this).offset({ top:y, left:x });
33 x += 20;
34 y += 20;
35 });
36 }
37 function tile(){
38 var x = startX, y = currTop = startY;
39 var maxH = 0;
40 $(".photo").each(function(indx){
41 maxH = Math.max(maxH, $(this).outerHeight());
42 $(this).offset({ top:y, left:x });
43 x += $(this).outerWidth();
44 if (x > 400){
45 y = currTop + maxH;
46 x = startX;
47 maxH = 0;
48 }
49 });
50 }
51 function flip(){
52 topIndex++;
53 if (topIndex > $(".photo").length-1){ topIndex=0; }
54 $(".photo").each(function(indx){
55 if (indx <= topIndex){ z = maxIndex - (topIndex - indx); }
56 else { var z = indx - topIndex - 1; }

57 $(this).css("z-index", z);
58 });
59 }

LISTING 10.9 rearranging_elements.css CSS Code That Styles the Buttons and
Images

Click here to view code image

01 .photo{
02 border:6px groove;
03 width:200px;
04 position:absolute; top:40px; left:20px;
05 }
06 span{
07 padding:5px;
08 background-color:steelblue; color:white;
09 border-radius:10px 15px; border:2px dotted blue;
10 cursor:pointer;
11 }
12 #container{ padding:5px; }

Summary
This lesson has covered a lot of ground. You already had the tools to understand the
JavaScript code, CSS styling, and the various objects involved in jQuery and
JavaScript. In this lesson, you learned how to access the attributes, properties, methods,
and other parts of those objects and then modify them to apply interactivity and
dynamics to web pages.
You also learned how to create HTML objects dynamically and add them to web pages,
and how to remove and modify existing elements based on user interaction.

Q&A
Q. You showed how to add and remove classes in jQuery; is there a way to do

the same in JavaScript?
A. Yes, but you probably shouldn’t use it. The className attribute of the DOM

object contains a space-separated list of classes. You can add a class by
appending the new class name to that attribute—for example, obj.className
+= " " + newClass;. Removing the className is more difficult. You
need to either use a regex statement or split the string, remove the class, and then
rebuild it. These methods are a lot more risky than jQuery because you can end
up mangling the string and then none of the classes will work.

Q. Is there a way to rotate an image element?
A. Yes, in some browsers. You can use the transform CSS property for Firefox and

Chrome and the filter property for Internet Explorer. The following code
illustrates rotating an image 90 degrees using jQuery in Firefox, IE, and Chrome:

Click here to view code image

$("img").css({
 "-webkit-transform": "rotate(90deg)",
 "-moz-transform": "rotate(90deg)",
 "filter":
"progid:DXImageTransform.Microsoft.BasicImage(rotation=1)"
});

Workshop
The workshop consists of a set of questions and answers designed to solidify your
understanding of the material covered in this lesson. Try to answer the questions before
looking at the answers.

Quiz
1. How do you make an element disappear and yet keep taking up space in the web

browser?
2. What CSS property allows you to specify which HTML element is displayed on

top when two elements overlap?
3. What is the difference between screenX, pageX, and clientX properties of

a mouse event?
4. What jQuery would you use to remove all <p> elements from an element with
id="container"?

5. True or false: An HTML element can have only one class assigned to it at a time.

Quiz Answers
1. By setting the opacity CSS property to 0.
2. z-index
3. screenX is relative to the left edge of the screen, pageX is relative to the

left edge of the document, and clientX is relative to the left edge of the browser
window.

4. $("#container p").remove();
5. False. Elements can have many classes assigned to them.

Exercises

1. Open the code in Listings 10.1, 10.2, and 10.3 and add a link with a target and
href value. Then modify the JavaScript to also display those values in the info
portion of the web page so that you can hover over the link and see them.

2. Open the code in Listings 10.7, 10.8, and 10.9 and add four new buttons. Add two
buttons to move the image up and down. Then add two buttons that change the
opacity of the image up .1 or down .1. You will need to make certain that the
opacity stops at 0 and 1.

Lesson 11. Working with Window, Browser, and Other
Non-Web Page Elements

What You’ll Learn in This Lesson:
 Adding timers to web pages
 Getting and setting cookies
 Creating pop-ups

Dynamic web pages often require you to access and, in some cases, even manipulate
things beyond the HTML elements. JavaScript provides a rich set of objects and
functions that allow you to access information about the screen, browser window,
history, and more.
The first part of this lesson describes the screen, window, location, and
history objects that provide JavaScript with an interface to access information
beyond the web page. The second part covers utilizing those objects to implement
cookies, pop-up windows, and timers.

Understanding the Screen Object
You have already seen the screen object in use in previous lessons. You have used the
screen object to get the color depth as well as the height and width of the screen. Getting
the screen dimensions has become more important with the shift toward mobile devices
and tablets.
A wide range of screen sizes is available; therefore, you must be able to design your
web pages and dynamic interactions to take the screen size into account.
Table 11.1 describes the full set of properties available on the screen object.

TABLE 11.1 Screen Object Properties

Using the Window Object

The window object is by far the most robust of the external object set. The window
object provides access to the browser window, allowing you to get information such as
the dimensions and position of the browser window.
Using the window object, you can also create and control new browser windows when
you want to display additional web content but do not want to navigate away from the
current page.
The following sections describe some of the methods and properties attached to the
window object.

Accessing the Window Object Properties
The window object provides you with important information about browser windows.
You can access the size and position of the current window or even its parent window.
For example, the following code gets the pixels down and left from the top left of the
screen to the top left of the browser:
Click here to view code image

var fromTop = window.self.screenY;
var fromLeft = window.self.screenX;

Table 11.2 shows a list of some of the more important window object properties and
what they are used for.

TABLE 11.2 Window Object Properties

Using the Window Object Methods
The window object also provides a set of methods that allow you to create and manage
additional child windows from your JavaScript code.
For example, the following code opens a new browser window and loads the URL
specified:
Click here to view code image

var tempWindow = window.open("http://jquery.com");

Later, from the JavaScript code in your original web page, you can close the new
window using the following statement:

tempWindow.close();

Table 11.3 shows a list of some of the more important window object properties and
what they are used for.

TABLE 11.3 Window Object Methods

Using the Browser Location Object
The browser location object gives you access to the current location in the browser.
This allows you to access all the URL information as well as reload the current page or
load a new one in the current window.
For example, the following statement gets the following URL from the current page and
then loads a new page at a different URL:
Click here to view code image

var oldURL = location.href;
location.assign("http://jquery.com");

Also, if the URL was linked to a specific anchor on the web page, you can get that

portion of the URL using location.hash. You can use the anchor points that have
existed in static web pages as a way to provide backward compatibility with other web
pages that link to specific locations. You read the anchor hash and then adjust the
dynamic content to match what was located at that portion of the original web page:

var anchor = location.hash;

Table 11.4 shows a list of the location object properties and methods.

TABLE 11.4 Location Object Properties and Methods

Using the Browser History Object
The history object provides access to the browser navigation history, allowing you to
move forward and backward dynamically without the user needing to click the browser
Forward and Back buttons.

Navigating Forward in the Browser History
To move forward, you can use history.forward() to move to the next URL in the
history, or you can use history.go(n), where n is a positive number that
represents the number of steps to move forward. For example, the following statement
moves three URLs forward:

history.go(3);

Navigating Backward in the Browser History
To move backward, you can use history.back() to move to the previous URL in

the history, or you can use history.go(n), where n is a negative number that
represents the number of steps to move backward. For example, the following statement
moves two URLs back:

history.go(-2);

Controlling External Links
An important part of dynamic web programming also involves controlling the linkage
outside of the web page. The following sections describe some of the ways that you can
control the behavior of external links by preventing them from happening or forcing
them to open new browser windows.

Stopping External Links on a Web Page
A useful task that you can perform with a simple jQuery script is stopping external links
from happening. This allows you to lock linking away from the web page using one of
the <a> elements within it.
To lock down external links from a web page, you need to first add a click event
handler to the <a> tags that link externally and then call preventDefault() on the
click event object. For example, the following code uses the jQuery ^= selector syntax
to find <a> tags where the href begins with http:// and then adds a click handler
function that prevents the default browser action:
Click here to view code image

$('a[href^="http://"').click(function (e){
 any of your own handler code . . .
 e.preventDefault();
 });

Forcing Links to Open in New Browser Windows
Another useful task that you can perform with a simple jQuery script is forcing external
links to open in new windows. This allows the current window to remain available.
To force external links to open in a new window, set the target attribute to “_blank”
for <a> tags that link externally. For example, the following code finds <a> tags where
the href begins with http:// and then sets the target attribute to “_blank”,
forcing the links to open in a new browser window when clicked:
Click here to view code image

$('a[href^="http://"').attr("target", "_blank");

Try it Yourself: Getting and Setting Cookies
Cookies that allow you to store bits of information statically in the client’s

browser are an important part of the web paradigm. Often, cookies are read by
server-side scripts; however, it can also be helpful if you can get and set cookies
from JavaScript without the need for additional server communication.
You can get and set cookies by reading or writing to the document.cookie
attribute. The document.cookie is in a string format that includes the name,
value, expiration, and path in the following format:

name=value;expiration;path

The simplest way to help you understand how to implement cookies is to show
you by example. The following example takes you through the process of creating
simple JavaScript to get and set cookies from a web page. The code for the
example is shown in Listings 11.1, 11.2, and 11.3. Use the following steps to
implement the example:
1. In Eclipse, create the lesson11/cookies.html, lesson11/js/cookies.js, and

lesson11/css/cookies.css files.
2. Add the code shown in Listings 11.1, 11.2, and 11.3 to the HTML file. You

should recognize the HTML components. The HTML code contains several
 elements that are styled as buttons, text inputs to input cookie names
and values, and then a list of cookies.

3. Add the CSS from Listing 11.3 to the CSS file. This code styles the buttons.
4. Open the cookies.js file and add the following ready() function that adds

click handlers for the get, set, and delete cookie buttons. Notice that the
handlers get the cookie names from the name <input> field:

Click here to view code image

01 $(document).ready(function(){
02 $("#set").click(function(e){setCookie($("#cookieName").val(),
03 $("#cookieValue").val(),
1);});
04 $("#get").click(function(e){getCookie($("#cookieName").val());});
05 $("#delete").click(function(e){setCookie($("#cookieName").val(),
"", -1);});
06 displayCookies();
07 });

5. Add the following setCookie() hander function that gets the date and uses
it to create an expires time string. The code then sets document.cookie
using the name, value, expires, and a root path as the string value:

Click here to view code image

08 function setCookie(name, value, days) {
09 var date = new Date();
10 date.setTime(date.getTime()+(days*24*60*60*1000));

11 var expires = "; expires="+date.toGMTString();
12 document.cookie = name + "=" + value + expires + "; path=/";
13 displayCookies();
14 }

6. The following getCookie() handler gets the document.cookie string,
splits it by ;, and then iterates through the cookie array until it finds a cookie
where the name matches the one passed in. The function then sets the value
<input> field to the value of the cookie:

Click here to view code image

15 function getCookie(name) {
16 var cookieStr = $("#cookieName").val() + "=";
17 var cArr = document.cookie.split(';');
18 for(var i=0;i < cArr.length;i++) {
19 var cookie = cArr[i];
20 while (cookie.charAt(0)==' '){
21 cookie = cookie.substring(1, cookie.length);
22 }
23 if (cookie.indexOf(cookieStr) == 0){
24 $("#cookieValue").val(cookie.substring(cookieStr.length,
cookie.length));
25 break;
26 }
27 }
28 }

7. Add the following displayCookies() function that renders the list of
currently set cookies:

Click here to view code image

29 function displayCookies(){
30 $("#cookieList").html("");
31 var cArr = document.cookie.split(';');
32 for(var i=0;i < cArr.length;i++) {
33 var cookie = cArr[i];
34 $("#cookieList").append($("").html(cookie));
35 }
36 }

8. Save all three files and then open the HTML document in a web browser, as
shown in Figure 11.1. Play around with setting, getting, and deleting cookies.
Also navigate away from the page and then back, and the cookies should still
be set.

FIGURE 11.1 Getting, setting, and deleting cookies using JavaScript.

LISTING 11.1 cookies.html HTML File Basic Web Page Used in the Example That
Defines Several Elements Used for Buttons and <input> Elements to
Input Cookie Names and Values

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>C is for Cookie</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/cookies.js"></script>
08 <link rel="stylesheet" type="text/css"
href="css/cookies.css"> </head>
09 <body>
10 <div>
11 Set Cookie
12 Get Cookie
13 Delete Cookie
14 </div>
15 <div>
16 <label>Cookie Name: </label><input id="cookieName" type="text" />
17 </div>
18 <div>
19 <label>Cookie Value: </label><input id="cookieValue" type="text"
/>
20 </div>
21 <div id="cookieList"></div>

22 </body>
23 </html>

LISTING 11.2 cookies.js jQuery and JavaScript Code That Gets, Sets, and
Deletes Cookies

Click here to view code image

01 $(document).ready(function(){
02 $("#set").click(function(e){setCookie($("#cookieName").val(),
03 $("#cookieValue").val(), 1);});
04 $("#get").click(function(e){getCookie($("#cookieName").val());});
05 $("#delete").click(function(e){setCookie($("#cookieName").val(), "",
-1);});
06 displayCookies();
07 });
08 function setCookie(name, value, days) {
09 var date = new Date();
10 date.setTime(date.getTime()+(days*24*60*60*1000));
11 var expires = "; expires="+date.toGMTString();
12 document.cookie = name + "=" + value + expires + "; path=/";
13 displayCookies();
14 }
15 function getCookie(name) {
16 var cookieStr = $("#cookieName").val() + "=";
17 var cArr = document.cookie.split(';');
18 for(var i=0;i < cArr.length;i++) {
19 var cookie = cArr[i];
20 while (cookie.charAt(0)==' '){
21 cookie = cookie.substring(1, cookie.length);
22 }
23 if (cookie.indexOf(cookieStr) == 0){
24 $("#cookieValue").val(cookie.substring(cookieStr.length,
cookie.length));
25 break;
26 }
27 }
28 }
29 function displayCookies(){
30 $("#cookieList").html("");
31 var cArr = document.cookie.split(';');
32 for(var i=0;i < cArr.length;i++) {
33 var cookie = cArr[i];
34 $("#cookieList").append($("").html(cookie));
35 }
36 }

LISTING 11.3 cookies.css CSS Code That Styles the Buttons and Images

Click here to view code image

01 span{
02 padding:10px;
03 background-color:steelblue; color:white;
04 border-radius:10px 20px; border:2px ridge blue;
05 cursor:pointer;
06 }
07 div{ padding:10px; }

Adding Pop-up Boxes
The window provides several methods that allow you to launch pop-up windows that
you can interact with for alerts, prompts, and notifications. The pop-up windows are
displayed, and the user needs to interact with the pop-up before continuing to access the
web page.

Note
It is often much better to create a fixed position <div> element with an
overlay rather than using these pop-up boxes because you have much more
control over them. You learn how to do that a little later in the book.

Notifying the User
The most common type of pop-up is an alert pop-up designed to notify the user that
something has happened. The user will see the message; however, the only option given
is to close the pop-up message.
To create a simple alert message, use the window.alert() method as shown next
and displayed in Figure 11.2:
Click here to view code image

window.alert("It's 12/12/12 12:12:12!!!");

FIGURE 11.2 JavaScript pop-up boxes.

Asking the User to Confirm
The next most common type of pop-up is a confirmation pop-up designed to notify the
user that something is about to happen. The user will see the message and then be given
the option to click OK to allow the action to occur or click Cancel to reject the action.
To create a confirmation dialog box that allows the user to respond with yes or no, use
the window.confirm() method, as shown next and displayed in Figure 11.2:
Click here to view code image

var response = window.confirm("Are you sure?");
if (response == true) { do something; }
else { don't do something; }

Prompting the User for Input
Another type of pop-up is the prompt. The prompt displays a text box that allows the
user to type a text string into the pop-up box. That string is returned to the JavaScript
code and can be used in various ways.
To create a prompt dialog that allows the user to input a single text string as input, use
the window.prompt() method, as shown next and displayed in Figure 11.2:
Click here to view code image

var response = window.prompt("What is the airspeed velocity of an unlaiden
swallow?");
if (response == "African or European?"){ pass }
else { no pass }

Setting Timers
Another useful feature of JavaScript is the capability to set timers that execute a function
or evaluate an expression after a certain amount of time or on a specific interval.
Using timers allows you to delay the execution of code so that it does not need to
happen at the exact moment an event is triggered or the page is loaded.

Adding a Delay Timer
To delay the execution of code for a certain amount of time, use the
setTimeout(code, ms) method, where code is either a statement or a function
that will execute when the time expires. ms is the number of milliseconds. For example,
to execute a function named myTimer() in 10 seconds, you would use the following:
Click here to view code image

var timerId = setTimeout(myTimer, 10000);

At any point before the time runs out and the code is executed, you can clear the timer by
calling clearTimeout(id) method using the id returned from setTimeout().

For example:
clearTimeout(timerId);

Adding a Reoccurring Timer
You can also start a timer that will trigger on a regular interval using the
setInterval(code, ms) method. This method also accepts a code statement or
a function name and milliseconds as arguments. For example, the following code creates
a timer that triggers every minute and calls a function checkStatus():
Click here to view code image

var timerId = setInterval(checkStatus, 60000);

You can also turn off an interval timer using the clearInterval() method, as
shown next:

clearInterval(timerId);

Try it Yourself: Creating Simple Timers and Dialogs
In this example, you create a simple web page that displays a clock and updates it
on a per-second basis. The web page also pops up a notification message every
few seconds until you tell it to stop. This exercise should solidify timers and
alerts in your mind. The code for the example is shown in Listings 11.4, 11.5, and
11.6. Use the following steps to implement the example:
1. In Eclipse, create the lesson11/clock.html, lesson11/js/clock.js, and

lesson11/css/clock.css files.
2. Add the code shown in Listing 11.4 and Listing 11.6 to the HTML and CSS

files. Just basic stuff.
3. Open the clock.js file and add the following ready() function that adds a

timeout and interval timer to the web page:
Click here to view code image

01 $(document).ready(function(){
02 setTimeout(continueNotify, 3000);
03 setInterval(displayTime, 1000);
04 });

4. Add the following continueNotify() function that will execute after 3
seconds. The function prompts users to answer whether they want to continue
to receive notifications; if they do, the timeout is reset so the function will run
again in another 3 seconds:

Click here to view code image

05 function continueNotify(){
06 var result = confirm("Do you wIsh to continue\nto receive
notifications?");
07 if (result==true) { setTimeout(continueNotify, 3000); }
08 }

5. Add the following displayTime() function that will run every second
when the interval timer is triggered. This function updates the #clock
element with the current time string. The padNumber() function is used to
add a leading zero for numbers less than 10:

Click here to view code image

13 function displayTime(){
14 var date = new Date();
15 $("#clock").html(padNumber(date.getHours()) +":"+
16 padNumber(date.getMinutes()) +":"+
17 padNumber(date.getSeconds()));
18 }

6. Save all three files and then open the HTML document in a web browser, as
shown in Figure 11.3. The time should automatically begin to update. When the
prompt appears, try canceling it first and then accepting it the second time. You
shouldn’t see it again.

FIGURE 11.3 Simple timer and dialog app.

LISTING 11.4 clock.html HTML File Basic Web Used to Display a Time Element

Click here to view code image

01 <!DOCTYPE html>

02 <html>
03 <head>
04 <title>Clocks</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/clock.js"></script>
08 <link rel="stylesheet" type="text/css" href="css/clock.css">
09 </head>
10 <body>
11 <div></div>
12 </body>
13 </html>

LISTING 11.5 clock.js jQuery and JavaScript Code That Implements a Timeout
and Interval Timer

Click here to view code image

01 $(document).ready(function(){
02 setTimeout(continueNotify, 3000);
03 setInterval(displayTime, 1000);
04 });
05 function continueNotify(){
06 var result = confirm("Do you wish to continue\nto receive
notifications?");
07 if (result==true) { setTimeout(continueNotify, 3000); }
08 }
09 function padNumber(num){
10 if (num<10){ return "0"+num; }
11 return num;
12 }
13 function displayTime(){
14 var date = new Date();
15 $("#clock").html(padNumber(date.getHours()) +":"+
16 padNumber(date.getMinutes()) +":"+
17 padNumber(date.getSeconds()));
18 }

LISTING 11.6 clock.cs CSS Code That Styles the Clock

1 div {padding:15px;}
2 span{
3 background-color:black;
4 color:#00FF00;
5 font:30px arial;
6 padding:5px;
7 border:5px groove;
8 }

Summary
This lesson focused on using JavaScript objects to access data outside the web page.
You learned that there are screen, window, browser, location, and history objects that
provide a myriad of details about the physical screen, browser, and client history, as
well as access to cookies.
You saw how to open and close browser windows. Using JavaScript, you also learned
how to create basic pop-ups that allow you to interact with the user.

Q&A
Q. Is there a way to find out what operating system and browser is being used?
A. Yes. The navigator object will show you the browser in the
window.navigator.appCodeName attribute. You can also get the
operating system using window.navigator.platform.

Workshop
The workshop consists of a set of questions and answers designed to solidify your
understanding of the material covered in this lesson. Try to answer the questions before
looking at the answers.

Quiz
1. What are the three types of pop-up boxes supported by JavaScript?
2. How do you use JavaScript to find the full URL that was used to load the web

page?
3. True or false: You can navigate backward through the browser history but not

forward.

Quiz Answers
1. Alert, confirmation, and prompt.
2. Access the location.href attribute.
3. False. You can navigate forward using history.forward() or
history.go(n).

Exercises
1. Open the code in Listings 11.1, 11.2, and 11.3 and modify the ready() function

to get a cookie named buttonColor. If the buttonColor cookie is set,

change the color of the buttons using the following jQuery line:
Click here to view code image

$("span").css("color", getCookie("buttonColor"));

2. Open the code in Listings 11.4, 11.5, and 11.6 and modify the prompt to ask the
user for a number of seconds before the next notification. If the user enters 0,
terminate the notification. Otherwise, use the value in the setTimeout() call.
Remember that you need to multiply the number of seconds by 1000 to get
milliseconds.

Part III: Building Richly Interactive
Web Pages with jQuery

Lesson 12. Enhancing User Interaction Through jQuery
Animation and Other Special Effects

What You’ll Learn in This Lesson:
 Understanding animation fundamentals
 Creating sliding elements
 Creating image galleries using simple resize and transparency animations
 Implementing expandable and collapsible elements
 How to delay animations for better effects
 How to animate element movement for dynamic web apps

One of the most important features of jQuery is the capability to add animations to
changes you are making to elements. This provides the user with the feel of a slick,
well-developed application rather than a clunky, traditional web page.
This is especially true if you are moving, resizing, or dynamically adding elements to
the web page. It is very frustrating as a user to all of a sudden have a bunch of new
things appear or disappear. Using animations for transitions gives users a chance to see
where things are leaving or coming from and adjust their mindset to accept the changes.
This lesson focuses on helping you understand the fundamentals of animation. Then you
will get a chance to apply those new skills in a series of practical examples.

Understanding jQuery Animation
jQuery animation is the process of modifying a property of an HTML element from one
value to another in an incremental fashion visible to the user. This section describes that
process and how to implement animations on CSS attributes.

Animating CSS Settings
Most animation in jQuery is done via the .animate() method. The .animate()
jQuery method allows you to implement animations on one or more CSS properties.
Keep in mind that the .animate() method acts on all elements in the jQuery object
set at the same time. Often you will want to act on only a single element, so you will
need to filter the set down to one.
The .animate() method accepts a CSS property object mapping as the first argument.
You can specify more than one property in the object to animate multiple properties at
the same time. For example, the following code animates the height and width
properties for elements:
Click here to view code image

$("img").animate({height:100, width:100});

Note
The .animate() method can animate only properties that have a
numerical value. For example, you will not be able to animate border
styles, but you can animate border size.

There are a couple of ways to call the animate method. The following shows the syntax
of both:
Click here to view code image

.animate(properties [, duration] [, easing] [, complete])

.animate(properties, options)

The first method allows you to specify the duration, easing, and complete
functions as optional arguments. The second method allows you to specify the options as
a single option map object. For example, the following calls .animate() with a
duration and easing object map:
Click here to view code image

$("img").animate({height:100, width:100}, {duration:1000,
easing:"linear"});

Tip
You cannot animate color changes using the color names; however, you can
animate color changes using the hex values, such as #ff0000.

Table 12.1 describes the different options available for the .animate() method.
These options are also available on some of the other animation methods that are
discussed later in this lesson.

TABLE 12.1 Animation Options

Understanding Animation Queues
Animations happen asynchronously with code executing, meaning that the code
continues to execute while the animation is happening. What happens if you specify
another animation for an object before the first one completes? The answer is that
jQuery queues the animations and then executes them in order, one after another, until all
are competed; that is, unless you specify queue:false in the animation options.
You must understand the animation queue because if you allow user interactions to
queue too many animations by moving the mouse or clicking, the animations will be
sluggish and behind the users’ actions.

Caution
You must pay attention to where you trigger your animations from.
Remember that events will bubble up. If you execute the same animation
from all levels during the bubble-up phase, you could have some seriously
undesired results. To prevent this, you can use the
stopPropagation() and stopImmediatePropagation()
methods.

Stopping Animation
jQuery enables you to stop the current animations currently executing on elements
contained in the jQuery object set. The .stop([clearQueue] [,
jumpToEnd]) method allows you to stop animations in a few ways.
Calling .stop() with no parameters pauses the animations that are in the queue. The
next animation that starts will begin executing animations in the queue again. For
example, the following code pauses all animations:

$("*").stop();

Calling .stop(true), with the cleareQueue option set to true, stops
animations at the current point and removes all animations from the queue. For example,
the following stops all animations on images and removes the animations from the
queue:

$("img").stop(true);

Calling .stop(true, true), with the jumpToEnd option set to true, causes the
currently executing animation to jump to the end value immediately, clear the queue, and
then stop all animations. For example, the following stops all animations on images but
finishes the adjustment made by the current animation and then removes the animations
from the queue:

$("img").stop(true, true);

The .stop() method returns the jQuery object, so you can chain additional methods
onto the end. For example, the following code stops all animations on images and then
starts a new one to set the opacity to .5:
Click here to view code image

$("img").stop(true, true).animate({opacity:.5}, 1000);

Delaying Animation
A great option when implementing animations is adding a delay before the animation is
added to the queue. This can be used to provide animations in a more advanced way
because you delay the execution of the animation queue, allowing the user a better
visual experience.
The .delay(duration, [, queueName]) method enables you to specify the
delay duration in milliseconds, as well as an optional queueName that specifies
what queue to apply the delay to. For example, the following code adds a size animation
to images; then after the size is complete, there will be a delay of 2 seconds and the
opacity will animate up to 1:

Click here to view code image

$("img").animate({width:500}, 1000).delay(2000).animate({opacity:1} 1000);

Note
The .delay() method is great for delaying between queued jQuery
effects; however, it is not a replacement for the JavaScript
setTimeout() function, which may be more appropriate for certain use
cases—especially those cases that you require to have the capability to
cancel the delay.

Applying .promise() to Animations
The .promise([type], [, target]) method allows you to apply
functionality after all actions bound to the jQuery object’s set are completed. It does this
by returning a new object that will observe the actions and not execute any attached
methods until the actions have completed.
The .promise() returns an object similar to a deferred object. It has a .done()
method that enables you to pass in a function that will be run after the .promise()
functionality has been executed.
For example, the following code waits for animations to complete, then changes the text
to “complete”:
Click here to view code image

$("span").animate({opacity:0}, 30000).promise().done(function(){
 $("p").html("complete");
 });

The .promise() method accepts two optional arguments. The first is type, which
specifies the type of action. The default type is fx, which applies to animations; so for
animations, you do not need to specify the type. The second parameter is target,
which specifies an optional target jQuery object to return rather than a newly created
one.

Animating Show and Hide
You have already seen the .show() and .hide() methods in action in Lesson 9. It is
common practice to animate this functionality, so jQuery has nicely provided animation
options for these methods to make your life easier.

Animating hide()
The .hide([duration] [, easing] [, callback]) method provides

the optional duration, easing, and callback options allowing you to animate
the hide effect, making less of a jump when the element disappears.
For example, the following code applies an animation of 1 second with linear easing
and executes a simple callback function when hiding an element:
Click here to view code image

$("#box").hide(1000, "linear", function() { $("#label").html("Hidden!")
});

Animating show()
The .show([duration] [, easing] [, callback]) method provides
the optional duration, easing, and callback options allowing you to animate
the show effect, making a more easy transition as an element appears.
For example, the following code applies an animation of 1 second with linear easing
and executes a simple callback function when showing an element:
Click here to view code image

$("#box").show(1000, "linear", function() { $("#label").html("Shown!") });

Animating toggle()
The .toggle([duration] [, easing] [, callback]) method
provides the optional duration, easing, and callback options allowing you to animate the
toggle between the show or hide effect when toggling between them.
For example, the following code applies an animation of 1 second with linear easing
and executes a simple callback function when toggling an element between hidden or
shown:
Click here to view code image

$("#switch").toggle(1000, "linear", function() { $("#label").html("Switch
Toggled!") });

Try it Yourself: Using Show and Hide Animations to Create an
Expand/Collapse Element

In this example, you create a simple web element that provides a title bar with a
collapse and expand button on the left, allowing you to expand and collapse an
image. The purpose of the exercise is to provide you with a chance to use the
show and hide animations. The code for the example is in Listings 12.1, 12.2, and
12.3.
Use the following steps to create the dynamic web page:
1. In Eclipse, create the lesson12, lesson12/js, and lesson12/css folders, and

then add the lesson12/image_hide.html, lesson12/js/image_hide.js, and
hou12/css/image_hide.css files.

Note
For the exercises in this lesson, you will need to use your own images or
get the images from the book’s website.

2. Add the code shown in Listing 12.1 and Listing 12.3 to the HTML and CSS
files. It’s just basic stuff—a <div> with used for a handle, an
, and a footer <div>.

3. Open the image_hide.js file and add the following load() function that adds
a click handler to the #handle element:

Click here to view code image

01 $(window).load(function(){
02 $("#handle").click(toggleImage);
03 });

4. Add the following handler to toggle the visibility of the image. The if
statement checks the text in #handle and then either calls show() to display
the image or hide() to hide it. Notice that on show(), there is a complete
function that displays the footer, letting the user know that the image is ready.
On hide(), the footer is hidden:

Click here to view code image

04 function toggleImage(){
05 if ($("#handle").html() == '+'){
06 $("#photo").show(1000, function(){$("#footer").show();});
07 $("#handle").html('-');
08 } else {
09 $("#footer").hide();
10 $("#photo").hide(1000);
11 $("#handle").html('+');
12 }
13 }

5. Save all three files and then open the HTML document in a web browser, as
shown in Figure 12.1. You should be able to expand the image and collapse it
and see the footer displayed at the appropriate time.

FIGURE 12.1 Simple expand/collapsible image element.

LISTING 12.1 image_hide.html HTML File Basic Web Used to Display the
Collapsible Image Element

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Image Hide</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/image_hide.js"></script>
08 <link rel="stylesheet" type="text/css" href="css/image_hide.css">
09 </head>
10 <body>
11 <div>
12 <div id="title">-Canon</div>
13
14 <div id="footer">Image Ready</div>
15 </div>
16 </body>
17 </html>

LISTING 12.2 image_hide.js jQuery and JavaScript Code That Implements the
Collapsible Image

Click here to view code image

01 $(window).load(function(){
02 $("#handle").click(toggleImage);
03 });
04 function toggleImage(){
05 if ($("#handle").html() == '+'){
06 $("#photo").show(1000, function(){$("#footer").show();});
07 $("#handle").html('-');
08 } else {
09 $("#footer").hide();
10 $("#photo").hide(1000);
11 $("#handle").html('+');
12 }
13 }

LISTING 12.3 image_hide.css CSS Code That Styles the Collapsible Image
Element

Click here to view code image

01 div{ width:300px; text-align:center; }
02 #title, #handle, #footer{
03 background-color:blue; color:white;
04 font-weight:bold;
05 }
06 #handle{
07 display:inline-block; width:20px; float:left;
08 background-color:black; cursor:pointer;
09 }
10 #footer{
11 font-size:10px; background-color:black;
12 margin-top:-5px
13 }

Animating Visibility
jQuery also provides animation capability in fade methods attached to the jQuery
objects. In the end, the fade methods are equivalent to using .animate() on the
opacity property.
The following sections describe applying animation to the various fading methods.

fadeIn()
The .fadeIn([duration] [, easing] [, callback]) method
provides the optional duration, easing, and callback options allowing you to
animate fading the opacity of an element from its current value to 1.
For example, the following code applies an animation of 1 second with swing easing
to all image elements:
Click here to view code image

$("img").fadeIn(1000, "swing");

fadeOut()
The .fadeIn([duration] [, easing] [, callback]) method
provides the optional duration, easing, and callback options allowing you to
animate fading the opacity of an element from its current value to 0.
For example, the following code applies an animation of 1 second with swing easing
to all image elements and then, when completed, fades them back in again:
Click here to view code image

$("img").fadeOut(1000, "swing", function() { $(this).fadeIn(1000);});

fadeToggle()
The .fadeToggle([duration] [, easing] [, callback]) method
provides the optional duration, easing, and callback options allowing you to
animate fading the opacity of an element from its current value to 0 or 1, depending
on its current value.
For example, the following code applies an animation of 3 seconds with swing easing
to all image elements. Images that are currently visible are faded out, and images that
are currently transparent are faded in:
Click here to view code image

$("img").fadeToggle(3000, "swing");

fadeTo()
The .fadeTo(duration, opacity [, easing] [, callback])
method provides the duration and opacity options that specify a specific opacity
to end at and how long to animate the transition. It also provides optional easing and
callback arguments.
For example, the following code applies an animation of 2 seconds for all images to
transition from the current opacity to .5:

$("img").fadeTo(2000, .5);

Try it Yourself: Using Fade Animation to Implement an Image Selection
Effect

In this example, you apply a fade animation to an image set, allowing you to alter
the transparency as the mouse hovers over an image. The purpose of the exercise
is to provide you with a chance to use some of the fading techniques discussed in
this section. The code for the example is in Listings 12.4, 12.5, and 12.6.
Use the following steps to create the image selection page:
1. In Eclipse, create the lesson12/image_fade.html, lesson12/js/image_fade.js,

and lesson12/css/image_fade.css files.
2. Add the code shown in Listing 12.4 and Listing 12.6 to the HTML and CSS

files—just a basic <div> with five elements.
3. Open the image_fade.js file and add the following load() function that adds

a mouseover and mouseout handler to all the elements. The
mouseover handler fades the image to an opacity of 1, which makes it
fully opaque; the mouse out fades it back to .3 so that it will be transparent
when the mouse is not over it:

Click here to view code image

1 $(window).load(function(){
2 $("img").mouseover(function(){$(this).fadeTo(1000, 1);});
3 $("img").mouseout(function(){$(this).fadeTo(1000, .3);});
4 });

4. Save all three files and then open the HTML document in a web browser, as
shown in Figure 12.2. You should be able to move the mouse over the images
and see the transparency change.

FIGURE 12.2 A simple image selection that adjusts transparency as the mouse

moves over an image.

LISTING 12.4 image_fade.html HTML File Basic Web Used to Display the Images

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Image Highlighting and Fading</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/image_fade.js"></script>
08 <link rel="stylesheet" type="text/css" href="css/image_fade.css">
09 </head>
10 <body>
11 <div>
12 <div id="photos">
13
14
15
16
17
18 </div>
19 </body>
20 </html>

LISTING 12.5 image_fade.js jQuery and JavaScript Code That Implements Image
Selection Fades

Click here to view code image

01 $(window).load(function(){
02 $("img").mouseover(function(){$(this).fadeTo(1000, 1);});
03 $("img").mouseout(function(){$(this).fadeTo(1000, .3);});
04 });

LISTING 12.6 image_fade.js CSS Code That Styles the Collapsible Image Element

01 div{padding:0px;}
02 img{
03 float:left;
04 opacity:.3;
05 height: 100px;
06 }

Sliding Elements
A common animation is the sliding effect. A sliding effect transitions an element from
taking no space to taking space from a starting edge to the finish edge. Using sliding
animations gives the user a richer experience because menus, images, and other
elements can be “tucked” away until the user moves the mouse over them or clicks them.
You can use a couple of ways to create a sliding element. One way is to use the built-in
jQuery slide methods. The second is to animate the height and width properties. The
following sections describe each of these methods.

Animating slideUp(), slideDown(), and slideToggle()
The .slideUp(duration [, easing] [, callback]), .slideDown(
duration [, easing] [, callback]), and .slideToggle(
duration [, easing] [, callback]) methods provide the duration, easing,
and callback arguments allowing you to animate sliding effects in the vertical direction.
For example, the following code applies an animation of 1 second to slide an element
down, and then applies a delay of 3 seconds and slides the element back up:
Click here to view code image

$("#menu").slideDown(1000).delay(3000).slideUp(1000);

You can also animate the .slideToggle() method in a similar fashion. For
example, the following code animates visibility of a <div> element using a slide
animation:

$("div").slideToggle(1000);

Sliding Using Width and Height
We also like to use the width and height properties to create a sliding element. You can
create a vertical slide animation by animating the height and create a horizontal slide
animation by animating the width.
There are a couple of tricks. You need to provide both a width and a height value for the
element if you want to have the full slide effect and not just a resize effect. Also, if you
want the element to maintain space on the page, you cannot animate the value all the way
down to 0. However, you can animate down to .1 and the other dimension will retain its
space.
The following example shows an animation that animates sliding down by changing the
height to 100 and then back up by changing the height to .1:
Click here to view code image

$("img").animate({height:100}, 1000);
$("img").animate({height:.1}, 1000);

Try it Yourself: Using Sliding Animation to Implement a Dynamic Menu
In this example, you create a simple web element that provides a title bar with a
sliding effect that reveals an image menu. As you hover over each item in the
menu, an image slides down and then slides back up as you leave the menu. The
purpose of the exercise is to provide you with a chance to use some of the sliding
techniques discussed in this section. The code for the example is in Listings 12.7,
12.8, and 12.9.
Use the following steps to create the dynamic web page:
1. In Eclipse, create the lesson12/sliding_images.html,

lesson12/js/sliding_images.js, and lesson12/css/sliding_images.css files.
2. Add the code shown in Listing 12.7 and Listing 12.9 to the HTML and CSS

files—just basic stuff: a <div> with a <p> for a title bar, and an inner
<div> containing the used for menus and elements.

3. Open the sliding_images.js file and a basic $(window).load() function.
Inside the load() function, add the following line that will hide the inner
<div>:

02 $("div div").hide();

4. Add the following statements to add mouseover and mouseout handlers
to the elements. On mouseover, you get the index of the
and then use it to find the corresponding element and animate setting
the height to 100, thus sliding down the image. On mouseout, you do the
opposite, setting the height to 1 to slide it up:

Click here to view code image

03 $("span").mouseover(function(){
04 var i = $(this).index("span");
05 $("img").eq(i).animate({height:100}, 1000);
06 });
07 $("span").mouseout(function(){
08 var i = $(this).index("span");
09 $("img").eq(i).animate({height:.1}, 1000);
10 });

5. Add the following statements to add mouseenter and mouseleave
handlers to the #container element. On mouseenter, you first stop
propagation so that you apply the slide toggle only once during bubbling. Then
you stop all animation on the #images element and use slideToggle()
to animate sliding the entire menu. The same occurs on mouseleave. The

result is that when the mouse is over the #container element, it slides
down and slides back up when the mouse leaves:

Click here to view code image

11 $("#container").mouseenter(function(e){
12 e.stopPropagation();
13 $("#images").stop(true).slideToggle(1000);
14 });
15 $("#container").mouseleave(function(e){
16 e.stopPropagation();
17 $("#images").stop(true).slideToggle(1000);
18 });

6. Save all three files and then open the HTML document in a web browser, as
shown in Figure 12.3. You should be able to expand the menu, and as you
hover over each menu item, the image should slide down and back up when
you leave.

FIGURE 12.3 Simple sliding menu element.

LISTING 12.7 sliding_images.html HTML File Basic Web Used to Display the
Sliding Menu Element

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Sliding Images</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/sliding_images.js"></script>
08 <link rel="stylesheet" type="text/css"
href="css/sliding_images.css">
09 </head>
10 <body>
11 <div id="container">
12 <p>Images</p>
13 <div id="images">
14 Image 1
15 Image 2
16 Image 3
17 Image 4

18
19
20
21
22 </div>
23 </div>
24 </body>
25 </html>

LISTING 12.8 sliding_images.js jQuery and JavaScript Code That Implements the
Sliding Image Menu

Click here to view code image

01 $(window).load(function(){
02 $("div div").hide();
03 $("span").mouseover(function(){
04 var i = $(this).index("span");
05 $("img").eq(i).animate({height:100}, 2000);
06 });
07 $("span").mouseout(function(){
08 var i = $(this).index("span");
09 $("img").eq(i).animate({height:1}, 2000);
10 });
11 $("#container").mouseenter(function(e){
12 e.stopPropagation();
13 $("#images").stop(true).slideToggle(1000);
14 });
15 $("#container").mouseleave(function(e){
16 e.stopPropagation();

17 $("#images").stop(true).slideToggle(1000);
18 });
19 });

LISTING 12.9 sliding_images.css CSS Code That Styles the Sliding Menu

Click here to view code image

01 img{
02 display:inline-block; width:150px; height:1px;
03 margin:0px; padding:0px; float:left;
04 }
05 p, span {
06 display:inline-block; width:600px;
07 background-color:black; color:white;
08 margin:0px; padding:0px; text-align:center;
09 }
10 span {
11 width:150px; margin:-1px;
12 border:1px solid; background-color:blue; float:left;
13 }
14 #container { width:610px; }

Creating Resize Animations
Similar to using the height and width to create a sliding effect, you can also use them to
create a resize animation. The difference between a slide and a resize is that the aspect
ratio of the image is maintained on a resize, giving the overall appearance that the
element is growing or shrinking rather than being unfolded or untucked.
The trick to creating a resize animation is that you either need to specify both height and
width in the .animate() statement, or one of them has to be auto in the CSS settings,
and you animate only the one that has a value.
For example, the following code shows a resize animation of an image up to 500 pixels
over 1 second, and then slowly over 5 seconds back down to 400 pixels:
Click here to view code image

$("img").animate({height:500, width:500}, 1000).animate({height:500,
width:500},
5000);

Try it Yourself: Using a Resize Animation to Create a Simple Image Gallery
View

In this example, you create a simple image gallery view that resizes an image and
applies opacity changes in the same animation. The purpose of the exercise is to

provide you with a chance to use some of the resizing techniques discussed in this
section. The code for the example is in Listings 12.10, 12.11, and 12.12.
Use the followings steps to create the dynamic web page:
1. In Eclipse, create the lesson12/animated_resize.html,

lesson12/js/animated_resize.js, and lesson12/css/animated_resize.css files.
2. Add the code shown in Listing 12.10 and Listing 12.12 to the HTML and CSS

files—just a basic <div> with elements. In the CSS file, the
elements are styled to a width of 100px, but no height is set. That way we can
animate the size without using the height property.

3. Now open the animated_resize.js file and a basic load() function that adds
mouseover and mouseout handlers to the elements. On
mouseover, you get the animation by increasing the width and opacity,
and do the opposite on mouseout:

Click here to view code image

1 $(window).load(function(){
2 $("img").mouseover(function(){
3 $(this).animate({width:"200px", opacity:1}, 1000);
4 });
5 $("img").mouseout(function(){
6 $(this).animate({width:"100px", opacity:.3}, 1000);
7 });
8 });

4. Save all three files and then open the HTML document in a web browser, as
shown in Figure 12.4. You should be able to hover over the images and see the
resize animation.

FIGURE 12.4 Simple sliding menu element.

LISTING 12.10 animated_resize.html HTML File Basic Web Used to Display the
Images

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Animated Image Resizing</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/animated_resize.js">
</script>
08 <link rel="stylesheet" type="text/css"
href="css/animated_resize.css">
09 </head>
10 <body>
11 <div id="photos">
12
13
14
15
16
17 </div>
18 </body>
19 </html>

LISTING 12.11 animated_resize.js jQuery and JavaScript Code That Implements
the Resize Effect

Click here to view code image

01 $(window).load(function(){
02 $("img").mouseover(function(){
03 $(this).animate({width:"175px", opacity:1}, 1000);
04 });
05 $("img").mouseout(function(){
06 $(this).animate({width:"100px", opacity:.3}, 1000);
07 });
08 });

LISTING 12.12 animated_resize.css CSS Code That Styles the Images

01 div{padding:0px;}
02 img{
03 opacity:.3;

04 width:100px;
05 float:left;
06 }

Implementing Moving Elements
Another dynamic that is good to animate is repositioning of elements—specifically,
moving an element from one location to another. Users hate it when they do something
and page elements are all of a sudden in a different location. Animating the move
enables them to see where things go and make the necessary adjustments in their
thinking.
The following sections describe methods of animating the repositioning of elements.
You also get a chance to implement some code that should solidify the concepts for you.

Animating Element Position Changes on Static Elements
You cannot directly alter the position of static page elements, because they simply flow
with the items around them. However, you can animate the margin and padding
properties. For example, the following code animates a move of all <p> elements to the
right by animating the margin-left property:
Click here to view code image

$("p").animate({"margin-left":30}, 1000);

Animating Element Position Changes on Nonstatic Elements
Most of the move animation you do will be on nonstatic elements, and usually it will be
on fixed elements, simply because it is much easier and safer to move those without
needing to worry about other element positions.
Either way, it doesn’t matter if it is a fixed, absolute, or relative positioned element—
you will still be animating the same two values, top and left. To animate movement
vertically, you use top, and to animate horizontally, you use left. For example, the
following statements animate moving an element to the right 10 pixels and then down 10
pixels:
Click here to view code image

var position = $("#element").offset();
$("#element").animate({top:position.top+10}, 1000);
$("#element").animate({top:position.left+10}, 1000);

You can also animate in a diagonal direction by animating both top and left at the
same time. For example, the following code animates movement down 10 pixels and to
the right 100 pixels in the same animation:

Click here to view code image

var position = $("#element").offset();
$("#element").animate({top:position.top+10, top:position.left+100}, 1000);

Try it Yourself: Creating a Simple Flying Saucer App with jQuery Animation
In this example, you create a simple web app that provides controls to fly a flying
saucer around a bunch of moons. The purpose of the exercise is to provide you
with a chance to use some of the move animation techniques to move the flying
saucer around the page. The code for the example is in Listings 12.13, 12.14, and
12.15.
Use the following steps to create the dynamic web page:
1. In Eclipse, create the lesson12/interactive_animation.html, lesson12/js/

interactive_animation.js, and lesson12/css/interactive_animation.css files.
2. Add the code shown in Listing 12.13 and Listing 12.15 to the HTML and CSS

files. The HTML code displays a set of images for the controls. You can use a
couple of elements as spacers for the controls. The rest of the images
are the flying saucer and the moons. Each moon has its own id so that it can be
positioned in CSS.

3. Open the interactive_animation.js file and the following global variables and
basic load() function. The variables store the height and width of the
browser pane so that you can use that to know when to stop the animation. It is
also used in line 4 to position the plane image in the middle of the web page:

Click here to view code image

01 var rightEdge = window.innerWidth;
02 var bottomEdge = window.innerHeight;
03 $(window).load(function(){
$("#ship").offset({top:bottomEdge/2, left:rightEdge/2});
...
22 });

4. Add the following handlers for the control buttons. Notice that each handler
first changes the image src for the plane, stops the current animation, and then
animates the left or top properties to move the plane. The #stop handler
stops all animation and clears the animation queue:

Click here to view code image

05 $("#up").click(function(){
06 $("#ship").attr("src","/images/saucerUp.png");
07 $("#ship").stop(true).animate({top:0}, 5000);
08 });
09 $("#left").click(function(){
10 $("#ship").attr("src","/images/saucerRight.png");

11 $("#ship").stop(true).animate({left:0}, 5000);
12 });
13 $("#right").click(function(){
14 $("#ship").attr("src","/images/saucerLeft.png");
15 $("#ship").stop(true).animate({left:rightEdge}, 5000);
16 });
17 $("#down").click(function(){
18 $("#ship").attr("src","/images/saucerDown.png");
19 $("#ship").stop(true).animate({top:bottomEdge}, 5000);
20 });
21 $("#stop").click(function(){ $("#ship").stop(true) });

5. Save all three files and then open the HTML document in a web browser, as
shown in Figure 12.5. You should be able to fly the flying saucer around using
the control buttons. It’s a very basic example, but a good way to help you
understand movement animation.

FIGURE 12.5 A simple web app that allows the user to fly a flying saucer around the
screen.

LISTING 12.13 interactive_animation.html HTML File Basic Web Used to Display
the Controls, Cones, and Flying Saucer

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>User Interactive Animation</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/interactive_animation.js">
</script>
08 <link rel="stylesheet" type="text/css"
href="css/interactive_animation.css">
09 </head>
10 <body>
11 <div>
12
13 </br>
14
15
16

17
18
19
20
21
22
23
24 </div>
25 </body>
26 </html>

LISTING 12.14 interactive_animation.js jQuery and JavaScript Code That
Implements the Flying Saucer Movement Animation Using Click Handlers

Click here to view code image

01 var rightEdge = window.innerWidth;
02 var bottomEdge = window.innerHeight;
03 $(window).load(function(){
04 $("#ship").offset({top:bottomEdge/2, left:rightEdge/2});
05 $("#up").click(function(){
06 $("#ship").attr("src","/images/saucerUp.png");
07 $("#ship").stop(true).animate({top:0}, 5000);
08 });
09 $("#left").click(function(){
10 $("#ship").attr("src","/images/saucerRight.png");

11 $("#ship").stop(true).animate({left:0}, 5000);
12 });
13 $("#right").click(function(){
14 $("#ship").attr("src","/images/saucerLeft.png");
15 $("#ship").stop(true).animate({left:rightEdge}, 5000);
16 });
17 $("#down").click(function(){
18 $("#ship").attr("src","/images/saucerDown.png");
19 $("#ship").stop(true).animate({top:bottomEdge}, 5000);
20 });
21 $("#stop").click(function(){ $("#ship").stop(true) });
22 });

LISTING 12.15 interactive_animation.js CSS Code That Styles the Controls,
Cones, and Flying Saucer

Click here to view code image

01 img{ width:40px;}
02 span{ width:40px; height:40px; display:inline-block;}
03 #ship{ position:fixed; width:100px;}
04 #moon1{ position:fixed; top:100px; left: 500px; width:70px;}
05 #moon2{ position:fixed; top:200px; left: 100px; width:70px;}
06 #moon3{ position:fixed; top:300px; left: 300px; width:70px;}
07 #moon4{ position:fixed; top:400px; left: 600px; width:70px;}
08 body {
09 background-image:url("/images/nightSky.png");
10 background-repeat:repeat;
11 }

Summary
In this lesson, you learned the basics of web animations and how to apply them to
changes you make to elements. Most animations can be done using the .animate()
method that is available on jQuery objects. You learned about the animation queue, how
to stop animations and clear the queue, as well as how to delay the animations.
jQuery also provides several helper functions, such as fadeIn()/fadeOut() and
show()/hide(), that simplify some of the more common animation tasks. You
learned how to create some practical page elements as well as a simple app to waste
time flying paper airplanes.

Q&A
Q. Is there a way to globally disable all animations?
A. Yes. You can set jQUery.fx.off to set all animations to the final state and

disable animations. This is a useful feature if you want to disable animations for
testing or if you want to allow users to disable the animations on slower devices.
Setting the value to false enables animations again.

Q. Is there a way to control the number of steps required to compete the
animation?

A. Sort of. You can set the jQuery.fx.interval value to the number of
milliseconds between steps. This controls the frames per second at which the
animations run. You should be careful with this setting, though; lowering the
number will make the transitions smoother but will also take up more system
resources.

Workshop
The workshop consists of a set of questions and answers designed to solidify your
understanding of the material covered in this lesson. Try to answer the questions before
looking at the answers.

Quiz
1. Is it possible to control when an animation occurs?
2. How do you animate color changes?
3. True or false: Animating the width property only will always keep the image

aspect ratio.
4. True or false. You cannot animate movement in static elements.
5. Is there a way to execute a function after all animations have completed?

Quiz Answers
1. Yes, partially. Using the .delay() method or setTimeout(), you can delay

an animation for a period of time.
2. You must use the hex color values, such as #ffffff.
3. False. If height is auto, then that is correct; however, if height is a specific value,

the aspect ratio will be ignored.
4. False. You can animate margins and padding to provide some movement

animations.
5. Yes, using the .promise() method.

Exercises
1. Open up the code in Listing 12.1. Add a second to the #title

<div> to place the “Image” text in. Then hide and expand that as well
as the image.

2. Open the code in Listings 12.10, 12.11, and 12.12. Modify the code by adding a
click handler for the images. In the click handler, stop all animation without
completing the current animation. Then turn off the mouseover and mouseout event
handler using $(this).off("mouseover"); and so on.

3. Open the code for Listings 12.13, 12.14, and 12.15. Modify the code to add four
new buttons for diagonal movement. You will also need to add handlers for those
buttons that apply the movement animation by setting the top and left properties in
the same animation.

Lesson 13. Interacting with Web Forms in jQuery and
JavaScript

What You’ll Learn in This Lesson:
 How to get and set form element values
 Dynamically building form elements
 How to use form element animations to help users navigate the form
 How to automatically focus elements for users
 Creating a basic e-commerce web form
 Simple methods of validating web forms

Web forms are an integral part of dynamic web programming. You may think of forms
only in terms of credit card payments, online registration, and the like; however,
anytime you need actual data input from the user, you will be using web forms to collect
the data input.
Web forms can be a positive or negative experience for users. Think about it for a
second. They know they need to input data. If it seems difficult to input the data because
the form is clunky or difficult to understand, they hate it and have a bad experience. If
the form elegantly guides them through fast and efficiently, then they say, “Wow! That
was easy.”
So how do you give the user a good experience?

1. Use dynamic programming to access the data they are entering to provide a
dynamic workflow that fits what they are doing.

2. Provide visual effects, such as highlights or expanding elements, that help guide
them through the page.

3. Provide inline validation to let them know as soon as possible if they begin to go
astray.

The following sections go through each of the concepts. By the time you are finished,
you will be able to implement some fantastic web forms.

Note
jQuery and JavaScript provide a lot of great functionality when working
with web forms. The AngularJS adds to JavaScript and jQuery with the
capability to bind web form elements to values in the data model for your
web page. You will learn more about that in the AngularJS section of
lessons.

Accessing Form Elements
The most important part of interacting with web forms is being able to access the data
that they represent. Accessing the form data allows you to get and set the values, change
selections, and serialize the data to be used in other ways.
There are numerous types of form elements. Unfortunately, there is not a single standard
method for getting and setting the value the element represents. The following sections
describe ways to access the data in each of the types of form elements.

Getting and Setting Form Element Values
Getting the value a form element represents depends on the form element type. For
example, a text element represents the text inside, whereas a select element represents
the value(s) of the selected element(s).
In the following sections, the form elements are broken into groups based on the
methods to get the form values. For example, all the textual elements are accessed in the
same way, regardless of type.

Accessing Form Element Attributes
The different elements have many of the same attributes as well as a few unique to the
element type. There are several attributes you need to access when implementing
dynamic code:

 id—Used to query for and identify the form element.
 name—Used in multiple fashions. For radio inputs, this attribute is used to
group the elements together so that only one can be selected at a time. For
serialization and submission of the form, the name attribute is used as the name
given to the element’s value.
 type—Used to identify the type of <input> element.
 value—Stores a value that is associated with the element. For text elements, the
value is displayed in the text box; for buttons, it is the string in the button; for
<option> elements, it is the value associated with the option.
 checked—Used to access the selection state of a radio or check box <input>
element.

These attributes can be accessed directly in JavaScript by attribute name. For example,
to get and set the value attribute, you could use the following:

domObj.value = "New Text";
var newValue = domObj.value;

In jQuery, there are three ways to get the properties and attributes of the form objects:

the .attr(), .prop(), and .val() methods. The .attr() method is used to
access attributes of the DOM object that correspond to the HTML attributes, such as id,
name, and type, whereas the .prop() method is used to access properties of the
DOM object that are more JavaScript specific, such as selectedIndex of
<select> elements.

Caution
The .attr(), .prop(), and .val() methods get the values of only
the first element in the matched jQuery set. If you are working with multiple
elements in the set, you might need to use a .map() or .each() method
to get values from all elements.

jQuery provides the .val() method to access values represented by the form element.
In jQuery, the value can be accessed using the .val() method of the jQuery object.
For example, the following statements set the value of all <input> elements with
type="text" element and then get the value of the first:
Click here to view code image

$("input:text").val("New Text");
var newValue = $("input:text").val();

Accessing Text Input Elements
The most common types of form elements are the textual inputs. These elements include
the <textarea> element as well as <input> elements with the following type
attribute values: color, date, datetime, datetime-local, email, month,
number, password, range, search, tel, text, time, url, and week.
Although all of these are a bit different in usage, they all render the same basic text box
and are accessed in the same basic way. Each has a value attribute that can be set in
HTML that will be displayed in the text box as the image is rendered. For example, the
following code shows a basic example of rendering a text form element with an initial
value, as shown in Figure 13.1:
Click here to view code image

<input type="text" value="Initial Text"/>

FIGURE 13.1 A simple text input with an initial value.

That value can be accessed directly from JavaScript by accessing the value attribute.
For example, the following sets the value of a text input element and then gets the value:
Click here to view code image

textDomObj.value = "New Text";
var newValue = textDomObj.value;

In jQuery, the value can be accessed using the .val() method of the jQuery object.
For example, the following statements set the value of all <input> elements with
type="text" element and then get the value of the first:
Click here to view code image

$("input:text").val("New Text");
var newValue = $("input:text").val();

Accessing Check Box Inputs
Check box input elements have a Boolean value based on whether the element is
checked. The value is accessed by getting the value of the checked attribute. If the
element is checked, then checked has a value such as true or "checked";
otherwise, the value is undefined or false.
You can get and set the state of a check box element from JavaScript in the following
manner:

domObj.checked = true;
domObj.checked = false;
var state = domObj.checked;

With jQuery determining if an item is checked, it is a bit different. Remember, in jQuery
you may be dealing with multiple check boxes at once, so the safest way to see if the
jQuery object represents an object that is checked is the .is() method. For example:

jObj.is(":checked");

To set the state of a jQuery object representing check boxes to checked, you set the
checked attribute as follows:

jObj.prop("checked", true);

To set the state of a jQuery object representing check boxes to unchecked is similar.
You need to remove the checked attribute using prop() and setting the value to
false. For example:
Click here to view code image

jObj.prop("checked", false);

Accessing Radio Inputs
Individual radio inputs work the same way as check boxes. You can access the checked
state the same way.
However, radio inputs are almost always used in groups. The value of a radio input
group represents is not Boolean. Instead, it is the value attribute of the currently

selected element.
When submitting the form or serializing the form data, the value of the radio input group
is automatically populated. To get the value of a radio input group in code, you need to
first access all the elements in the group, find out which one is selected, and then get the
value attribute from that object. The following code will get the value of a radio input
group that is grouped by name="myGroup" in jQuery:
Click here to view code image

var groupValue = $("input[name=myGroup]").filter(":checked").val();

The code first finds the <input> elements with name="myGroup", then filters them
down to the ones that are checked, and finally returns the value.

Accessing Select Inputs
Select inputs are really container inputs for a series of <option> elements. The value
of the select element is the value(s) of the currently selected option(s). Again, the
submission and serialization in jQuery and JavaScript automatically handle this for you.
However, to do it manually requires a bit of code.

Note
If you do not specify a value attribute for an <option> element, the value
returned will be the value of the innerHTML. For example, the value of the
following option is "one": <option>one</option>

There are a couple of values that you may want when accessing a <select> element.
One is the full value represented by the element. To get that value is very simple in
jQuery using the .val() method. For example, consider the following code:
HTML:
Click here to view code image

<select id="mySelect">
 <option value="one">One</option>
 <option value="two">Two</option>
 <option value="three">Three</option>
</select>

jQuery:
$("#mySelect").val();

The value returned by the jQuery statement if the first option is selected is the
following:

"one"

For multiple selects, the .val() method returns an array of the values instead of a
single value. For example, on a multiple select, the value returned by the jQuery
statement if the first option is selected is the following:

["one"]

On a multiple select, the value returned by the jQuery statement if the first three options
are selected is the following:

["one", "two", "three"]

You can also use the .val() method to set the selected elements. For example, the
following statement selects the second element from the list:

["one", "two", "three"]
$("#mySelect").val("two");

The following statement selects the second and third options in a multiple select
element:
Click here to view code image

["one", "two", "three"]
$("#mySelect").val(["two", "three"]);

Accessing Button Inputs
For the most part, you will not need to access button data, with the possible exception of
the value attribute, which defines the text displayed on the button. The
adding/removing event handlers and CSS properties are all the same as for other
HTML elements.

Accessing File Inputs
The file input is an interestingly different type of form element. It provides both a button
and text box. The button links into the OS’s file browser and the text box displays the
path to the file that needs to be uploaded to the web server.
The value attribute of the file input will be the name of the file, so you can access it
directly from JavaScript or by using the .val() method in jQuery.
In Chrome and Firefox, the DOM object also provides a files attribute that is an array of
file objects representing the files selected by this element. You can access files selected
by the user from JavaScript using the following code:
HTML:
Click here to view code image

<input id=fileSelect type="file" />

JavaScript:

Click here to view code image

var fileSelector = document.getElementById("fileSelect");
var fileList = fileSelector.files;
for (var i in fileList){
 var fileObj = fileList[i];
 var fileName = fileObj.name;
 var filePath = fileObj.mozFullPath;
 var fileSize = fileObj.size;
 var fileType = fileObj.type;
}

Caution
You must be careful when playing around the file input because that seems
to be a sore spot for malicious behavior. Internet Explorer will fail a
submit event on a page if it detects that the file objects have been tampered
with. Also, many browsers have security settings that prevent some to all of
the file information from being available to scripts.

Each file object contains several attributes that are useful in dynamic programming.
Some of the most commonly used are listed in Table 13.1.

TABLE 13.1 Properties of the DOM File Object

Accessing Hidden Inputs
A great HTML element to use if you need to supply additional information to the
browser from a form is the hidden input. The hidden input will not be displayed with the
form; however, it can contain a name and value pair that is submitted, or even just
values that you want to store in the form and have accessible during dynamic operations.
The parts that will be sent with the form are the name and value attributes. However,
you can attach additional values to a hidden form object, or any HTML DOM object
from jQuery, using the .data(key [,value]) method. This method works like
.attr() and .prop() in that you pass it a key if you want to get the value, and a key
and value if you want to set the value. For example, the following code defines a simple
hidden element and then uses jQuery to assign the submission value as well as an

extended attribute:
HTML:
Click here to view code image

<input id="invisibleMan" name="InvisibleMan" type="hidden" />

jQuery:
Click here to view code image

$("#invisibleMan").val("alive");
$("#invisibleMan").data("hairColor", "clear");
var state $("#invisibleMan").val();
var state $("#invisibleMan").data("hairColor");

Serializing Form Data
Many of the input elements in a form can be easily serialized into strings or arrays.
Serializing the form data makes it easier to deal with when storing it, sending it to a
server, or dynamically making adjustments based on a form event.
For a form to be serialized, it needs two things: a name attribute and a value attribute
that can be assigned to the name. Table 13.2 describes the different value sources for
types of attributes.

TABLE 13.2 Properties of the DOM File Object

Converting a Form into a Query String
One of the most common serialization tasks is converting the form data into a serialized
array. jQuery makes this a snap with the .serialize() method. The
.serialize() method will access the form and convert the name/value pairs into an
URL-encoded string ready to be transmitted across the web.
For example, check out the following code that creates a form and then serializes it

based on the values set in Figure 13.2:
HTML:
Click here to view code image

<form id="simpleForm">
 <input name="title" type="text" />

 <select name="mySelection" multiple size=3 id="mySelect">
 <option value="one">One</option>
 <option value="two">Two</option>
 <option value="three">Three</option>
 </select>

 <input type="radio" name="gender" value="male">Male</input>
 <input type="radio" name="gender" value="female">Female</input>

</form>

FIGURE 13.2 Simple form with text, select, and radio inputs.

jQuery:
Click here to view code image

var qString = $("#simpleForm").serialize();

Value of qString:
Click here to view code image

title=Lumber+Jack&mySelection=one&mySelection=two&gender=male

Converting a Form into a JavaScript Object
Another very useful serialization technique is to convert the form data into a JavaScript
object that can then be accessed. The jQuery .serializeArray() method will do
just that. All name/value pairs are converted to an array that can be accessed via your
code.
For example, consider the following jQuery statement running on the same form shown
in Figure 13.2:
Click here to view code image

var formArr = $("#simpleForm").serializeArray();

The resulting value of formArr would be the following:
Click here to view code image

{0: {"name":"title", "value":"Lumber Jack"},

 1: {"name":"mySelection", "value":"one"},
 2: {"name":"mySelection", "value":"two"},
 3: {"name":"gender", "value":"male"}};

Try it Yourself: Accessing and Manipulating Form Element Data
Now that you have had a chance to review the methods of accessing and
interacting with form data, it is time to jump in and do it yourself. In this exercise,
you create a couple of forms to get data from and the other to set the data in. The
result will be that as you update one form, the other is updated as well.
The purpose of the exercise is to provide you with a chance to get and set form
element values in a variety of ways. The code for the example is in Listings 13.1,
13.2, and 13.3.
Use the following steps to create the dynamic web page:
1. In Eclipse, create the lesson13, lesson13/js, and lesson13/css folders, and

then add the lesson13/form_manipulation.html,
lesson13/js/form_manipulation.js, and lesson13/css/form_manipulation.css
files.

2. Add the code shown in Listing 13.1 and Listing 13.3 to the HTML and CSS
files. There is a lot of HTML code, but it is all just defining form elements.
Notice that there are two forms: formA and formB.

3. Open the form_manipulation.js file and a basic .ready() function that you
will add lines of code to that implement event handlers to update formB from
formA data.

4. Add the following line that attaches a keyup handler to the text input so that
when it is changed in formA, the value also changes in formB. The values
are retrieved and set by .val() method:

Click here to view code image

02 $("#formA input:text").keyup(function(){
03 $("#formB input:text").val($(this).val());});

5. Add the following lines that attach a keyup handler to the text and
<textarea> inputs so that when it is changed in formA, the value also
changes in formB. The values are retrieved and set by .val() method:

Click here to view code image

04 $("#formA textarea").keyup(function(){
05 $("#formB textarea").val($(this).val());});

6. Add the following lines that attach a change handler to the radio input group.
Notice that to get the same radio input element in the other form, you need to

get the input element with the same value using $("#formB
input[value=" + $(this).val() + "]");. The value is set using
.prop():

Click here to view code image

06 $("#formA input:radio").change(function(){
07 var radioB = $("#formB input[value=" +
08 $(this).val() + "]");
09 radioB.prop("checked", $(this).is(":checked"));
10 });

7. Add the following lines that attach a click handler to the check box in formA
and uses the .prop() method to check the same check box in formB when
clicked:

Click here to view code image

11 $("#formA input:checkbox").click(function(){
12 $("#formB input:checkbox").prop("checked",
13 $(this).prop("checked"));
14 });

8. Add the following line that attaches a click handler to the selection in formA
so that when the selection changes, the .val() can be called to get the value
from formA and set formB:

Click here to view code image

15 $("#formA select").change(function(){
16 $("#formB select").val($(this).val());});

9. Add the following lines that attach a click handler to the image input so that
when it is clicked, the src attribute of the image input in formB will be
changed to match:

Click here to view code image

20 $("#formA input:image").click(function(e){
21 $("#formB input:image").attr("src", $(this).attr("src"));
22 e.preventDefault();
23 });

10. Add the following click handler for the Reset button. The handler calls the
.reset() function on formB by getting the formB DOM element using
$("#formB").get(0). It then removes the check attribute from all
checked elements and resets the src attribute of the image element:

Click here to view code image

24 $("#resetB").click(function(){
25 $("#formB").get(0).reset();
26 $("#formB input:checked").prop("checked", false);

27 $("#formB input:image").attr("src", "");
28 });

11. Add the following click handler for the Serialize button. The handler first
calls .serialize() on form and writes the string out to the serialized
paragraph element. Then it retrieves a serialized array by calling
.serializeArray(). The jQuery.each() method is used to iterate
through the array and append a new paragraph with name and value pair to the
serializedA paragraph:

Click here to view code image

29 $("#serializeB").click(function(e){
30 $("#serialized").html($("#formA").serialize());
31 $("#serializedA").empty();
32 var arr = $("#formA").serializeArray();
33 jQuery.each(arr, function(i, prop){
34 $("#serializedA").append($("<p>" + prop.name + " = " +
35 prop.value + "</p>"));
36 });
37 });

12. Save all three files and then open the HTML document in a web browser, as
shown in Figure 13.3. You should be able to change the elements in the left
form and see them also change in the right. When you click the Serialize button,
the two <div> elements at the bottom should be populated with the serialized
data from formA.

FIGURE 13.3 Form-to-form manipulation illustrating how to read and write data to
forms as well as serialize the form values.

LISTING 13.1 form_manipulation.html HTML Document That Implements the
Form Elements Used in the Example

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Form Manipulation</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/form_manipulation.js">
</script>
08 <link rel="stylesheet" type="text/css"
href="css/form_manipulation.css">

09 </head>
10 <body>
11 <div><form id="formA">
12 <label>Time</label>

13 <input type="image" src="/images/day.png" />
14 <input type="image" src="/images/night.png" />

15 <input name="tilte" type="text" />

16 <textarea name="comments"></textarea>

17 <input type="radio" name="gender" value="male">Male
18 <input type="radio" name="gender" value="female">Female

19 <input type="checkbox" name="Registered">Registered

20 <select size=3 multiple name="count">
21 <option>One</option><option>Two</option>
<option>Three</option>
22 </select>

23 <input id="resetB" type="button" value="Reset"></input>
24 <input id="serializeB" type="button" value="Serialize"></input>
25 </form></div>
26 <div><form id="formB">
27 <label>Destination</label>

28 <input type="image" alt="No Image"></input>

29 <input type="text" />

30 <textarea></textarea>

31 <input type="radio" name="gender" value="male">Male</input>
32 <input type="radio" name="gender" value="female">Female</input>

33 <input type="checkbox">Checked</input>

34 <select size=3 multiple>
35 <option>One</option><option>Two</option>
<option>Three</option>
36 </select>
37 </form></div>

38 <div><label>Serialized</label><p id="serialized"></p></div>
39 <div><label>Serialized Array</label>
</div>
40 </body>
41 </html>

LISTING 13.2 form_manipulation.js jQuery and JavaScript Code That Implements
a Series of Event Handlers That Read Data from an Element in One Form as It
Changes and Updates the Second

Click here to view code image

01 $(document).ready(function(){
02 $("#formA input:text").keyup(function(){
03 $("#formB input:text").val($(this).val());});
04 $("#formA textarea").keyup(function(){
05 $("#formB textarea").val($(this).val());});
06 $("#formA input:radio").change(function(){
07 var radioB = $("#formB input[value=" +

08 $(this).val() + "]");
09 radioB.prop("checked", $(this).is(":checked"));
10 });
11 $("#formA input:checkbox").click(function(){
12 $("#formB input:checkbox").prop("checked",
13 $(this).prop("checked"));
14 });
15 $("#formA select").change(function(){
16 $("#formB select").val($(this).val());});
17 $("#formA label").click(function(){
18 $("#formB label").html(new Date().toUTCString());
19 });
20 $("#formA input:image").click(function(e){
21 $("#formB input:image").attr("src", $(this).attr("src"));
22 e.preventDefault();
23 });
24 $("#resetB").click(function(){
25 $("#formB").get(0).reset();
26 $("#formB input:checked").prop("checked", false);
27 $("#formB input:image").attr("src", "");
28 });
29 $("#serializeB").click(function(e){
30 $("#serialized").html($("#formA").serialize());
31 $("#serializedA").empty();
32 var arr = $("#formA").serializeArray();
33 jQuery.each(arr, function(i, prop){
34 $("#serializedA").append($("<p>" + prop.name + " = " +
35 prop.value + "</p>"));
36 });
37 });
38 });

LISTING 13.3 form_manipulation.css CSS Code That Styles the Form Elements

Click here to view code image

01 input[type=image] {height:40px; margin-top:15px;}
02 div{
03 vertical-align:top; width:300px; height:auto;
04 display:inline-block; padding:20px; margin:5px;
05 border-radius:10px; border:1px solid;
06 }
07 label{ background-color:blue; color:white;
08 border-radius:8px; padding:5px; }
09 p { margin:1px; padding:2px; width: 100%;
10 border-radius:8px; display:inline-block;
11 word-wrap: break-word; }
12 span {width:300px;}

Intelligent Form Flow Control
Another important aspect of dynamic form control is dynamically helping the user
navigate through the web form. This is especially true when working with more
complex web forms. The way that you help users navigate through the web form is by
automatically changing the focus for them, hiding elements that become irrelevant,
showing new elements when needed, and disabling elements that cannot be changed.
Using these methods provide the web form with an interactive and rich feel. This will
make the web form a lot easier for the user to go through. The following sections
discuss the basic concepts of web form control.

Automatically Focusing and Blurring Form Elements
A great flow control feature for web forms is to automatically focus elements when you
know the user is ready to enter them. For example, if the user selects a year and the next
element is a month selection, it makes sense to make the month active for the user
automatically.
To set the focus of an element in jQuery, call the .focus() method on that object. For
example, the following code sets the focus for an object with id="nextInput":

$("#nextInput").focus();

You can also blur an element that you want to navigate the user away from by calling the
.blur() method:

$("#nextInput").blur();

Intelligently Hiding and Showing Elements
Another great trick when providing flow control for a web form is to dynamically hide
and show elements. In effect, less is more, meaning that you shouldn’t necessarily show
users more than the elements they will need to fill out.
For example, if the form has elements for both men’s sizes and women’s sizes, don’t
show both. Wait for the user to select the gender and then display the appropriate size
elements.
Form elements can be shown and hidden in jQuery using the .show() and .hide()
methods. Alternatively, if you only want to make the element invisible but still take up
space, you can set the opacity CSS attribute to 0 or 1.

Disabling Elements
Disabling web elements will still display them, but the user will not be able to interact
with them. Typically, it makes sense to disable a form element instead of hiding it only
if you still want the user to be able to see the values of the elements.

To disable a form element, you need to set the disabled attribute. In JavaScript, you
can do this directly on the DOM object. In jQuery, you use the .prop() method. For
example:
Click here to view code image

$("#deadElement").prop("disabled", "disabled");

To reenable a disabled element, you remove the disabled value. For example:
Click here to view code image

$("#deadElement").prop("disabled", "");

Controlling Submit and Reset
Another important aspect of form flow control dynamically is intercepting the submit
and reset event and performing actions based on various conditions. For example, you
might want to validate form values before you allow the form to be submitted.
You control the form submission functions by attaching a submit event handler to the
form. Inside the event handler, you have access to information about the event as well as
the form data that will be submitted. You can perform whatever tasks you need and then
either allow the form to be submitted or reset or prevent the default browser action.
The following code illustrates an example of stopping the form submission by calling
.preventDefault() on the event:
Click here to view code image

$("form").submit(function(e){
 alert("Sorry. Not yet Implemented.");
 e.preventDefault();
 });

jQuery does not provide an event handler for the form reset event for some reason.
To get past this in jQuery, change the input type from reset to button for the
Reset button. Then add a click handler to the button event where it will call
.reset() on the DOM element of the form. The following code does just that based
on a user prompt:
Click here to view code image

$("#resetB").click(function(e){
 if(confirm("Are you sure?")){ $("form").get(0).reset(); }
 });

Try it Yourself: Adding Dynamic Flow Control to Forms
Now that you have had a chance to review the concepts of form flow control, you
are ready to try some yourself. In this exercise, you add some basic flow control

to an e-commerce web form for accepting payments.
The purpose of the exercise is to provide you with experience hiding, showing,
disabling, and autofocusing web elements as the user interacts with the form. The
code for the example is in Listings 13.4, 13.5, and 13.6.
Use the following steps to create the dynamic web page:
1. In Eclipse, create the lesson13/form_flow.html, lesson13/js/form_flow.js, and

lesson13/css/form_flow.css files.
2. Add the code shown in Listing 13.4 and Listing 13.6 to the HTML and CSS

files. There is a lot of HTML and CSS code, but you should be able to follow
it by now. The code defines and styles a basic payment form.

3. Open the form_flow.js file and create the .ready() function shown in
Listing 13.4. You should recognize the first few lines as just adding click
handlers, which is discussed later. Add the lines shown next and implement the
flow control for submitting and resetting the form. The submit handler
displays a message that the form submission is not implemented and prevents
the default submit. The click handler for the reset button prompts the user
with a message before calling .reset() to reset the form:

Click here to view code image

40 $("form").submit(function(e){
41 alert("Sorry. Not yet Implemented.");
42 e.preventDefault();
43 });
44 $("#resetB").click(function(e){
45 if(confirm("Are you sure?")){ $("form").get(0).reset(); }
46 });

4. Add the updateAddr() function that will update the billing address to
match that of the shipping and disable the billing elements if the check box is
selected. If the check box is not selected, line 22 will remove the disabled
value so that the user can choose a different billing address:

Click here to view code image

13 function updateAddr(){
14 var cb = $("#cbSame");
15 if (cb.prop("checked")){
16 $("#nameB").val($("#name").val());
17 $("#addrB").val($("#addr").val());
18 $("#cityB").val($("#city").val());
19 $("#stateB").val($("#state").val());
20 $("#zipB").val($("#zip").val());
21 $("#addrB, #cityB, #stateB, #zipB").prop("disabled",
"disabled");
22 } else{ $("#addrB, #cityB, #stateB, #zipB").prop("disabled", "");
}

23 }

5. Add the following function to update the payments section when the user
selects a credit card or PayPal. Notice that when users select a credit card, the
PayPal information is hidden and the credit card information is shown; the
reverse occurs if PayPal is selected. Also notice that the focus is changed in
both instances to the first text element in the area where the user will begin
entering payment information. That way, the user doesn’t need to tab to or click
the next element:

Click here to view code image

24 function updatePaymentType(){
25 if(this.id == "ppal"){
26 $("#ccInfo").hide();
27 $("#ppInfo").show();
28 $("#ppEmail").focus();
29 } else {
30 $("#ppInfo").hide();
31 $("#ccInfo").show();
32 $("#cardNum").focus();
33 }
34 }

6. Save all three files and then open the HTML document in a web browser, as
shown in Figure 13.4. Populate the shipping information and then see it
populate the billing information when the same check box is selected. Also try
selecting different payment types and watch the elements hide and the
autofocus work.

FIGURE 13.4 Basic e-commerce web form with intelligent flow control as the user
enters data.

LISTING 13.4 form_flow.html HTML Document That Implements the Payment
Form Used in the Example

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Form Flow</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/form_flow.js"></script>
08 <link rel="stylesheet" type="text/css" href="css/form_flow.css">
09 </head>
10 <body>
11 <div id="box">
12 <p>Check Out</p>
13 <form>
14 Shipping Info

15 <div id="billInfo">
16 <label class="headLabel">Name</label>
17 <input type="text" id="name"/>

18 <label class="headLabel">Address</label>
19 <input type="text" id="addr" />

20 <label class="headLabel">City</label>
21 <input type="text" id="city" />
22 <label>State</label>
23 <select class="state" id="state"></select>
24 <label>Zip</label><input type="text" id="zip"/>

25 </div>
26 Billing Info

27 <div id="billInfo">
28 <input type="checkbox" id="cbSame"/>
29 <label for="cbSame">Same as Shipping</label>

30 <label class="headLabel">Name on Card</label>
31 <input type="text" id="nameB"/>

32 <label class="headLabel">Address</label>
33 <input type="text" id="addrB"/>

34 <label class="headLabel">City</label>
35 <input type="text" id="cityB"/>
36 <label>State</label>
37 <select class="state" id="stateB"></select>
38 <label>Zip</label><input type="text" id="zipB"/>

39 <input type="radio" name="ptype" id="visa" />
40 <label for="visa"></label>
41 <input type="radio" name="ptype" id="mc" />
42 <label for="mc"></label>
43 <input type="radio" name="ptype" id="amex" />
44 <label for="amex"></label>
45 <input type="radio" name="ptype" id="ppal" />
46 <label for="ppal"></label>
47

48 <div id="ccInfo">
49 <label class="headLabel">Card Number</label>
50 <input type="text" id="cardNum"/>
51 <input type="password" id="csc"/>
52 <label>csc</label>

53 <label>Expires</label><select id="expiresY"></select>
54 <select id="expiresM"></select>

55 </div>
56 <div id="ppInfo">
57 <input type="text" id="ppEmail"/>
58 <label>PayPal Email</label>

59 <input type="text" id="ppPW"/>
60 <label>PayPal Password</label>

61 </div>
62 </div>
63 <input type="submit" value="Submit" id="submitB" />
64 <input type="button" value="Reset" id="resetB" />
65 </form>
66 </div>
67 </body>
68 </html>

LISTING 13.5 form_flow.js jQuery Code That Provides the Intelligent Flow
Control for the Payment Form

Click here to view code image

01 var months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul",
02 "Aug", "Sep", "Oct", "Nov", "Dec"];
03 var sArr = ["AK","AL","AR","AS","AZ","CA","CO","CT","DC","DE","FL",
04 "GA","GU","HI","IA","ID","IL","IN","KS","KY","LA","MA","MD","ME","MH","MI","MN",
05 "MO","MS","MT","NC","ND","NE","NH","NJ","NM","NV","NY","OH","OK","OR","PA","PR",
06 "PW","RI","SC","SD","TN","TX","UT","VA","VI","VT","WA","WI","WV","WY"];
07
08 function buildSelects(){
09 for(var i in sArr){ $("#state,
#stateB").append($('<option>'+sArr[i]+'</option>"')); }
10 for(var i in months){
$("#expiresM").append($('<option>'+months[i]+'</option>"')); }
11 for(var y=2015; y<2020;y++){
$("#expiresY").append($('<option>'+y+'</option>"')); }
12 }
13 function updateAddr(){
14 var cb = $("#cbSame");
15 if (cb.prop("checked")){
16 $("#nameB").val($("#name").val());
17 $("#addrB").val($("#addr").val());
18 $("#cityB").val($("#city").val());
19 $("#stateB").val($("#state").val());
20 $("#zipB").val($("#zip").val());
21 $("#addrB, #cityB, #stateB, #zipB").prop("disabled", "disabled");

22 } else{ $("#addrB, #cityB, #stateB, #zipB").prop("disabled", ""); }
23 }
24 function updatePaymentType(){
25 if(this.id == "ppal"){
26 $("#ccInfo").hide();
27 $("#ppInfo").show();
28 $("#ppEmail").focus();
29 } else {
30 $("#ppInfo").hide();
31 $("#ccInfo").show();
32 $("#cardNum").focus();
33 }
34 }
35 $(document).ready(function(){
36 $("#ppInfo").hide();
37 buildSelects();
38 $("#cbSame").click(updateAddr);
39 $("input:radio").click(updatePaymentType);
40 $("form").submit(function(e){
41 alert("Sorry. Not yet Implemented.");
42 e.preventDefault();
43 });
44 $("#resetB").click(function(e){
45 if(confirm("Are you sure?")){ $("form").get(0).reset(); }
46 });
47 });

LISTING 13.6 form_flow.css CSS Code That Styles the Payment Form Elements

Click here to view code image

01 input[type=text] {
02 width:200px; margin-left:15px; padding-left:10px;
03 border-radius: 3px; border:2px groove blue;}
04 select {margin-left:10px}
05 img {margin-top:10px; }
06 #addr, #addrB { width:400px; }
07 #zip, #zipB { width:60px ; }
08 #csc { width:40px; }
09 #box, #billInfo, #shipInfo{
10 font:italic 20px/30px Georgia, serif;
11 width:650px; height:auto; padding-bottom:20px; margin:10px;
12 border-radius: 3px; box-shadow: 0px 0px 8px rgba(0, 0, 0, 0.3); }
13 #billInfo, #shipInfo { width:550px; padding:10px;}
14 #submitB, #resetB{
15 background-color:#3377FF; color:white; font-weight:bold;
16 border:2px groove blue; border-radius:15px; }
17 p{ color:white; background-color:dodgerblue;
18 font-weight:bold; margin:0px;
19 text-align:center; border-radius: 4px 4px 0px 0px ; }
20 span{ dispaly:inline-block;
21 margin-left:-15px -15px; color:black; font-weight:bold; }

22 form{ padding:20px; }
23 .headLabel{ display:block; margin-bottom:-8px;}
24 label{ color:#000088; font-size:14px;}

Dynamically Controlling Form Element Appearance and Behavior
In addition to the intelligent flow control, it is also helpful to provide visual indicators
to users about what is happening as they interact with the form. These indicators may
adjust font or element sizes, change classes, add/change borders, and so on.
Many of the changes can be made by simple CSS settings based on element states, such
as :hover or :checked. However, with the capability to add animations to these
changes, you can give your forms more of a rich application look and feel.

Try it Yourself: Adding Animated Elements to Improve User Experience
You already have all the tools necessary to add whatever graphical interactions
to your web forms that you want. The purpose of this section is to give you an
idea of some of the things that you can do. The example is a very basic
registration form, but includes a select, styled radios and check boxes, and some
other form effects. The code is designed to give you a chance to see several
techniques in the same example with the smallest amount of code. Feel free to
expand on any of these as you play around with the example.
The code for the example is in Listings 13.7, 13.8, and 13.9. Use the following
steps to create the dynamic web page:
1. In Eclipse, create the lesson13/form_effects.html, lesson13/js/form_effects.js,

and lesson13/css/form_effects.css files.
2. Add the code shown in Listing 13.7 and Listing 13.9 to the HTML and CSS

files. The HTML is a pretty basic form. The CSS is fairly big and has a few
intermediate selectors that are based on attribute values, but you should be
able to follow it. The CSS styles the radio inputs to look like buttons by hiding
the radio and showing only a styled label. A similar technique is used for the
check box displaying an image instead of a check box.

3. Open the form_effects.js file and create a basic .ready() function to
implement the handlers in the following steps.

4. Add the following lines of code that hide the form and then slowly show it as
the user clicks the header, and then hides it when the form is submitted:

Click here to view code image

18 $("form").hide();
19 $("p").click(function(){$("form").toggle(1000);

20 return false;});
21 $("input:submit").mousedown(function(){
22 $("form").toggle(1000); return false;});

5. Add the following lines that will animate resizing the <textarea> element
when it is in and out of focus:

Click here to view code image

23 $("textarea").focus(function(){
24 $(this).animate({width:350, height:100}, 1000);});
25 $("textarea").blur(function(){
26 $(this).animate({width:200, height:50}, 1000);});

6. Add the following handler for when the radio inputs change. The handler
animates the opacity down to .1; then when that is complete, it changes the
class to a darker color and animates the opacity back up. This gives the
appearance of clicking the button. With the CSS style, this makes the radio
input group act like a button bar:

Click here to view code image

10 function changeRadio(){
11 $(this).animate({opacity:.1}, 400, function(){
12 $("input:radio").next("label").removeClass("rb_checked");
13 $(this).addClass("rb_checked");
14 $(this).animate({opacity:1}, 800);
15 });
16 }

7. Add the following handler for when the check boxes are clicked. The handler
animates changing the size of the image, border, and opacity, giving the
element a visual indicator of whether the character has a horse or armor:

Click here to view code image

01 function changeCheckbox(){
02 var checkbox = $("#"+$(this).attr("for"));
03 if(checkbox.prop("checked")){
04 $(this).children("img").animate({opacity:.25, height:20,
"border-size":1}, 500);}
05 else {
06 $(this).children("img").animate({opacity:1, height:40, "border-
size":.5}, 500); }
07 }

8. Add the following lines that attach a handler to the text inputs so that as the
user types, the labels are replaced with the text content:

Click here to view code image

30 $("input:text").keyup(function(){
31 $(this).next("label").html($(this).val());});

9. Add the code in lines 32–40 that animate the Submit button size as it is in
focus or hovered over by the user.

10. Add the following lines that attach a mouseover handler to the optgroup
element and animate a font size increase as the mouse hovers over them, giving
users a better idea of what they will select. We use the optgroup for
animating the font size because the option element alone won’t allow
dynamic editing of font styles:

Click here to view code image

41 $("optgroup").mouseover(function(){
42 $(this).stop(true).animate({"font-size":"18px"}, 200);
43 return false;});
44 $("optgroup").mouseout(function(){
45 $(this).stop(true).animate({"font-size":"15px"}, 200);
46 return false;});

11. Save all three files and then open the HTML document in a web browser, as
shown in Figure 13.5. You should be able interact with the web form and see
the visual elements that you have implemented.

FIGURE 13.5 A simple registration form that provides some dynamic visual effects
to make the form more interactive and user friendly.

LISTING 13.7 form_effects.html HTML Document That Implements the
Registration Form Used in the Example

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Form Effects</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/form_effects.js"></script>
08 <link rel="stylesheet" type="text/css" href="css/form_effects.css">
09 </head>
10 <body>
11 <div class="collapsibleForm">
12 <p>Register</p>
13 <form>
14 <input type="text" /><label>Name</label>

15 <input type="text" /><label>From</label>

16 <input type="radio" name="race" id="man" />
17 <label class="rb" for="man">Man</label>
18 <input type="radio" name="race" id="elf" />
19 <label class="rb" for="elf">Elf</label>
20 <input type="radio" name="race" id="dwarf" />
21 <label class="rb" for="dwarf">Dwarf</label>
22 <input type="radio" name="race" id="orc" />
23 <label class="rb" for="Orc">Orc</label>

24 <label>Weapons</label>

25 <select size=4 multiple>
26 <optgroup><option>Sword</option></optgroup>
27 <optgroup><option>Bow</option></optgroup>
28 <optgroup><option>Axe</option></optgroup>
29 <optgroup><option>Spear</option></optgroup>
30 </select>
31 <div>
32 <label>Bring Your Own</label>

33 <input type="checkbox" id="horse" />
34 <label class="cb" for="horse">
35
36 Horse</label>
37 <input type="checkbox" id="shield" />
38 <label class="cb" for="shield">
39
40 Armor</label>

41 </div>
42 <textarea>Additional Comments</textarea>

43 <input type="submit" value="Submit" id="submit" />
44 </form>
45 </div>
46 </body>
47 </html>

LISTING 13.8 form_effects.js jQuery Code Implements the Animated Visual
Elements

Click here to view code image

01 function changeCheckbox(){
02 var checkbox = $("#"+$(this).attr("for"));
03 if(checkbox.prop("checked")){
04 $(this).children("img").animate({opacity:.5, height:40,
05 "border-width":"1px"}, 500);}
06 else {
07 $(this).children("img").animate({opacity:1, height:60,
08 "border-width":"2px"}, 500); }
09 }
10 function changeRadio(){
11 $(this).animate({opacity:.1}, 400, function(){
12 $("input:radio").next("label").removeClass("rb_checked");
13 $(this).addClass("rb_checked");
14 $(this).animate({opacity:1}, 800);
15 });
16 }
17 $(document).ready(function(){
18 $("form").hide();
19 $("p").click(function(){$("form").toggle(1000);
20 return false;});
21 $("input:submit").mousedown(function(){
22 $("form").toggle(1000); return false;});
23 $("textarea").focus(function(){
24 $(this).animate({width:350, height:100}, 1000);});
25 $("textarea").blur(function(){
26 $(this).animate({width:200, height:50}, 1000);});
27 $(".rb").click(changeRadio);
28 $("input:checkbox").prop("checked",false);
29 $(".cb").click(changeCheckbox);
30 $("input:text").keyup(function(){
31 $(this).next("label").html($(this).val());});
32 $("#submit").mouseover(function(){
33 $(this).animate({"background-color":"#0000FF",
34 "width":"140px"}, 400, "linear");});
35 $("#submit").mouseout(function(){
36 $(this).animate({"background-color":"#3377FF",
37 "width":"60px"}, 400, "linear");});
38 $("#submit").focus(function(){
39 $(this).animate({"background-color":"#0000FF",
40 "border-width":"5px"}, 400, "linear");});
41 $("optgroup").mouseover(function(){
42 $(this).stop(true).animate({"font-size":"18px"}, 200);
43 return false;});
44 $("optgroup").mouseout(function(){
45 $(this).stop(true).animate({"font-size":"15px"}, 200);
46 return false;});
47 });

LISTING 13.9 form_effects.js CSS Code That Styles the Form Elements and
Provide Classes for Dynamic Adjustments

Click here to view code image

01 br{clear:both;}
02 option, optgroup { padding:0px; margin:0px; height:22px; }
03 select, textarea, input{
04 border-radius: 4px; margin:3px;
05 border:2px groove blue; }
06 select:focus, textarea:focus, input:focus {
07 border-radius: 4px; margin:3px;
08 border:2px groove #3377FF; }
09 select{height: 120px; width:100px; text-align:center;}
10 img{}
11 input[type="radio"], input[type="checkbox"] {display:none;}
12 .rb {
13 background: -moz-linear-gradient(bottom, #CCCCCC, #EEEEEE 10px);
14 background: -webkit-linear-gradient(bottom, #CCCCCC, #EEEEEE 10px);
15 background: -ms-linear-gradient(bottom, #CCCCCC, #EEEEEE 10px);
16 width: 50px; padding: 3px;
17 margin-right:-1px; display: inline-block;
18 text-align:center; float:left; border: 1px solid gray; }
19 .rb_checked {
20 background: -moz-linear-gradient(bottom, #0000FF, #7272FF 15px);
21 background: -webkit-linear-gradient(bottom, #0000FF, #7272FF 15px);
22 background: -ms-linear-gradient(bottom, #0000FF, #7272FF 15px);
23 color:white;
24 }
25 .cb { padding: 3px; margin-right:-1px; width:100px; }
26 .cb img{ border:1px dotted; border-radius:4px;
27 opacity:.5; height:40px; }
28 #submit{
29 background-color:#3377FF; color:white; font-weight:bold;
30 border:2px groove blue; border-radius:15px; }
31 .collapsibleForm{
32 width:400px; height:auto; padding-bottom:20px;
33 border-radius: 10px; box-shadow: 0px 0px 8px rgba(0, 0, 0, 0.3);
34 font:italic 15px/30px Georgia, serif;}
35 p{
36 color:white; background-color:blue; font-weight:bold;
37 margin:0px; text-align:center;
38 border-radius: 10px 10px 0px 0px ; }
39 form{ padding:20px; }

Validating a Form
One of the most important parts of web forms is validating the information that is being
entered. There are many different types and levels of validation depending on the data
being entered.
Some elements, for example, are totally optional and require no validation. Others, such
as a comment, may be required but the contents do not really matter. Others, such as an

email address or data, may be required and must adhere to specific formatting
requirements, perhaps even value ranges.
Often, this is done by a server-side script. The problem with that method is that all the
data must be sent to the server and then the error is formulated and returned back to the
user.
A much better option is to validate the form data in your jQuery code before it is
submitted to the server. The following sections describe the different methods for
validating form data.

Manually Validating a Web Form
The most basic way of validating forms is by accessing their values and checking the
actual contents against the requirements. This can be done when the user is entering data
by adding, for example, a blur, change, or keypress event handler, and then
inside the event handler checking the value of the data. The following code implements
validation in a keypress handler, validating that the value of the form element is
numeric, and if it isn’t, adding warning text to a label:
Click here to view code image

$("input:text").keypress(function (){
 if(!$.isNumeric($(this).val())) {
 $("#validLabel").html("Not a Number"));
 }
 });

You can also implement the validation when the user submits the form by adding the
validation to a submit handler. For example, the following code adds a validation
function to a submit handler so that if the element does not begin with the text "vfx",
an alert is displayed and the form is not submitted:
Click here to view code image

$("form").submit(function (){
 if (!$("#vfxField").val().match("^vfx")){
 alert("Invalid vfx element");
 e.preventDefault();
 }
 });

Getting the jQuery Validation Plug-In
Using the techniques in the previous section, you can validate pretty much any type of
form element. The problem is that it takes a lot of code and time to add validation.
Rather than reinventing the wheel, you can use the jQuery validation plug-in that takes
care of most of the validation needs.
As a plug-in, the validator is implemented by loading the .js file after the jQuery.js file

has been loaded. For example:
Click here to view code image

<script type="text/javascript" src="../js/jquery.min.js"></script>
<script type="text/javascript" src="js/jquery.validate.min.js"></script>

The plug-in can be downloaded from:

http://jqueryvalidation.org/

The documentation for the validation plug-in can be found at:

http://docs.jquery.com/Plugins/Validation/

Applying Simple jQuery Validation Using HTML
The validator can be implemented in HTML using the class and title attributes. The
validator uses a set of rules, such as required or email, to validate the form
element. Setting the class attribute to one or more of these rules applies the validation
when .validate() is called on the form. Table 13.3 lists several of the validation
rules.

http://jqueryvalidation.org/
http://docs.jquery.com/Plugins/Validation/

TABLE 13.3 Validation Rules and Usage
For example, to validate that a text element has text and is in email format, you use the
following code:
HTML:
Click here to view code image

<form id="myForm">
 <input type="text" class="required email" />
</form

jQuery:
Click here to view code image

$(document).ready(function(){
 $("#myForm").validate();
 };

The .ready() function adds the validation to the form, and as the user types in the
element, a message displays that the element is required if it is empty and that a valid
email address is required if it does not contain a valid email address, as shown in
Figure 13.6.

FIGURE 13.6 Validation messages of an email element.

You can also add your own text messages instead of the defaults provided by the
validation library. This is done by setting the title attribute to the message string you

want to display. For example, the following input statement adds the title element that
will be displayed if the element is invalid:
Click here to view code image

<input type="text" class="required email"
 title="This Element requires a valid Email Address such as
name@here.com"/>

Applying Complex Validation
A better way to add validation using the validation library is inside the jQuery validate
method. The validate method accepts an object that defines how a form is validated.
This section covers using the values of rules and messages. The validation object
supports several attributes; you can review the doc to see rest.

Adding Validation Rules
The rules method allows you to define the different rules, listed in Table 13.3, that
apply to a form element by referencing the name attribute. For example, the following
code adds the required and email rules to an element with
name="emailField" using the validator object:
HTML:
Click here to view code image

<form id="myForm">
 <input type="text" name="emailField" />
</form

jQuery:
Click here to view code image

$(document).ready(function(){
 $("#myForm").validate({
 emailField: {
 required:true,
 email:true
 }
);
 };

Tip
The validate() method accepts a debug option that will disable form
submission, allowing you to implement and test the form validation without
submitting data to the server. To implement the form validation debug
mode, use the following:

$(form).validate({

 debug:true,
 other options . . .
});

Adding Validation Messages
The messages attribute of the validation object allows you to specify custom messages
that will be applied to the individual rules for the element. The messages attribute is
also based on the name attribute of the element. The following code illustrates adding
messages to the validation:
Click here to view code image

$(document).ready(function(){
 $("#simpleForm").validate(
 {rules: {
 emailField: {
 required:true,
 email:true,
 accept:"jpg|cvs"
 }
 },
 messages: {
 emailField: {
 required:"Must add Email",
 email:"Email format = me@here.com"
 }
 }
 }
);
};

The .validate() method returns a Validator object, which provides several
methods that are valuable for checking form validation. Table 13.4 lists the methods
available from the Validator object. The following code illustrates using the
Validator object to check the validity of the form by calling the .form() method:
Click here to view code image

$(document).ready(function(){
 var validator = $("#simpleForm").validate(...);
 if(!validator.form()){ alert("Form is not valid"));
});

TABLE 13.4 Validator Object Methods
When errors are detected in a form element, a label is added to the form to display the
error message. The plug-in adds a class named error to both the element and the new
label for the message. This makes it very easy to style the message as well as the
element.
To style the element, you can add a CSS rule for the element type and add the .error.
For example, to style input elements that have errors to display the text in red, you use
the following CSS rule:

input.error { color:red; }

You can use the same method to style the error message displayed using the
label.error selector. For example, the following sets the font color of the error
messages to red:

label.error { color:red; }

Placing Validation Messages
The validation plug-in places the error messages directly after the element that was
validated. That is often not the desired location. For example, you may want the
validation to come before some elements or in a totally different location.

Note
The jQuery Validation tool provides a simple method for localizing web
form validation. If you include the messages_##.js file found in the
localization folder, the validation error messages will be localized. The
two-digit number (##) in messages_##.js stands for the two-character ISO
country code.

A good example of this is radio input groups. If you validate the group, the message
appears after the first radio input element, as shown in Figure 13.7. That is not the
desired location. Instead, you want the error message to come after the full set of radio

inputs and their labels.

FIGURE 13.7 Using the errorPlacement option in the .validate() method
allows you to define the placement of the error messages.

That is where the errorPlacement attribute of the Validation object comes in
handy. The errorPlacement attribute value is a function that gets called to add an
error element to the web form. The errorPlacement function will be passed two
parameters. The first parameter is the jQuery object that represents the new error
message, and the second is a jQuery object that represents the element that failed
validation. Using these parameters, you can define your own function that places the
elements wherever you want them.
To illustrate this, look at the following code. The errorPlacement is set to a
function that receives the error and element arguments. The element is tested to
see if it is a radio. If the element is a radio input, the error is inserted after the
label that follows the last radio input in the form, as shown in Figure 13.7. If the
element is not a radio input, the error is inserted immediately after the element:
Click here to view code image

$("#simpleForm").validate({
 rules: {
 gender: {required:true}
 errorPlacement: function(error, element){
 if (element.is(":radio")){
 error.insertAfter($("input:radio:last").next("label"))}
 else {error.insertAfter(element)}}
});

Try it Yourself: Validating Web Forms Using jQuery
In this example, you use the jQuery validation plug-in to validate a basic web
form. The purpose of the example is to help you understand how to implement the
validation plug-in in your own scripts.
The code for the example is in Listings 13.10, 13.11, and 13.12. Use the
following steps to create the web form with validation:

1. In Eclipse, create the lesson13/form_validation.html,
lesson13/js/form_validation.js, and lesson13/css/form_validation.css files.

2. Add the validation plug-in. You can download the plug-in from the following
location or copy the code/lesson13/js/jquery.validation.min.js file from the
book’s website to lesson13/js/jquery.validation.min.js in your project:
http://jqueryvalidation.org/

You will also need to add the following line in Listing 13.10 to load the
validation plug-in:

Click here to view code image

07 <script type="text/javascript" src="js/jquery.validate.min.js">
</script>

3. Add the code shown in Listing 13.10 and Listing 13.12 to the HTML and CSS
files. The HTML is a basic form and shouldn’t contain any surprises. The CSS
does include some specific formatting for the validation code. Line 3 formats
the <input> and <select> elements to have a red background and text to
make them stand out. Line 4 formats the message to be in red text:

Click here to view code image

03 input.error, select.error{ background-color:#FFDDDD; color:darkred}
04 label.error{color:red;}

4. Open the form_validation.js file and create a basic .ready() function to
implement the handlers in the following steps. Also add a .validate()
call on the form as shown next. Include a rules, messages, and
errorPlacement section. Notice that the validationObj object
variable is defined in line 2 so that we can use it later:

Click here to view code image

02 var validationObj = $("#simpleForm").validate({
03 rules: {
. . .
12 messages: {
. . .
17 errorPlacement: function(error, element){
. . .
23 });
02 var validationObj = $("#simpleForm").validate({
03 rules: {
. . .
11 messages: {
. . .
16 errorPlacement: function(error, element){
. . .
22 });

http://jqueryvalidation.org/

5. Add the following validation rules for the form elements. The elements are all
referenced by the element’s name attribute. The password1 element has
three rules: required, rangelength, and equalTo. The equalTo is
set to the id attribute of the password2 element. The weapon element uses
a rangelength of [2,2], which forces the user to pick exactly two
weapons:

Click here to view code image

04 name: { required:true, minlength:5 },
05 email: { required:true, email:true },
06 password1: { required:true, rangelength:[6,12],
07 equalTo:"#password2" },
08 birthDate: { required:true, date:true },
09 class: { required:true, rangelength:[2,2]},
10 hands: {required:true},
11 armor: {required:true, minlength:2 }},

6. Add the following custom messages to be more specific for the password,
weapon, and armor elements:

Click here to view code image

13 password1: { equalTo:"Passwords Do Not Match"},
14 class: { rangelength:"Select 2 class types"},
15 armor: { minlength:"2 Pieces of Armor Required"},

7. Finish off the errorPlacement function. There is a radio group for
hands and a button group for armor. You want the error message to be
displayed after the <label> of the last element in the group, so you modify
the .insertAfter() method to query for the last checkbox or radio
and then get the very next label:

Click here to view code image

17 errorPlacement: function(error, element){
18 if (element.is(":radio")){
19 error.insertAfter($("input:radio:last").next("label"))}
20 else if (element.is(":checkbox")){
21 error.insertAfter($("input:checkbox:last").next("label"))}
22 else {error.insertAfter(element)}}

8. Add the following lines. Line 23 validates the form, which will display the
requirements after the page has loaded. Lines 24 and 25 are a submit handler.
The handler checks to see whether the form is valid by calling .form(). If
the form is invalid, an alert message is displayed and the submit is prevented
by .preventDefault():

Click here to view code image

24 validationObj.form();

25 $("form").submit(function(e){
26 if(!validationObj.form()){
27 alert("Form Errors");
28 e.preventDefault(); } });

9. Save all three files and then open the HTML document in a web browser, as
shown in Figure 13.8. You should immediately see validation errors. Watch
the errors change and disappear as you fill out the form. Also try to submit the
form with and without errors to see the alert message.

FIGURE 13.8 Simple registration form with validation.

LISTING 13.10 form_validation.html HTML Document That Implements the
Registration Form Used in the Example

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Form Validation</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/jquery.validate.min.js">
</script>
08 <script type="text/javascript" src="js/form_validation.js">
</script>
09 <link rel="stylesheet" type="text/css"
href="css/form_validation.css">
10 </head>
11 <body>
12 <div id="container"><p>Welcome to the Fight</p>
13 <form action="test.html" method="get" name="test"
14 id="simpleForm">
15 <label>Name</label>
16 <input name="name" type="text" />

17 <label>Email</label>
18 <input name="email" type="text" />

19 <label>Password</label>
20 <input name="password1" type="password" />

21 <label>Confirm</label>
22 <input name="password2" id="password2" type="password" />

23 <label>Birth Date</label>
24 <input name="birthDate" type="text" />

25 <select name="class" multiple size=4>
26 <option>Melee</option>
27 <option>Mage</option>
28 <option>Ranged</option>
29 <option>Stealth</option>
30 </select>

31 <div class="buttonGroup">
32 <input type="radio" name="hands" value="right" />
33 <label>Right Handed</label>
34 <input type="radio" name="hands" value="left" />
35 <label>Left Handed</label>
36 </div>

37 <div class="buttonGroup">
38 <input type="checkbox" name="armor" value="helmet" />
39 <label>Helmet</label>
40 <input type="checkbox" name="armor" value="shield" />
41 <label>Shield</label>

42 <input type="checkbox" name="armor" value="chainmail" />
43 <label>Chainmail</label>
44 <input type="checkbox" name="armor" value="plated" />
45 <label>Plated</label>

46 <input type="checkbox" name="armor" value="gloves" />
47 <label>Gloves</label>
48 <input type="checkbox" name="armor" value="boots" />
49 <label>Boots</label>

50 </div>

51 <label>Comments:</label>
<textarea></textarea>

52 <input type="submit" value="Engage"/>
53 </form>
54 </div>
55 </body>
56 </html>

LISTING 13.11 form_validation.js jQuery Code Implements the Validation of
Form Elements

Click here to view code image

01 $(document).ready(function(){
02 var validationObj = $("#simpleForm").validate({
03 rules: {
04 name: { required:true, minlength:5 },
05 email: { required:true, email:true },
06 password1: { required:true, rangelength:[6,12],
07 equalTo:"#password2" },
08 birthDate: { required:true, date:true },
09 class: { required:true, rangelength:[2,2]},
10 hands: {required:true},
11 armor: {required:true, minlength:2 }},
12 messages: {
13 password1: { equalTo:"Passwords Do Not Match"},
14 class: { rangelength:"Select 2 class types"},
15 armor: { minlength:"2 Pieces of Armor Required"},
16 },
17 errorPlacement: function(error, element){
18 if (element.is(":radio")){
19 error.insertAfter($("input:radio:last").next("label"))}
20 else if (element.is(":checkbox")){
21 error.insertAfter($("input:checkbox:last").next("label"))}
22 else {error.insertAfter(element)}}
23 });
24 validationObj.form();
25 $("form").submit(function(e){
26 if(!validationObj.form()){
27 alert("Form Errors");
28 e.preventDefault(); } });
29 });

LISTING 13.12 form_validation.css CSS Code That Styles the Form Elements and
Errors

Click here to view code image

01 label{display:inline-block;min-width:100px; text-align:right;}

02 input+label{text-align:left;}
03 input.error, select.error{
04 color:darkblue}
05 label.error{color:blue;}
06 br{clear:both;}
07 form{ margin:15px; margin:0px;
08 border: 1px solid darkred;}
09 div{vertical-align:middle;
10 padding-bottom:20px;
11 font:italic 15px/30px Georgia, serif;}
12 #container{
13 width:600px; height:auto;}
14 .buttonGroup { display: inline-block; padding: 5px;
15 border-radius: 4px; margin:15px;
16 box-shadow: 0px 0px 8px rgba(255, 0, 0, 0.5);}
17 p{
18 color:white; background-color:darkred;
19 font-weight:bold; margin:0px;
20 text-align:center; border-radius: 4px 4px 0px 0px ; }
21 select, textarea, input{
22 border-radius: 4px; margin:5px;
23 border:2px groove crimson; padding:5px;}
24 select:focus, textarea:focus, input:focus {
25 border-radius: 4px; margin:5px;
26 border:2px groove #3377FF; }

Summary
In this lesson, you learned how to access the data that form elements represent. Using
that data, you can provide dynamic workflow by setting values automatically,
autofocusing the next element, showing new necessary elements, or hiding unnecessary
ones.
You also learn how to apply some great visual effects to your elements, allowing you to
guide users better. Some of the effects can be created in CSS; however, jQuery provides
much more variations and control.
Validation of web forms is one of the most critical pieces of dynamic programming.
You can save a lot of user time by catching problems right at the browser in jQuery
rather than after the form is submitted to the server.

Q&A
Q. Is there a way to create my own validation rules with the jQuery Validation

plug-in?
A. Yes. You can call the .addMethod(name, function(value,
element, parameters) [,message]) method on the Validator
object returned by .validate(). The name you specify will be the new rule;

the function will be called, and the current value and element will be passed to it
as the value parameter. The function should return true or false if the
element value is valid. The option message parameter is the message that will be
displayed.

Q. Isn’t there a way to hide the ugly slide bar on a <select> element?
A. Not really. There are a bunch of workarounds, such as adding a <div>, that

masks it. One thing you can do is create a <div> element the exact size of the
element, and use CSS clipping to try to hide it. None of them is a perfect solution,
though.

Workshop
The workshop consists of a set of questions and answers designed to solidify your
understanding of the material covered in this lesson. Try to answer the questions before
looking at the answers.

Quiz
1. How do you access the value of a <select> element from jQuery?
2. How do you disable a form element from jQuery?
3. List two methods to tell if a check box input is checked from jQuery.
4. What does the following statement do?

$("input:text").blur();

Quiz Answers
1. You call the .val() method on the jQuery object representing it.
2. You call .prop("disabled","disabled") on the jQuery object

representing it.
3. .prop("checked") or .is(":selected") on the jQuery object.
4. It removes focus from all <input> elements of type text.

Exercises
1. Open the code in Listings 13.1, 13.2, and 13.3 and modify the code so that
formB also updates some of the elements in formA.

2. Open the code in Listings 13.4, 13.5, and 13.6 and modify the code so that when
the user selects a new year, the month element is autofocused.

3. Open the code in Listings 13.10, 13.11, and 13.12 and add a new check box group
for skills such as archery, strategy, hand to hand, or just make up your own. Add

validation that the users must select between two and four skills.

Lesson 14. Creating Advanced Web Page Elements in
jQuery

What You’ll Learn in This Lesson:
 Creating an image gallery with slider controls
 Adding sorting to table elements
 Adding filtering to table elements
 How to create a multitype tree view
 How to implement custom dialogs
 Creating visual elements using basic HTML and jQuery
 How to use jQuery to create dynamic sparklines

In this lesson, you have some fun creating some more advanced page elements. The
purpose of this lesson is to give you a chance to apply everything that you have learned
so far in this book in some more advanced ways. The elements you build in this lesson
include an image gallery, interactive table, tree view, overlays, equalizer, and
sparklines.
The following sections are written as examples that first explain some of the concepts
used in the advanced elements; then you step through implementing them yourself. You
will be able to apply the concepts learned in this lesson to implement a variety of types
of advanced elements in your own web pages.

Adding an Image Gallery
One of the most visually interactive components of web pages are image galleries. An
image is truly worth a thousand words. Images allow users to make decisions faster than
any other type of visual element. The best way to apply images for allowing users to
make decisions is to provide an interactive gallery.
An interactive gallery should enable users to quickly scan through several images and
then easily select one to lead to the next step on the web page. Therefore, the necessary
components are image thumbnails and controls. The thumbnails should be small
versions of the original image that allow you to provide several options to select from
at a time. Controls are whatever you apply to navigate through the thumbnails.
The most effective method of implementing an image gallery is to create a slider that
contains the thumbnails with arrows that slide through the thumbnails until the user finds
and clicks the desired image. Sliders are a good choice because they can be
implemented in a vertical or horizontal fashion to fit the design of the web page.
To implement the slider, you create a container <div> element that has a fixed size and

hidden overflow, then a child <div> element that contains all the thumbnail images.
The position of the child <div> can then be adjusted to reveal different sets of the
images in the slider. The following section describes that process.

Try it Yourself: Adding a Slider-Based Image Gallery
The purpose of the exercise is to give you some ideas about how to implement an
image gallery with slider controls. The code for the example is in Listings 14.1,
14.2, and 14.3.
Use the following steps to create the dynamic web page:
1. In Eclipse, create the lesson14, lesson14/js, lesson14/css, and

lesson14/images folders, and then add the lesson14/image_slider.html,
lesson14/js/image_slider.js, and lesson14/css/image_slider.css files.

2. Add the code shown in Listing 14.1 and Listing 14.3 to the HTML and CSS
files. The HTML code lays out a set of <div> elements that will contain the
image slider, control buttons, and the displayed image. The CSS code styles
the images and the <div> elements. Specifically, notice the following lines.
These lines define the slide selector area with a specific width with hidden
overflow, a child <div> area that contains all the image elements, and the
look of the images themselves:

Click here to view code image

11 #selector {
12 max-width:640px; height:140px;
13 overflow-x:hidden; overflow-y:hidden;
14 background-color:#DDDDDD; border:3px ridge grey; }
15 #imageSlide {
16 position:relative; top:0px; left: 0px; height:100px; }
17 #imageSlide img {
18 height:100px; opacity:.7; vertical-align:top; margin:10px;
19 border:3px ridge grey; box-shadow: 5px 5px 5px #888888; }

3. Open the image_slider.js file and add a basic .ready() function that you
will use to implement all the handlers to handle the interactions.

4. Add the following lines to add mouseenter and mouseleave event
handlers to the #left and #right elements to provide a hover effect:

Click here to view code image

45 $("#left").mouseenter(function(){
46 slide(50); });
47 $("#left").mouseleave(function(){
48 $("#imageSlide").stop(true); return false; });
49 $("#right").mouseenter(function(){
50 slide(-50); });
51 $("#right").mouseleave(function(){

52 $("#imageSlide").stop(true); return false; });

5. Add the following lines that will add a hover animation effect for the
thumbnails in the #imageSlide element. The hover effect animates
increasing the opacity and size for images that are hovered over to give
the user an indication that the item is clickable and which one is selected. A
click handler is also added so that when the user clicks a thumbnail, it sets the
main image:

Click here to view code image

53 $("#imageSlide img").mouseenter(function(){
54 $(this).stop(true).animate({height:120, opacity:1},500);
55 return false; });
56 $("#imageSlide img").mouseleave(function(){
57 $(this).stop(true).animate({height:100, opacity:.5},500);
58 return false; });
59 $("#imageSlide img").click(setPhoto);

6. Add the following line that calls the click() handler on the first thumbnail
image to initially select a main image:

Click here to view code image

60 $("#imageSlide img:first").click();

7. Add the following setPhoto() click handler that animates changing the
main image. Notice that the code fades the image out and then back in. Also,
because the aspect ratios of the images are not all the same, the aspect ratio of
the thumbnail is used to determine whether to set the height or width
property for the image to fit properly:

Click here to view code image

29 function setPhoto(){
30 var newPhoto = $(this).attr("src");
31 var horizontal = (minHorizontalRatio >
32 $(this).height() / $(this).width());
33 $("#photo img").stop(true).fadeTo(500, .1, "linear",
34 function (){
35 $("#photo img").attr("src", newPhoto); });
36 if (horizontal) {
37 $("#photo img").css({width:600,height:"auto"}) }
38 else {
39 $("#photo img").css({width:"auto",height:400}) }
40 $("#photo img").fadeTo(500, 1);
41 return false;
42 }

8. Add the following slide() code that handles the sliding of the thumbnail
images. Basically, this code determines where the new left position of the

#imageSlide element should be. When the slide is all the way to the left,
the left position is 0; when it is all the way to the right, the left position is
set to a negative value clear off the web page so that only the right edge of the
slide is visible:

Click here to view code image

17 function slide(value){
18 var oldLeft = sliderLeft;
19 sliderLeft = sliderLeft + value;
20 if (sliderLeft >= 0) { sliderLeft = 0; }
21 if (sliderLeft <= sliderMax) { sliderLeft = sliderMax; }
22 if(oldLeft != sliderLeft) {
23 $("#imageSlide").animate({left:sliderLeft}, 300, 'linear',
24 function(){
25 slide(value); });
26 }
27 return false;
28 }

9. Add the initialization function addImages() and the addImages() call
shown in Listing 14.2. This code dynamically adds a set of image elements to
the #imageSlide element.

10. Save all three files and then open the HTML document in a web browser, as
shown in Figure 14.1. You should see the thumbnail slider and be able to
navigate through it by hovering over the arrows. When you click a thumbnail
image, the main image should change.

FIGURE 14.1 Image gallery with slider controls to select an image from thumbnails.

LISTING 14.1 image_slider.html HTML Document That Implements the Slider,
Control, and Image Elements

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Sliding Image Gallery</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/image_slider.js"></script>

08 <link rel="stylesheet" type="text/css" href="css/image_slider.css">
09 </head>
10 <body>
11 <div id="viewer">
12 <div id="left"></div>
13 <div id="selector">
14 <div id="imageSlide"></div>
15 </div>
16 <div id="right"></div>

17 <div id="photo"></div>
18 </div>
19 </body>
20 </html>

LISTING 14.2 image_slider.js jQuery and JavaScript Code Implements the Mouse
Event Handlers for the Image Slider Controls and Thumbnails

Click here to view code image

01 var sliderMax = sliderWidth = sliderLeft = 0;
02 var minHorizontalRatio = 400/600;
03 function addImages(){
04 var images = ["img3", "img1", "volcano", "peak",
05 "river", "wheel", "img7"];
06 for (i in images){
07 $("#imageSlide").append('<img src="/images/'+
08 images[i] + '.jpg" />'); }
09 setTimeout(function() {
10 $("#imageSlide img").each(function(){
11 sliderWidth += $(this).width() + 26; });
12 sliderWidth += 40;
13 $("#imageSlide").width(sliderWidth);
14 sliderMax = $("#selector").width() - sliderWidth;
15 }, 1000);
16 }
17 function slide(value){
18 var oldLeft = sliderLeft;
19 sliderLeft = sliderLeft + value;
20 if (sliderLeft >= 0) { sliderLeft = 0; }
21 if (sliderLeft <= sliderMax) { sliderLeft = sliderMax; }
22 if(oldLeft != sliderLeft) {
23 $("#imageSlide").animate({left:sliderLeft}, 300, 'linear',
24 function(){
25 slide(value); });
26 }
27 return false;
28 }
29 function setPhoto(){
30 var newPhoto = $(this).attr("src");
31 var horizontal = (minHorizontalRatio >
32 $(this).height() / $(this).width());

33 $("#photo img").stop(true).fadeTo(500, .1, "linear",
34 function (){
35 $("#photo img").attr("src", newPhoto); });
36 if (horizontal) {
37 $("#photo img").css({width:600,height:"auto"}) }
38 else {
39 $("#photo img").css({width:"auto",height:400}) }
40 $("#photo img").fadeTo(500, 1);
41 return false;
42 }
43 $(document).ready(function(){
44 addImages();
45 $("#left").mouseenter(function(){
46 slide(50); });
47 $("#left").mouseleave(function(){
48 $("#imageSlide").stop(true); return false; });
49 $("#right").mouseenter(function(){
50 slide(-50); });
51 $("#right").mouseleave(function(){
52 $("#imageSlide").stop(true); return false; });
53 $("#imageSlide img").mouseenter(function(){
54 $(this).stop(true).animate({height:120, opacity:1},500);
55 return false; });
56 $("#imageSlide img").mouseleave(function(){
57 $(this).stop(true).animate({height:100, opacity:.5},500);
58 return false; });
59 $("#imageSlide img").click(setPhoto);
60 $("#imageSlide img:first").click();
61 });

LISTING 14.3 image_slider.css CSS Code That Styles the Images and Controls

Click here to view code image

01 div {
02 display:inline-block; }
03 #viewer2 {
04 background-color:black; border:10px ridge blue; }
05 #right, #left {
06 width:30px; height:100px; float:left; color:white; }
07 #right {
08 float:right; }
09 #right img, #left img {
10 margin-top:30px; width:32px; height:56px; }
11 #selector {
12 max-width:640px; height:140px;
13 overflow-x:hidden; overflow-y:hidden;
14 background-color:#DDDDDD; border:3px ridge grey; }
15 #imageSlide {
16 position:relative; top:0px; left: 0px; height:100px; }
17 #imageSlide img {
18 height:100px; opacity:.7; vertical-align:top; margin:10px;

19 border:3px ridge grey; box-shadow: 5px 5px 5px #888888; }
20 #photo {
21 height:500px; width:700px;
22 display:table-cell; vertical-align:middle; text-align:center;
23 }
24 #photo img {
25 border:5px ridge grey; box-shadow: 10px 10px 5px darkgrey; }

Implementing Tables with Sorting and Filters
Tables are basic HTML. You should already be familiar with the concepts of adding
tables with rows that include one or more <th> or <td> elements that provide column
values. Tables are a great way to present data that can be organized into columns or
rows.
For simple amounts of data, a basic static HTML table is adequate. But, what do you do
if there is a lot of data in the table? Some web pages scroll on and on with tabular data.
They are a pain to navigate, and in the end it’s easier to use the web browser search
capability to try to find what you are looking for.
One solution to this is to implement sorting and filtering in server-side scripts via an
AJAX request. Occasionally that is the best method when dealing with extremely large
amounts of data stored in a database or extremely complex filtering algorithms.
However, for most web pages, it is overkill and requires a bunch of slow server
requests that make the web page interaction disjointed.
A much better approach is to add filtering and sorting to those large tables directly in
jQuery and JavaScript. That allows the user to filter the data down to a specific set and
then order by columns very quickly. The page flow is much smoother, and no external
server requests are required. The following section takes you through the process of
implementing column sorting and filtering to a table.

Try it Yourself: Creating an Interactive Table with Sorting and Filtering
The purpose of the exercise is to provide you with a chance to get and set form
element values in a variety of ways. The code for the example is in Listings 14.4,
14.5, and 14.6.
Use the following steps to create the dynamic web page:
1. In Eclipse, create the lesson14/interactive_table.html,

lesson14/js/interactive_table.js, and lesson14/css/interactive_table.css files.
2. Add the code shown in Listing 14.4 and Listing 14.6 to the HTML and CSS

files. The HTML code defines the table and headers; the body will be added
dynamically. The CSS code styles the table elements. Notice that the following

lines of CSS define background images that will be used to indicate that the
column is sortable, sorted ascending or sorted descending. The state of the
column can then be changed by switching classes to
.ascending/.descending. A search icon also is added as a background
image to the <input> element to indicate its purpose:

Click here to view code image

29 input {
30 height:20px; width: 20px; border-radius:15px;
31 padding: 0 7px 2px 25px;
32 background:url("/images/search.png") no-repeat scroll left bottom
0 #FFFFFF;
33 background-size:20px 20px;
34 }
35 input:focus {
36 width:100px; }
37 span {
38 background:url("/images/sort2.png") no-repeat scroll left;
39 background-size:20px 20px;
40 padding: 0 7px 2px 25px;
41 }
42 .ascending{
43 background:url("/images/up2.png") no-repeat scroll left;
44 background-size:20px 20px;
45 }
46 .descending{
47 background:url("/images/down2.png") no-repeat scroll left;
48 background-size:20px 20px;
49 }

3. Open the interactive_table.js file and the following .ready() function that
will populate the table data, and add the sorting and filter handlers to the
<th> elements. Notice that you use the jQuery .data() method to store the
order and indicate whether the column data type is numeric. You also need to
add the randInt() and buildData() functions shown Listing 14.5 that
will populate the table data:

Click here to view code image

56 $(document).ready(function(){
57 buildData();
58 $("th").each(function(i) {
59 var header = $(this);
60 header.data({numeric:header.hasClass("numeric"), order:-1});
61 header.children("span").click(function(){
62 sortColumn(header, i); });
63 var filter = $('<input type="text" />');
64 filter.keyup(function(){
65 filterColumn(filter, i); });
66 header.append(filter);
67 });

68 });

4. Add the following keyup event handler filterColumn() that will filter
the column based on the text typed in the input for that column. The input and
column arguments are passed to the handler in line 65. The .each()
method is used to get the cell value of the specified column for each row. For
numeric columns, if the value is less than the input value, the row is hidden.
For string columns, the row is hidden if the string value of input is not found in
the string value of the cell:

Click here to view code image

30 function filterColumn(input, column){
31 $("tbody tr").show().each(function(){
32 var header = $("th:eq("+ column +")");
33 var filterVal = input.val();
34 var rowVal = this.cells[column].innerHTML;
35 if(header.data("numeric")){
36 if(parseFloat(filterVal) > parseFloat(rowVal)) {
37 $(this).hide(); }}
38 else {
39 if(rowVal.indexOf(filterVal) < 0) { $(this).hide(); }}
40 });
41 }

5. Add the following compare() function that will accept two row elements, a
and b, a column number, a numeric flag, and a sort order value. The
code compares the column value of row a with row b and returns the correct
sorting value based on whether the cell value is bigger, smaller, or equal:

Click here to view code image

04 function compare(a, b, column, numeric, order){
05 var aValue = a.cells[column].innerHTML;
06 var bValue = b.cells[column].innerHTML;
07 if (numeric) { aValue = parseFloat(aValue);
08 bValue = parseFloat(bValue); }
09 if (aValue < bValue) return order;
10 if (aValue > bValue) return -order;
11 return 0;
12 }

6. Add the following click handler sortColumn() that will sort the column
when the user clicks the column heading. The handler uses the compare()
function to sort the table rows and then appends them back to the table in the
correct order. The handler also sets the correct classes for the header and cell
elements for the column:

Click here to view code image

13 function sortColumn(header, column){

14 var rows = $("tbody tr");
15 rows.sort(function(a, b){
16 return compare(a, b, column, header.data("numeric"),
17 header.data("order"));
18 });
19 $(rows).each(function(){ $("tbody").append($(this)); });
20 header.data("order", -header.data("order"));
21 $("span").removeClass("ascending descending");
22 $("td").removeClass("sortColumn");
23 if(header.data("order") > 0) {
24 header.children("span").addClass("ascending"); }
25 else {
26 header.children("span").addClass("descending"); }
27 $("tbody tr td:nth-child("+ (column + 1) +")")
28 .addClass("sortColumn");
29 }

7. Save all three files and then open the HTML document in a web browser, as
shown in Figure 14.2. You should be able to change the sort order for the
columns and use the text inputs to filter the rows displayed.

FIGURE 14.2 Dynamic table that allows you to sort and filter the elements
displayed.

LISTING 14.4 interactive_table.html HTML Document That Implements the
Table Elements Used in the Example

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Interactive Table</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/interactive_table.js">
</script>
08 <link rel="stylesheet" type="text/css"
href="css/interactive_table.css">
09 </head>
10 <body>
11 <table>
12 <thead><tr>
13 <th class="numeric">ID#</th>
14 <th >Product</th>
15 <th class="numeric">Quantity</th>
16 <th class="numeric">Price</th>
17 <td class="spacer"></td>
18 </tr></thead>
19 <tbody></tbody>
20 </table>
21 <p>* ID#, Quantity and Price Searches Filter
22 on Numerical Value Greater Than Value Specified</p>
23 <p>* Product Search Filters on String Value Contains
24 Substring Specified</p>
25 </body>
26 </html>

LISTING 14.5 interactive_table.js jQuery and JavaScript Code Define the
Interactions of the Table, Including Sorting and Filtering

Click here to view code image

01 var tArr = ["Mens", "Womens", "Youth", "Childs"];
02 var sArr = ["XL", "M", "S", "XS"];
03 var kArr = ["pants", "shirt", "shoes", "socks", "sweater", "belt"];
04 function compare(a, b, column, numeric, order){
05 var aValue = a.cells[column].innerHTML;
06 var bValue = b.cells[column].innerHTML;

07 if (numeric) { aValue = parseFloat(aValue);
08 bValue = parseFloat(bValue); }
09 if (aValue < bValue) return order;
10 if (aValue > bValue) return -order;
11 return 0;
12 }
13 function sortColumn(header, column){
14 var rows = $("tbody tr");
15 rows.sort(function(a, b){
16 return compare(a, b, column, header.data("numeric"),
17 header.data("order"));
18 });
19 $(rows).each(function(){ $("tbody").append($(this)); });
20 header.data("order", -header.data("order"));
21 $("span").removeClass("ascending descending");
22 $("td").removeClass("sortColumn");
23 if(header.data("order") > 0) {
24 header.children("span").addClass("ascending"); }
25 else {
26 header.children("span").addClass("descending"); }
27 $("tbody tr td:nth-child("+ (column + 1) +")")
28 .addClass("sortColumn");
29 }
30 function filterColumn(input, column){
31 $("tbody tr").show().each(function(){
32 var header = $("th:eq("+ column +")");
33 var filterVal = input.val();
34 var rowVal = this.cells[column].innerHTML;
35 if(header.data("numeric")){
36 if(parseFloat(filterVal) >= parseFloat(rowVal)) {
37 $(this).hide(); }}
38 else {
39 if(rowVal.indexOf(filterVal) < 0) { $(this).hide(); }}
40 });
41 }
42 function randInt(max) {
43 return Math.floor((Math.random()*max)+1); }
44 function buildData(){
45 for(var x=1;x<26;x++){
46 var row =$("<tr></tr>");
47 row.append($("<td></td>").html(x));
48 row.append($("<td></td>").html(
49 tArr[randInt(3)] + " " + sArr[randInt(3)] +
50 " " + kArr[randInt(5)]));
51 row.append($("<td></td>").html(randInt(20)));
52 row.append($("<td></td>")
53 .html(((Math.random()*80)+5).toFixed(2)));
54 $("tbody").append(row);}
55 }
56 $(document).ready(function(){
57 buildData();
58 $("th").each(function(i) {
59 var header = $(this);
60 header.data({numeric:header.hasClass("numeric"), order:-1});

61 header.children("span").click(function(){
62 sortColumn(header, i); });
63 var filter = $('<input type="text" />');
64 filter.keyup(function(){
65 filterColumn(filter, i); });
66 header.append(filter);
67 });
68 });

LISTING 14.6 interactive_table.css CSS Code That Styles the Table Elements

Click here to view code image

01 table{
02 border:3px ridge steelblue; padding:0px;}
03 thead {
04 display:block; width:820px; text-align:left; }
05 tbody {
06 display:block; max-height:400px; width:820px;
07 overflow-y:scroll; }
08 th {
09 background-image: -moz-linear-gradient(top , #f1f1f1, #BFBFBF);
10 background-image: -webkit-linear-gradient(top , #f1f1f1, #BFBFBF);
11 background-image: -ms-linear-gradient(top , #f1f1f1, #BFBFBF);
12 width:200px; height:30px; max-width: 200px;
13 font:16px Arial Black; padding:3px;
14 }
15 .spacer {
16 background-image: -moz-linear-gradient(top , #f1f1f1, #BFBFBF);
17 background-image: -webkit-linear-gradient(top , #f1f1f1, #BFBFBF);
18 background-image: -ms-linear-gradient(top , #f1f1f1, #BFBFBF);
19 width:15px; border:none;
20 }
21 td {
22 width:200px; border: .5px dotted; }
23 .sortColumn {
24 font-weight:bold; }
25 tr:nth-child(even){
26 background-color:lightgrey; }
27 img {
28 height:26px; }
29 input {
30 height:20px; width: 20px; border-radius:15px;
31 padding: 0 7px 2px 25px;
32 background:url("/images/search.png") no-repeat scroll left bottom 0
#FFFFFF;
33 background-size:20px 20px;
34 }
35 input:focus {
36 width:100px; }
37 span {
38 background:url("/images/sort2.png") no-repeat scroll left;

39 background-size:20px 20px;
40 padding: 0 7px 2px 25px;
41 cursor: pointer;
42 }
43 .ascending{
44 background:url("/images/up2.png") no-repeat scroll left;
45 background-size:20px 20px;
46 }
47 .descending{
48 background:url("/images/down2.png") no-repeat scroll left;
49 background-size:20px 20px;
50 }

Creating a Tree View
A tree view can be one of the most useful components when trying to present a large
number of options to users. That is why tree views are used in so many places. Virtually
all users will be familiar with them to at least a certain extent because it is the most
common element used by OSes when displaying files and folders.
A tree view is simple to implement in jQuery and JavaScript. A very cool thing about
tree views in your web pages is that they can contain any content that you want to
display. The following section takes you through the process of implementing a tree
view using jQuery and JavaScript.

Try it Yourself: Adding a Dynamic Tree View with Expanding and Collapsing
Branches

The purpose of the exercise is to provide you with a chance to implement a tree
view with items of different types. Each node in the tree is composed of a series
of elements defined next:

Click here to view code image

<div class="tree">
 <label></label>
 <div class="content"></div>
 <div class="tree">one or more child elemnts</div>
</div>

The element is used to display the collapsed or expanded image. The
<label> element displays the text shown next to the Expand/Collapse button.
The <div class="content"> element can contain whatever content you
want to include. You can also add additional <div class="tree">
elements that are child nodes.
The code for the example is in Listings 14.7, 14.8, and 14.9. Use the following
steps to create the dynamic web page:

1. In Eclipse, add the lesson14/dynamic_tree.html, lesson14/js/dynamic_tree.js,
and lesson14/css/dynamic_tree.css files.

2. Add the code shown in Listing 14.7 and Listing 14.9 to the HTML and CSS
files. The code in these files is fairly basic and should be familiar to you.

3. Open the dynamic_tree.js file and add the following .ready() function that
calls addLevels(). Add the addLevels(), getRandomItem(), and
randInt() functions shown in Listing 14.8. This code is used to populate
the tree with random items, including images and form elements. This is to
show you that the content of each node can be totally heterogeneous:

Click here to view code image

43 $(document).ready(function(){
44 var root = addLevels($("#treeContainer"), 4);
45 root.show();
46 });

4. Add the following addItem() function that is used to add a new node to the
tree view. This function accepts jQuery object parentItem and item. The
item argument is a JavaScript object with a label and content value. These
are used to build up the full node and append it to the parent:

Click here to view code image

06 function addItem(parentItem, item){
07 var newItem = $('<div class="tree"></div>').hide();
08 newItem.append($("").click(toggleItem));
09 newItem.append($("<label></label>").html(item.label));
10 newItem.append($('<div class="content"></div>')
11 .append(item.content).hide());
12 parentItem.append(newItem);
13 return newItem;
14 }

5. Add the following click handler toggleItem() that toggles the
visibility of the child <div> elements when the user clicks the
expand/collapse button:

Click here to view code image

01 function toggleItem(){
02 $(this).parent().children("div").toggle();
03 $(this).toggleClass("collapse");
04 return false;
05 }

6. Save all three files and then open the HTML document in a web browser, as
shown in Figure 14.3. You should be able to expand and collapse levels of the
tree view.

FIGURE 14.3 Collapsible tree view with multiple types of content.

LISTING 14.7 dynamic_tree.html HTML Document That Implements the Root
Tree Element

Click here to view code image

01 <!DOCTYPE html>

02 <html>
03 <head>
04 <title>Creating a Dynamic Tree</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/dynamic_tree.js"></script>
08 <link rel="stylesheet" type="text/css" href="css/dynamic_tree.css">
09 </head>
10 <body>
11 <div id="treeContainer"></div>
12 </body>
13 </html>

LISTING 14.8 dynamic_tree.js jQuery and JavaScript Code Populates and
Controls the Expansion and Collapsing of the Tree

Click here to view code image

01 function toggleItem(){
02 $(this).parent().children("div").toggle();
03 $(this).toggleClass("collapse");
04 return false;
05 }
06 function addItem(parentItem, item){
07 var newItem = $('<div class="tree"></div>').hide();
08 newItem.append($("").click(toggleItem));
09 newItem.append($("<label></label>").html(item.label));
10 newItem.append($('<div class="content"></div>')
11 .append(item.content).hide());
12 parentItem.append(newItem);
13 return newItem;
14 }
15 function randInt(max) {
16 return Math.floor((Math.random()*max)); }
17 function getRandomItem(){
18 var itemTypes=["image", "input", "textarea"];
19 var images=["volcano.jpg", "liberty.jpg", "falls2.jpg",
20 "wheel.jpg", "sunset.jpg"];
21 var inputs=["text","checkbox", "radio"];
22 switch(itemTypes[randInt(3)]){
23 case "image":
24 var img = images[randInt(5)];
25 return { label:img,
26 content:$('')};
27 case "input":
28 var type = inputs[randInt(3)];
29 return { label:type,
30 content:$('<input type="'+type+'">'+type+
31 '</input>')};
32 case "textarea":

33 return { label:"textarea",
34 content:$('<textarea>textarea</textarea>')};
35 }
36 }
37 function addLevels(parent, levels){
38 var element = addItem(parent, getRandomItem());
39 if(levels > 0){
40 for(var x=0; x<5; x++){ addLevels(element, levels-1) }; }
41 return element;
42 }
43 $(document).ready(function(){
44 var root = addLevels($("#treeContainer"), 4);
45 root.show();
46 });

LISTING 14.9 dynamic_tree.css CSS Code That Styles the Form Elements

Click here to view code image

01 #treeContainer {
02 width:300px; }
03 .tree {
04 margin-left: 16px; border-top:1px dotted;
05 border-left:1px dotted;}
06 .content {
07 margin-left: 48px; }
08 .tree span {
09 display:inline-block; height:24px; width:24px;
10 border-radius:8px; vertical-align:middle; margin-right:10px;
11 background:url("/images/expand.png") no-repeat scroll 0px 0px/15px
15px;
12 }
13 .tree span.collapse {
14 background:url("/images/collapse.png") no-repeat scroll 0px 0px/15px
15px;
15 }
16 img {
17 height:50px; }
18 .tree label {
19 font: 15px/20px "Arial Black";}

Using Overlay Dialogs
You have already learned how to add several types of dialogs to your web pages using
JavaScript. The problem is that the built-in dialogs are extremely limited in what you
can do with them. You could open a new pop-up window to get more control, but pop-
up windows have their own problems, the biggest of which is that users hate them and
usually disable them in their browsers.

A much better option is to create your own dialog element using jQuery and JavaScript.
Implementing a dialog requires two things: an overlay element that will mask off
everything that is happening behind on the web pages and a dialog component that
provides the dialog interaction.
The overlay needs to have a higher z-index than the main web page elements below.
The overlay should also be somewhat transparent so that the user can see the web page
in the background but is unable to click any of the web page elements under the overlay.
The dialog needs to have a higher z-index than the overlay so that it is visible when
the overlay is displayed. The dialog also needs to have a means of closing, which
makes the dialog and overlay elements hidden. You can include anything else in the
dialog that you desire to provide user interaction.
The dialog and overlay need to be in a fixed position and initially hidden. When you
want to display the dialog, unhide the overlay and dialog and then hide them when you
are finished displaying the dialog. The following section takes you through that process.

Try it Yourself: Adding Dynamic Dialogs Using Overlays in jQuery and
JavaScript

The purpose of the exercise is to provide you with the capability to implement
your own custom dialogs with an overlay that masks off the rest of the web page.
The code for the example is in Listings 14.10, 14.11, and 14.12.
Use the following steps to create the dynamic web page:
1. In Eclipse, create the lesson14/dynamic_dialog.html,

lesson14/js/dynamic_dialog.js, and lesson14/css/dynamic_dialog.css files.
2. Add the code shown in Listing 14.10 and Listing 14.12 to the HTML and CSS

files. The HTML code implements a basic web page with two exceptions.
Notice the overlay and dialog <div> elements. Those elements are not
part of the main web page and will be used to simulate a pop-up dialog with
only jQuery and JavaScript.

3. Open the dynamic_dialog.js file and add the following .ready() function
that hides the overlay and dialog <div> elements, and then add a click
handler to display them and another to update the web page and hide the
dialog:

Click here to view code image

13 $(document).ready(function(){
14 $("#overlay, #dialog").hide();
15 $("span").click(function(){
16 $("#overlay, #dialog").show(); });
17 $("#updateB").click(update);
18 });

4. Add the following click handler update() that updates the values of the
web page based on information obtained in the dialog <div>. This illustrates
the interaction between the dialog and the rest of the web page:

Click here to view code image

01 function update(){
02 $("#overlay, #dialog").hide();
03 $("#title p").html($("#titleT").val());
04 $("#content").html($("#contentT").val());
05 $("#leftNav span").remove();
06 $("input:checkbox").each(function(){
07 if($(this).prop("checked")){
08 $("#leftNav").append($("")
09 .html($(this).val()));
10 }
11 });
12 }

5. Save all three files and then open the HTML document in a web browser, as
shown in Figure 14.4. You should be able to open the dialog by clicking the
Update button. Update the form and then see the web page close when the
Update button in the dialog is clicked.

FIGURE 14.4 Form to page manipulation illustrating how to read data from forms
and use it to update other elements on the web.

LISTING 14.10 dynamic_dialog.html HTML Document That Implements the Page,
Overlay, and Dialog

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Let's Have a Dialog</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/dynamic_dialog.js"></script>
08 <link rel="stylesheet" type="text/css"
href="css/dynamic_dialog.css">
09 </head>
10 <body>

11 <div><div id="title">
12 Edit Page<p>Title</p></div>

13 <div>
14 <div id="leftNav">
15 Option 1
16 Option 2
17 Option 3
18 Option 4
19 </div>
20 <div id="content">Some
Content</div>
21 </div></div>
22 <div id="overlay"></div>
23 <div id="dialog">
24 <p id="dialogTitle">Update Web Page</p>
25 <label>Title</label>

26 <input id="titleT" type="text" />

27 <input type="checkbox" value="Option 1" checked>Option 1</input>

28 <input type="checkbox" value="Option 2" checked>Option 2</input>

29 <input type="checkbox" value="Option 3" checked>Option 3</input>

30 <input type="checkbox" value="Option 4" checked>Option 4</input>

31 <label>Content</label>

32 <textarea id="contentT"></textarea>

33 Update
34 </div>
35 </body>
36 </html>

LISTING 14.11 dynamic_dialog.js jQuery and JavaScript Code That Shows and
Hides the Dialog and Updates the Web Page

Click here to view code image

01 function update(){
02 $("#overlay, #dialog").hide();
03 $("#title p").html($("#titleT").val());
04 $("#content").html($("#contentT").val());
05 $("#leftNav span").remove();
06 $("input:checkbox").each(function(){
07 if($(this).prop("checked")){
08 $("#leftNav").append($("")
09 .html($(this).val()));
10 }
11 });
12 }
13 $(document).ready(function(){
14 $("#overlay, #dialog").hide();
15 $("#edit").click(function(){

16 $("#overlay, #dialog").show(); });
17 $("#updateB").click(update);
18 });

LISTING 14.12 dynamic_dialog.css CSS Code That Styles the Page, Overlay, and
Dialog Elements

Click here to view code image

01 div {
02 margin:0px; display:inline-block;
03 float:left; text-align:center; }
04 span {
05 background-image: -moz-linear-gradient(top , #f1f1f1, #8F8F8F);
06 background-image: -webkit-linear-gradient(top , #f1f1f1, #8F8F8F);
07 background-image: -ms-linear-gradient(top , #f1f1f1, #8F8F8F);
08 color:black; border:2px ridge darkblue;
09 font-size:20px; float:left; cursor:pointer;
10 width:145px; text-align:center; border-radius: 4px; }
11 p {
12 margin:0px; }
13 #title {
14 background-color:steelblue; color:white;
15 height:80px; width:750px; font-size:60px; }
16 #leftNav{
17 width:150px; height:400px; font-size:20px;
18 background-color:#AACCFF; }
19 #content{
20 height:400px; width: 600px; font-size:40px;
21 background-color:#EEEEEE; }
22 #overlay {
23 position:fixed; top:10px; left:10px;
24 height:480px; width:750px;
25 opacity:.8; background-color:white; }
26 #dialog {
27 border: 3px groove blue; text-align:left;
28 padding:10px; position:fixed;
29 top:100px; left:200px; background-color:white; }
30 #dialogTitle {
31 text-align:center; font:20px bold;
32 background-color:blue; color:white;
33 margin:-10px -10px 5px -10px; }
34 #contentT, #titleT {
35 border-radius: 3px; width:150px; padding:5px;
36 margin:10px; border:2px groove blue; }
37 label {
38 font:bold italic 18px "Arial Black" }

Implementing a Graphical Equalizer Display

The total purpose of this section is to help you see a method of using basic HTML
elements along with dynamic jQuery and JavaScript interactions with data to provide a
rich user experience with a visual indicator of what is happening with data. The data
could be coming from a variety of sources, including JavaScript running on the web
page or external services collected by AJAX requests.
A graphic equalizer element provides a great way to view several values at once and is
something that many users are already familiar with. The following sections walk you
through the process of implementing a graphical equalizer.

Try it Yourself: Creating a Dynamic Graphic Equalizer with Simple jQuery
and CSS

The purpose of the exercise is to illustrate how to implement graphical elements
using the basic web elements with CSS styling and some background jQuery. In
this exercise, you create a bunch of elements, use CSS to style them into
an element representing a graphical equalizer display, and then add jQuery to
dynamically update the display to provide a rich UI element. The code for the
example is in Listings 14.13, 14.14, and 14.15.
Use the following steps to create the dynamic web page:
1. In Eclipse, create the lesson14/graphic_equalizer.html,

lesson14/js/graphic_equalizer.js, and lesson14/css/graphic_equalizer.css files.
2. Add the code shown in Listing 14.13 and Listing 14.15 to the HTML and CSS

files. These files should be basic for you by now. The CSS provides class
styles for the different colors used in the equalizer and then styles the look of
the elements.

3. Open the graphic_equalizer.js file and add the following .ready() function
that dynamically builds the equalizer by adding <div> and
elements:

Click here to view code image

23 $(document).ready(function(){
24 for(var i=0; i< 10; i++){
25 $("#equalizer").append($("<div></div>"));
26 }
27 $("#equalizer div").each(function (idx){
28 $(this).append($("<p></p>").html(idx));
29 for(var i=0; i< 2; i++){
30 $(this).append($('')); }
31 for(var i=0; i< 2; i++){
32 $(this).append($('')); }
33 for(var i=0; i< 3; i++){
34 $(this).append($('')); }
35 for(var i=0; i< 8; i++){

36 $(this).append($('')); }
37 adjValues();
38 });
39 });

4. Add the following updateEqualizer() function that updates the opacity
of the span elements so that only values below a certain level show as fully
opaque. The data comes from a global array:

Click here to view code image

15 function updateEqualizer(){
16 $("span").css({opacity:.3});
17 $("#equalizer div").each(function(i){
18 $(this).children("span:gt("+ (15 - valueArr[i]) +")")
19 .css({opacity:1});
20 $(this).children("p:first").html(valueArr[i]);
21 });
22 }

5. Add the following functions that populate the global array every .5 seconds,
via setTimeout(), with new data that is rendered in the equalizer by
calling updateEqualizer():

Click here to view code image

01 var valueArr = [10,8,3,12,12,15,15,3,4,5];
02 function randInt(max) {
03 return Math.floor((Math.random()*max)-3); }
04 function adjValues(){
05 for (var i=0; i<valueArr.length; i++) {
06 var adj = valueArr[i] +
07 Math.floor((Math.random()*7)-3);
08 adj = Math.max(3, adj);
09 adj = Math.min(15, adj);
10 valueArr[i] = adj;
11 }
12 updateEqualizer();
13 setTimeout(adjValues, 500);
14 }

6. Save all three files and then open the HTML document in a web browser, as
shown in Figure 14.5. You should see the graphical equalizer element updating
automatically.

FIGURE 14.5 Graphical equalizer element.

LISTING 14.13 graphic_equalizer.html HTML Document That Implements a Web
Page

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Listen to the Beat!</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/graphic_equalizer.js">
</script>
08 <link rel="stylesheet" type="text/css"
href="css/graphic_equalizer.css">
09 </head>
10 <body>
11 <div id="equalizer"></div>
12 </body>
13 </html>

LISTING 14.14 graphic_equalizer.js jQuery and JavaScript Code Dynamically
Build and Populate the Graphical Equalizer

Click here to view code image

01 var valueArr = [10,8,3,12,12,15,15,3,4,5];
02 function randInt(max) {

03 return Math.floor((Math.random()*max)-3); }
04 function adjValues(){
05 for (var i=0; i<valueArr.length; i++) {
06 var adj = valueArr[i] +
07 Math.floor((Math.random()*7)-3);
08 adj = Math.max(3, adj);
09 adj = Math.min(15, adj);
10 valueArr[i] = adj;
11 }
12 updateEqualizer();
13 setTimeout(adjValues, 500);
14 }
15 function updateEqualizer(){
16 $("span").css({opacity:.3});
17 $("#equalizer div").each(function(i){
18 $(this).children("span:gt("+ (15 - valueArr[i]) +")")
19 .css({opacity:1});
20 $(this).children("p:first").html(valueArr[i]);
21 });
22 }
23 $(document).ready(function(){
24 for(var i=0; i< 10; i++){
25 $("#equalizer").append($("<div></div>"));
26 }
27 $("#equalizer div").each(function (idx){
28 $(this).append($("<p></p>").html(idx));
29 for(var i=0; i< 2; i++){
30 $(this).append($('')); }
31 for(var i=0; i< 2; i++){
32 $(this).append($('')); }
33 for(var i=0; i< 3; i++){
34 $(this).append($('')); }
35 for(var i=0; i< 8; i++){
36 $(this).append($('')); }
37 adjValues();
38 });
39 });

LISTING 14.15 graphic_equalizer.css CSS code That Styles Elements to Render
the Graphical Equalizer

Click here to view code image

01 #equalizer {
02 background-color:black; color:white;
03 width:420px; height:160px; padding:20px;
04 border: 3px ridge darkgrey;
05 }
06 div{
07 display:inline-block; width:40px; padding:1px; }
08 p{

09 text-align:center; margin:0px;}
10 span{
11 display:block; width:30px; height:7px;
12 margin:2px; border-radius: 40%; }
13 .green{
14 background-color:#00FF00; }
15 .yellow{
16 background-color:#FFFF00; }
17 .orange{
18 background-color:#FFAA00; }
19 .red{
20 background-color:#FF0000; }

Adding Sparkline Graphics
The purpose of this section is to help you see a method of using some of the new
HTML5 elements along with dynamic jQuery and JavaScript interactions with data to
provide a rich user experience with a visual indicator of trending data. The data could
be coming from a variety of sources, including JavaScript running on the web page or
external services collected by AJAX requests.
In this section, you implement a series of sparklines. A sparkline is a mini-graph that is
updated frequently with the latest values from the web server. A sparkline element
provides a great way for you to see how to use the new HTML elements to provide
users with a great visual indicator of data trends. The following sections walk you
through the process of implementing the sparkline.

Try it Yourself: Creating Dynamic Sparklines with Simple jQuery, JavaScript,
and CSS

The purpose of the exercise is to illustrate how to implement new HTML5
graphical elements to render useful visual components to your web page. In this
exercise, you use <canvas> elements to implement sparklines and dynamically
update them using jQuery and JavaScript. The code for the example is in Listings
14.16, 14.17, and 14.18.
Use the following steps to create the dynamic web page:
1. In Eclipse, create the lesson14/dynamic_sparkline.html,

lesson14/js/dynamic_sparkline.js, and lesson14/css/dynamic_sparkline.css
files.

2. Add the code shown in Listing 14.16 and Listing 14.18 to the HTML and CSS
files. The HTML and CSS are fairly basic. Notice that there are just <div>,
, <label>, and <canvas> elements.

3. Open the dynamic_sparkline.js file and add the following .ready()

function that populates the data used for the sparklines and starts off the
adjValues() timer function. You also need to add the adjValues() and
getRandomArray() functions shown in Listing 14.17. These functions
populate and continuously update the values used for the sparklines. Notice
that the data array is stored in the <div> element using the .data() method:

Click here to view code image

34 $(document).ready(function(){
35 $("div").each(function(){
36 $(this).data("valueArr", getRandomArray()); });
37 adjValues();
38 });

4. Add the following function renderSpark() that uses the set of values in
the data array and draws a series of lines on the canvas to create the sparkline.
Line 14 is a bit of a trick; setting the width of the canvas to its current value
will erase the current data on the canvas, so the last sparkline is erased before
drawing the new one:

Click here to view code image

13 function renderSpark(c, lineValues){
14 c.width = c.width;
15 var xAdj = c.width/lineValues.length;
16 var ctx = c.getContext("2d");
17 ctx.fillStyle = "#000000";
18 ctx.strokeStyle = "#00ffff";
19 ctx.lineWidth = 3;
20 var x = 1;
21 ctx.moveTo(x,(c.height));
22 for (var idx in lineValues){
23 var value = parseInt(lineValues[idx]);
24 ctx.lineTo(x+xAdj, (c.height - value));
25 x += xAdj;
26 }
27 ctx.stroke();
28 }

5. Save all three files and then open the HTML document in a web browser, as
shown in Figure 14.6. You should see the sparklines automatically updating.

FIGURE 14.6 Web page with dynamic sparkline elements that update automatically.

LISTING 14.16 dynamic_spark.html HTML Document That Implements Page
Elements

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Dynamic Spark Line</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/dynamic_sparkline.js">
</script>
08 <link rel="stylesheet" type="text/css"
href="css/dynamic_sparkline.css">
09 </head>
10 <body>
11 <div>
12 <label>Processes</label>1<canvas></canvas>
13 </div>
14 <div>
15 <label>Speed</label><canvas></canvas>
16 </div>
17 <div>

18 <label>Uploads</label><canvas></canvas>
19 </div>
20 <div>
21 <label>Downloads</label><canvas></canvas>
22 </div>
23 </body>
24 </html>

LISTING 14.17 dynamic_spark.js jQuery and JavaScript Code Dynamically
Populates and Updates the Sparklines

Click here to view code image

01 function randInt(max) {
02 return Math.floor((Math.random()*max)+1); }
03 function adjValues(){
04 $("div").each(function(){
05 var lineValues = $(this).data("valueArr");
06 lineValues.shift();
07 lineValues.push(randInt(100));
08 $(this).children("span").html(lineValues[0]);
09 renderSpark($(this).children("canvas").get(0), lineValues);
10 });
11 setTimeout(adjValues, 1000);
12 }
13 function renderSpark(c, lineValues){
14 c.width = c.width;
15 var xAdj = c.width/lineValues.length;
16 var ctx = c.getContext("2d");
17 ctx.fillStyle = "#000000";
18 ctx.strokeStyle = "#00ffff";
19 ctx.lineWidth = 3;
20 var x = 1;
21 ctx.moveTo(x,(c.height));
22 for (var idx in lineValues){
23 var value = parseInt(lineValues[idx]);
24 ctx.lineTo(x+xAdj, (c.height - value));
25 x += xAdj;
26 }
27 ctx.stroke();
28 }
29 function getRandomArray(){
30 var arr = new Array();
31 for(var x=0; x<20; x++){ arr.push(randInt(100)); }
32 return arr;
33 }
34 $(document).ready(function(){
35 $("div").each(function(){
36 $(this).data("valueArr", getRandomArray()); });
37 adjValues();
38 });

LISTING 14.18 dynamic_spark.css CSS Code That Styles the Page Elements and
Sparkline

Click here to view code image

01 canvas{
02 height:50px; width: 200px; vertical-align:bottom;
03 border:3px solid black; background-color:black; margin:10px; }
04 label, span {
05 display:inline-block; text-align:right; width:160px;
06 font:bold 24px/50px "Arial Black"; border-bottom:2px dotted; }
07 span{
08 width:50px; color:blue; }

Summary
In this lesson, you implemented several more advanced web elements. You learned the
basics of implementing image galleries, how to add sorting and filtering to a table, and
how to dynamically create a tree view. You also implemented some graphical elements,
such as sparklines and an equalizer display.

Q&A
Q. In your example, you populated the image slider using an array. Is that the

best method?
A. Not necessarily. That was used for simplicity in the example. You can also use a

static file located on the web server to get the list of files, or use an AJAX
request to a server-side script that returns the list of images to display.

Q. Is it better to use a <canvas> or a <svg> element to draw chart type
data such as the sparkline?

A. I used a <canvas> because it is simple to implement the changing lines. An
<svg> chart would be too large to include in this book. The downside is that the
canvas gets blurry if you zoom in on the web page. For the best charts, you should
use <svg> so that the user can zoom in and it is still clean.

Workshop
The workshop consists of a set of questions and answers designed to solidify your
understanding of the material covered in this lesson. Try to answer the questions before
looking at the answers.

Quiz

Quiz
1. How do you use jQuery to move the slider in the image gallery?
2. Why do you use an overlay element along with the dialog when creating custom

dialogs?
3. How do you make the dialog box appear on top of other elements?

Quiz Answers
1. The slider is really just a big <div>. To adjust the position, change the relative

position using the .css() or .animate() methods.
2. The overlay keeps the user from clicking on the rest of the web page until the

dialog is closed.
3. Set the z-index to a higher value.

Exercises
1. Modify the code in Listings 14.4, 14.5, and 14.6 so that the filter for numerical

columns will filter out items less than the value specified when the column is in
ascending order and items greater than the value specified when the column is in
descending order.

2. Modify the code in Listings 14.7, 14.8, and 14.9 to add expand all and collapse
all buttons. The buttons should expand or collapse all elements in the tree.

3. This exercise is for more advanced CSS and HTML users. In the code in Listings
14.1, 14.2, and 14.3, modify the slider to be vertical. You will need to change
positioning code to adjust the top instead of the left, move things around on the
page, and do quite a number of CSS changes to get the slider to look right.

Lesson 15. Accessing Server-Side Data via JavaScript and
jQuery AJAX Requests

What You’ll Learn in This Lesson:
 Using AJAX requests to load data into page elements
 Sending AJAX GET and POST requests
 How to serialize parameters for GET and POST requests
 How to handle JSON and XML data in the web server AJAX response
 Implementing AJAX event handlers to handle completion, success, and failure
events

In this lesson, you explore the world of asynchronous communication with the server
using AJAX requests in jQuery and JavaScript. AJAX communications are one of the
most vital parts of most websites. They allow jQuery and JavaScript to get additional
data from the server and update the page instead of reloading or loading a new web
page.
The following sections try to demystify AJAX a bit, and they provide you with some
practical examples. By the end of this lesson, you will be able to implement AJAX in a
variety of ways. AngularJS encapsulates the jQuery and JavaScript AJAX components
into a very easy-to-use service called $http that you will learn about in the AngularJS
section of lessons. It is not included here because you need to learn how AngularJS
services work before you will be able utilize it.

Making AJAX Easy
Despite its importance, AJAX tends to be a bit daunting at first. With all the
communication terms, it might seem easy to get confused. That really shouldn’t be the
case. If you take a quick step back to look at the basics of AJAX from a high level, it is
easier to understand.
AJAX is a request from jQuery or JavaScript to the web server. The request may send
data to the server, and the server will respond with a success or failure and possibly
additional data. That is it—nothing more, nothing less. The following sections help
clarify the request/response process.

Clarifying AJAX Versus Page Requests
The first step is to define the difference between AJAX and normal page linking
request. You are already familiar with page links; when you click a link, a new web
page appears. Often that is the case even if all the controls, tables, graphics, and so on

are the same, but only some data has changed. In the case of form submission, none of
the data changes, but the web page must still be reloaded from the server.

Caution
Don’t confuse server-side dynamic creation of web pages with AJAX.
Dynamic creation of web pages is still the old traditional method—it is just
a bit easier to manage. Each request back to the server still requires a full
new web page to be returned. The only advantage is that the web page is
generated in memory instead of read from disk.

AJAX is completely different. An AJAX request does not request a new web page from
the server. Instead, an AJAX request only sends and receives bits of data necessary. If
the new data received from the web server requires the web page to be updated, then
jQuery and JavaScript can update the page elements, as you have already seen.
The following is a list of a few of the benefits of AJAX requests:

 Less data requested from the web server.
 Allows the user to continue using the web page even while the request is being
processed.
 Errors can be caught and handled on the client side before a request is ever made
to the server.

Figure 15.1 illustrates the difference between the two methods of updating data in the
browser.

FIGURE 15.1 Comparison of AJAX requests versus traditional page linking.

Understanding Server-Side Services Such as Node.js, ASP, PHP, and
MySQL
The next step is to understand how the AJAX requests are handled. Great detail is not
necessarily important. What you need to understand is that for each AJAX request you
send to a web server, a process will read the request, do some work, and then send
back a response.
The back-end processes can be the web server returning a static HTML, text, XML, or
JSON file. The back-end process often is an ASP, JSP, PHP, Python, or Node.js script
that is running on the server reading data from memory, files, databases, and other
sources. The back-end process can also be a myriad of other frameworks that are
integrated into the web server.

None of that really matters to the AJAX script running in the browser. All that matters is
that the server sends back a status and data.

Understanding Asynchronous Communication
You need to be clear on asynchronous communication. When you request a web page
from the web server, the communication is synchronous to your browser. That means the
browser waits until the HTML document is downloaded from the server before it begins
rendering it and retrieving the additional resources necessary.

Tip
You can do synchronous AJAX requests with both jQuery and JavaScript.
The jQuery .ajax() method and the JavaScript send() function both
have a Boolean field that allows this. You shouldn’t use this, though,
because you can cause the browser to lock up, which will create some very
unhappy users. In fact, in jQuery 1.8 and later, that option is deprecated.

AJAX communication is different when you send an AJAX request. Control is returned
immediately back to jQuery or JavaScript, which can do additional things. Only when
the request has completed or timed out will events be triggered in the browser that
allow you to handle the request data.

Understanding Cross-Domain Requests
Cross-domain requests occur when you send AJAX requests to separate servers from
different domains. The browser prevents this, and correctly so because of a multitude of
security reasons.
The only problem with blocking cross-domain requests is that you often want to get data
from services external to the current website. You can get around this in a couple of
ways.
The first method to overcome the cross-domain restriction is to have the web server act
as a proxy to the other servers or services, meaning that instead of directly
communicating via JavaScript, you send the request to the server and have the server do
it for you. The only downside is that it requires additional server-side scripting, and you
pay an extra time penalty because data has to first be downloaded to the web server and
then to the web browser.
Another option is to do what is called on-demand JavaScript, which is used by JSON
with Padding (JSONP). This method takes advantage of the fact that you can download a
script from another website as a resource using the following syntax:
Click here to view code image

<script type="text/javascript"
 src="http://new.domain.com/getData?jsonp=parseData">
</script>

The trick is that the address specified by the src attribute cannot return the JSON
response directly. If the browser detects that the data in the script is JSON, as shown
next, it throws a cross-domain error:
Click here to view code image

{ "title": "photoA", "rating": 7 };

Instead, the third-party service must support JSONP, in which case it pads the response
with the function call specified by the request, as shown next. In that way, you will be
able to access the data from JavaScript by calling the function:
Click here to view code image

parseData({ "title": "photoA", "rating": 7 });

Note
Another way to handle cross-domain communication that may be useful is
to include the ACCESS-CONTROL-ALLOW-ORIGIN:* header in the
response headers. This can easily be done if you are setting up your own
server.

Looking at GET Versus POST Requests
This section clarifies GET and POST requests. The two main types of requests that you
send to the web server are GET and POST. There are only a few differences between
the two, but they are important. A GET request passes parameters as part of the URL,
whereas a POST request passes them as part of the request data.
To help you quickly see this, the following illustrates the basic URL and data involved
to send a first and last name to the server in a GET and POST request:
GET request URL:
Click here to view code image

http://localhost/code/example1.html?first=Brad&last=Dayley

Get request data:
<empty>

POST request URL:
Click here to view code image

http://localhost/code/example1.html

POST request data:
first=Brad
last=Dayley

Which request type should you use? The basic rule is to use a GET for retrieving
information from the server and a POST if you are changing data on the server.

Understanding Response Data Types—Binary Versus Text Versus
XML Versus JSON
It’s important to be clear on the response data types that may come back from the server.
The data that comes back to an AJAX request will be either in some sort of binary or
text format. Typically, binary is reserved for images, zip files, and the like. However,
text may be raw text, HTML, XML, JSON, and so on.
What does that mean? This is where it can get a bit tricky. When the browser receives a
response from the server, it attempts to determine the type of data received by the server
and create the appropriate response object for you to use.
For XML and HTML data, a DOM object is created, whereas for JSON, a JavaScript
object is created. For raw text or binary objects, an object is constructed that provides
access to the raw text or binary data. You will see how this works in the following
sections.

Implementing AJAX
Now that you have your head wrapped around the AJAX concepts, you are ready to
begin implementing the basic details. To implement AJAX requests, you need to access
the HTTP request object, format the data that needs to be sent to the server, send the
request, and then handle the response.
Both JavaScript and jQuery have methods to send an AJAX request to the web server.
You’ll see both methods in the following sections. jQuery is able to do everything that
JavaScript can do, but in a much easier and extensible manner.
The following sections discuss and provide some examples of implementing basic
AJAX requests.

AJAX from JavaScript
To implement an AJAX request in JavaScript, you need access to a new
window.XMLHttpRequest object. Table 15.1 describes the important methods and
attributes of the XMLHttpRequest object.

TABLE 15.1 Important Methods and Attributes of the XMLHttpRequest Object
To illustrate this, check out the following code that sends a GET AJAX request to the
server to get the email address based on first and last name parameters:
Click here to view code image

var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange=function() {
 if (xmlhttp.readyState==4 && xmlhttp.status==200)
 { document.getElementById("email").innerHTML=xmlhttp.responseText;}
 }
xmlhttp.open("GET","/getUserEmail?userid=brad",true);
xmlhttp.send();

The following code illustrates how to send a basic POST AJAX request to the server to
set the email address. Notice that for the POST request, the added Content-length
and Content-type headers make sure that the data is treated correctly at the server.
The Content-length is set to the length of the params string:
Click here to view code image

var xmlhttp = new XMLHttpRequest();
var params = "first=Brad&last=Dayley&email=brad@dayleycreations.com";
http.setRequestHeader("Content-type", "text/plain");
http.setRequestHeader("Content-length", params.length);
xmlhttp.onreadystatechange=function() {
 if (xmlhttp.readyState==4 && xmlhttp.status==200)
 { alert("Email Updated");
 }
xmlhttp.open("POST","/setUserEmail",true);
xmlhttp.send(params);

Note

In Internet Explorer browsers earlier than IE7, you need to use the
following line to create the xmlhttp object because the window object
doesn’t support the XMLHttpRequest attribute:

Click here to view code image

xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");

AJAX from jQuery
This section looks at implementing AJAX requests from jQuery. jQuery provides very
simple-to-use wrapper methods to implement AJAX requests, .load(), .get(), and
.post().
The helper function are wrappers around the .ajax() interface, which is discussed
later. These helper functions are the following:

 .load(url [, data] [, success(data, textStatus, jqXHR)])—This
method is used to load data directly elements represented by the jQuery object.
 .getScript (url [, data] [, success(data, textStatus, jqXHR)])
)—This method is used to load and then immediately execute a JavaScript/jQuery
script.
 .getJSON(url [, data] [, success(data, textStatus, jqXHR)]))—
This method is used to load data in JSON format using a JSONP request to
servers on different domains.
 .get(url [, data] [, success(data, textStatus, jqXHR)] [,
dataType]))—This method is used to send a generic GET request to the
server.
 .post(url [, data] [, success(data, textStatus, jqXHR)] [,
dataType]))—This method is used to send a generic POST request to the
server.

Each of these methods enables you to specify the url of the request. The .load()
method is used to load data directly into elements represented by jQuery object. The
.get() and .post() methods are used to send GET and POST requests.
The data argument can be a string or basic JavaScript object. For example, in the
following example, obj, objString, and formString are all valid data
arguments:
Click here to view code image

var obj ={"first":"Brad", "last":"Dayley"};
var objString = $.param(obj);
var formString = $("form").serialize();

You can also specify the function that executes when the response from the server
succeeds. For example, the following success handler sets the value of the #email
element to the value response data:
Click here to view code image

$.get("/getEmail?first=Brad&last=Dayley", null, function (data, status,
xObj){
 $("#email").html(data);
}));

The .get() and .post() methods also enable you to specify a dataType
parameter as a string, such as “xml", "json", "script" , "html", and so on, that
formats the expected format of the response data from the server. For example, to
specify a response type of JSON, you use the following:
Click here to view code image

$.get("/getUser?first=Brad&last=Dayley", null, function (data, status,
xObj){
 $("#email").html(data.email);
}), "json");

Try it Yourself: Sending an AJAX Request from jQuery
In this exercise, you get a chance to implement some simple AJAX requests using
the jQuery .load() method. The resulting web page contains a left navigation
that uses AJAX requests to load lorem ipsum article data from the web server
and populate the web page with the results. The purpose of the exercise is to give
you a chance to see how the .load() method works.
The code for the example is in Listings 15.1, 15.2, 15.3, and 15.4. Use the
following steps to create the dynamic web page:
1. In Eclipse, create the lesson15, lesson15/js, and lesson15/css folders, and

then add the lesson15/load_content.html, lesson15/js/load_content.js, and
lesson15/css/load_content.css. You also need to create the lesson15/data
folder and the files article1.html, article2.html, article3.html, and article4.html
inside it. You can also download these files from the book’s website.

2. Listing 15.4 shows an example of the data format for the article#.html files.
3. Add the code shown in Listing 15.1 and Listing 15.3 to the HTML and CSS

files. The code in these files should be familiar to you, with the exception of an
article attribute to the element, as shown next. This is used in the
jQuery to identify which article should be loaded when the span is clicked:

Click here to view code image

15 <span class="navItem"

16 article="article1">Responsive Web Design

4. Now open the load_content.js file and add the following .ready() that adds
a click handler setArticle() to the left navigation items on the web page:

Click here to view code image

4 $(document).ready(function(){
5 $(".navItem").click(setArticle);
6 });

5. Add the following click handler setArticle() that calls the jQuery AJAX
method .load() and populates the #content <div> with new data
loaded from the server. Notice that the article attribute in the span is read
and a .html extension added so that the .load() method requests a different
article for each link:

Click here to view code image

1 function setArticle(){
2 $("#content").load("data/"+$(this).attr("article")+".html");
3 }

6. Save all three files and then open the HTML document in a web browser, as
shown in Figure 15.2. You should be able to click the left navigation items and
load different articles.

FIGURE 15.2 Article viewer that uses AJAX requests to populate the article
content.

LISTING 15.1 load_content.html HTML Document That Adds Menu and Content

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Loading Content</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/load_content.js"></script>
08 <link rel="stylesheet" type="text/css" href="css/load_content.css">
09 </head>
10 <body>
11 <div id="banner">AngularJS, JavaScript and jQuery Articles</div>
12

13 <div>
14 <div id="leftNav">
15 <span class="navItem"
16 article="article1">Responsive Web Design
17 <span class="navItem"
18 article="article2">jQUery Under the Hood
19 <span class="navItem"
20 article="article3">AngularJS Your New Best Friend
21 <span class="navItem"
22 article="article4">Turbo Charged Web Sites
23 </div>
24 <div id="content">
25
26 <div id="article"></div>
27 </div>
28 </div>
29 </body>
30 </html>

LISTING 15.2 load_content.js jQuery and JavaScript That Implements the AJAX
.load() Requests

Click here to view code image

01 function setArticle(){
02 $("#content").load("data/"+$(this).attr("article")+".html");
03 }
04 $(document).ready(function(){
05 $(".navItem").click(setArticle);
06 });

LISTING 15.3 load_content.css CSS Code That Styles the Page

Click here to view code image

01 div { margin:0px; display:inline-block; float:left; text-align:center;
}
02 p { margin:2px; }
03 #banner { border-radius: 3px 3px 0px 0px;
04 background-image: -moz-linear-gradient(top , #0000FF, #88BBFF);
05 background-image: -webkit-linear-gradient(top , #0000FF, #88BBFF);
06 background-image: -ms-linear-gradient(top , #0000FF, #88BBFF);
07 color:white; height:30px; width:550px; font-size:25px; }
08 #leftNav { width:150px; height:404px; border:1px groove #000088; }
09 .navItem { border:1px dotted; display:block; margin:3px; }
10 .navItem:hover { border:1px solid; background-color:#00FF00;
cursor:pointer; }
11 #content {border:1px solid blue;}
12 #article { width: 375px; height:350px; padding:10px; overflow-y:scroll;

}
13 #title { font-weight:bold; font-size:25px; border-bottom: 1px blue
solid;
14 display:block; margin:5px; color:black; }
15 #by { text-align:right; font:bold italic 16px arial black; float:left;
16 margin-bottom:20px; }
17 #date { text-align:right; font:italic 12px arial black; float:right;}
18 #article p {margin-top:20px; background-color:#EEEEEE; border-
radius:5px;
19 clear:both; padding:5px; }

LISTING 15.4 article1.html Article HTML Code That Is Dynamically Loaded

Click here to view code image

01 Responsive Web Design
02 <div id="article">
03 Brad Dayley
04 5/25/2015
05 <p>Lorem ipsum dolor ... </p>
06 <p>Lorem ipsum dolor sit amet, ...</p>
07 <p>...</p>
08 <p>...</p>
09 <p>....</p>
10 </div>

Handling AJAX Responses
In addition to specifying the success handler, the wrapper methods also enable you to
attach additional handlers using the following methods:

 .done(data, textStatus, jqXHR)—Called when a successful response is
received from the server.
 .fail(data, textStatus, jqXHR)—Called when a failure response is
received from the server or the request times out.
 .always(data, textStatus, jqXHR)—Always called when a response is
received from the server.

For example, the following code adds an event handler that is called when the request
fails:
Click here to view code image

$.get("/getUser?first=Brad&last=Dayley", null, function (data, status,
xObj){
 $("#email").html(data.email);
}), "json").fail(function(data, status, xObj){

 alert("Request Failed");
});

Try it Yourself: Handling Request Success and Failures
In this exercise, you get a chance to implement the .done(), .fail(), and
.always() AJAX event handlers on a basic jQuery .get() request. The
resulting web page sends the name and color to a server-side Node.js script that
checks for name="Lancalot" and color="blue". If the correct name and
color are entered, the request succeeds; otherwise, the request fails. The purpose
of the exercise is to apply the AJAX handlers to a practical concept.
The code for the example is in Listings 15.5, 15.6, 15.7, and 15.8. Use the
following steps to create the dynamic web page:
1. In Eclipse, create lesson15/ajax_response.html, lesson15/js/ajax_response.js,

and lesson15/css/ajax_response.css files.
2. Create a file in the root of the project named

server_lesson15_ajax_handling.js and place the contents of Listing 15.8 into it.
This file will act as the Node.js webserver for this example only.

3. Stop the server.js webserver if it is already running for other examples. Then
start the server_lesson15_ajax_handling.js webserver using the node command
or Run As, Node Application if you are using Eclipse.

Note
Don’t forget when you are done to stop the
server_lesson15_ajax_handling.js server and start the normal server.js
before moving on to additional exercises.

4. Add the code shown in Listing 15.5 and Listing 15.7 to the HTML and CSS
files. The HTML and CSS code define a basic login dialog.

5. Open the ajax_response.js file and add the following .ready() function that
will add a click handler to the input button:

Click here to view code image

09 $(document).ready(function(){
10 $("#requestButton").click(askYourQuestions);
11 });

6. Add the following click handler askYourQuestions() that will be
called when the user clicks the request button. The handler makes an AJAX
.get() request to the /request path on the webserver. Notice that the data
from the #requestForm is serialized using .serialize() to create the

query string. Also notice that .done(), .fail(), and .always() are
attached to the .get() request to handle the AJAX completion events:

Click here to view code image

04 function askYourQuestions(){
05 $.get("/request",
06 $("#requestForm").serialize()).done(success).fail(failure).always(always);
07 return false;
08 }

7. Add the following three AJAX event handlers to handle completion, failure,
and successful login attempts:

Click here to view code image

01 function failure(){ alert("You May Not Pass!"); }
02 function success(){ alert("You May Pass!"); }
03 function always(){ alert("Questions Answered."); }

8. Save all three files and then open the HTML document in a web browser, as
shown in Figure 15.3. You should see the completion alert pop up whenever
you click the request button. You should also see the success alert when you
use the correct credentials of name="Lancalot" and color="blue".

FIGURE 15.3 Simple form dialog.

LISTING 15.5 ajax_response.html HTML Document That Creates the Form
Dialog

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>AJAX Error Handling</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/ajax_response.js"></script>
08 <link rel="stylesheet" type="text/css"
href="css/ajax_response.css">
09 </head>
10 <body>
11 <div id="request">
12 <div id="title">Gorge of Eternal Peril</div>

13 <form id="requestForm">
14 <label>What is your name? </label>
15 <input type="text" name="name" />

16 <label>What is your favorite color? </label>
17 <input type="text" name="color" />

18 <input id="requestButton" type="button" value="Request" />
19 </form>
20 </div>
21 </body>
22 </html>

LISTING 15.6 ajax_response.js jQuery and JavaScript That Sends the Form
Request to the Server via an AJAX GET Request and Handles Success and Failure
Conditions

Click here to view code image

01 function failure(){ alert("You May Not Pass!"); }
02 function success(){ alert("You May Pass!"); }
03 function always(){ alert("Questions Answered."); }
04 function askYourQuestions(){
05 $.get("/request",
06 $("#requestForm").serialize()).done(success).fail(failure).always(always);
07 return false;
08 }
09 $(document).ready(function(){
10 $("#requestButton").click(askYourQuestions);
11 });

LISTING 15.7 ajax_response.css CSS Code That Styles the Page

Click here to view code image

01 #request {
02 height:180px; width:350px; border: 3px ridge blue; }
03 #title {
04 text-align:center;
05 background-image: -moz-linear-gradient(top , #0000FF, #88BBFF);
06 background-image: -webkit-linear-gradient(top , #0000FF, #88BBFF);
07 background-image: -ms-linear-gradient(top , #0000FF, #88BBFF);
08 height:30px; color:white; font:bold 22px arial black; }
09 input {
10 margin-top:10px;
11 margin-left:30px;
12 padding-left:10px; }
13 label {
14 margin-left:10px;
15 font:italic 18px arial black; }

LISTING 15.8 server_lesson15_ajax_handling.js Node.js Server That Will Handle
the POST and GET Requests for This Exercise

Click here to view code image

01 var express = require('express');
02 var bodyParser = require('body-parser');
03 var app = express();
04 app.use(bodyParser.urlencoded({ extended: true }));
05 app.use(bodyParser.json());
06 app.use('/', express.static('./'));
07 app.get('/request', function(req, res){
08 var queryObj = req.query;
09 if (queryObj.name == "Lancalot" && queryObj.color == "blue"){
10 res.send(200, "Welcome To AJAX!");
11 } else {
12 res.send(400, "Invalid Answers!");
13 }
14 });
15 app.listen(80);

Handling Response Data
You have already learned about the different data types that can be generated by the
response. The four main types that you will be working with are script, text, JSON, and
XML/HTML. The script and text are handled simply by the .load() and
.getScript() methods. JSON and XML/HTML can be a bit more complex.
The following sections walk you through the process of handling JSON and XML data
in the response from the server.

Try it Yourself: Handling JSON Response Data
JSON data is by far the easiest to work with in jQuery AJAX responses. This is
because the response data is in object form, so you can access it via dot naming.
For example, the following JSON response from the server:

Click here to view code image

{"first":"Brad", "last":"Dayley"}

Can be accessed in the response data as the following:
Click here to view code image

var name = data.first + " " + data.last;

Even if the response data object comes as a string, you can use the
.parseJSON() to get a JavaScript object. For example:

Click here to view code image

var data = $.parseJSON('{"first":"Brad", "last":"Dayley"}');
var name = data.first + " " + data.last;

In this exercise, you handle JSON data coming back from an AJAX request. The
resulting web page contains several images that have captions. The image caption
and the image filename come from a JSON file located on the server at
lesson15/data/images.json. The purpose of the exercise is to familiarize you with
using JSON data returned from an AJAX request to dynamically populate a page.
The code for the example is in Listings 15.9, 15.10, 15.11, and 15.12. Use the
following steps to create the dynamic web page:
1. In Eclipse, create the lesson15/load_json.html, lesson15/js/load_json.js,

lesson15/css/load_json.css, and lesson15/data/images.json files.
2. Add the code shown in Listing 15.9 and Listing 15.12 to the HTML and CSS

files. These are very basic files because the image elements will be
dynamically generated.

3. Add the contents of Listing 15.11 to the images.json file.
4. Open the load_json.js file and add the following .ready() function that

makes a .get() request to the server to get the lesson15/data/images.json
file and calls the updateImages() AJAX request complete event handler.
The contents of the JSON file can be seen in Listing 15.11:

Click here to view code image

10 $(document).ready(function(){
11 $.get("data/images.json", updateImages);
12 });

5. Add the following AJAX request complete event handler
updateImages(). Notice that the JSON response data has been
converted to a JavaScript object array that you are able to iterate through and
create the image elements and add them to the web page:

Click here to view code image

01 function updateImages(data){
02 for (i=0; i<data.length; i++){
03 var imageInfo =data[i];
04 var img = $('').attr("src", "images/"+imageInfo.image);
05 var title = $("<p></p>").html(imageInfo.title);
06 var div = $("<div></div>").append(img, title);
07 $("#images").append(div);
08 }
09 }

6. Save all three files and then open the HTML document in a web browser, as

shown in Figure 15.4. You should see the images loaded with the captions
from the JSON file.

FIGURE 15.4 Image gallery populated with JSON data.

LISTING 15.9 load_json.html HTML Document That Loads the jQuery and
JavaScript

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Loading JSON Data</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/load_json.js"></script>
08 <link rel="stylesheet" type="text/css" href="css/load_json.css">
09 </head>
10 <body>
11 <div id="images"></div>
12 </body>
13 </html>

LISTING 15.10 load_json.js jQuery and JavaScript Code That Implements the
AJAX Request and Handles the JSON Response

Click here to view code image

01 function updateImages(data){
02 for (i=0; i<data.length; i++){
03 var imageInfo =data[i];
04 var img = $('').attr("src", "/images/"+imageInfo.image);
05 var title = $("<p></p>").html(imageInfo.title);
06 var div = $("<div></div>").append(img, title);
07 $("#images").append(div);
08 }
09 }
10 $(document).ready(function(){
11 $.get("data/images.json", updateImages);
12 });

LISTING 15.11 images.json JSON Data from the Book Website at
lesson15/data/images.json Containing Image Filenames and Captions

Click here to view code image

01 [
02 {"title":"Quiet Strength", "image":"img7.jpg"},
03 {"title":"Great Heights", "image":"misty_mountains.jpg"},
04 {"title":"Summer Fun", "image":"boy.jpg"},
05 {"title":"Grandeur of Nature", "image":"falls2.jpg"},
06 {"title":"Soft Perfection", "image":"flower.jpg"},
07 {"title":"Courage", "image":"power.jpg"},
08 {"title":"Joy of Finishing", "image":"shadow_jump.jpg"}
09]

LISTING 15.12 load_json.css CSS Code That Styles the Images

Click here to view code image

01 div {border:3px ridge white; box-shadow: 5px 5px 5px #888888;
02 display:inline-block; margin:10px; }
03 p { background-image: -moz-linear-gradient(top , #B1B1B1, #FFFFFF);
04 background-image: -webkit-linear-gradient(top , #B1B1B1, #FFFFFF);
05 background-image: -ms-linear-gradient(top , #B1B1B1, #FFFFFF);
06 margin:0px; padding:3px; text-align:center; }
07 img { height:130px; vertical-align:top; }
08 #images { background-color:black; padding:20px; }

Try it Yourself: Handling XML/HTML Response Data
XML/HTML data is not as easy as JSON, but jQuery does make it fairly easy to
work with. XML data in the response is returned as a DOM object, which can be
converted to jQuery and searched/navigated using jQuery’s extensive options.
For example, the following XML response from the server:

Click here to view code image

<person><first>Brad</first><last>Dayley</last></person>

Can be accessed in the response data as the following:
Click here to view code image

var name = $(data).find("first").text() + " " +
$(data).find("last").text();

Similar to JSON, if the response data object comes as a string, you can use the
.parseXML() to get a DOM object. For example:

Click here to view code image

var data = $.parseXML("<person><first>Brad</first><last>Dayley</last>
</person>");
var name = $(data).find("first").text() + " " +
$(data).find("last").text();

In this exercise, you get a chance to handle XML data coming back from an AJAX
request. The resulting web page contains a basic table with cell data derived
from the XML data contained in the file lesson15/data/parkdata.xml located on
the server. The purpose of the exercise is to familiarize you with using XML data
returned from an AJAX request to dynamically populate a page.
The code for the example is in Listings 15.13, 15.14, 15.15, and 15.16. Use the
following steps to create the dynamic web page:
1. In Eclipse, create the lesson15/load_xml.html, lesson15/js/load_xml.js,

lesson15/css/load_xml.css, and lesson15/data/parkdata.xml files.
2. Add the code shown in Listing 15.13 and Listing 15.16 to the HTML and CSS

files. These are very basic files because the table body will be dynamically
generated.

3. Add the contents of Listing 15.15 to the parkdata.xml file and save it.
4. Open the load_xml.js file and add the following .ready() function that will

make a .get() request to the server to get the lesson15/data/parkdata.xml
file and call the updateTable() AJAX request complete event handler.
The contents of the XML file can be seen in Listing 15.15:

Click here to view code image

13 $(document).ready(function(){
14 $.get("data/parkdata.xml", updateTable);
15 });

5. Add the following AJAX request complete event handler updateTable().
Notice that the XML response data has been converted to a DOM element
that is converted to a jQuery object using $(data). The jQuery object can
then be iterated using .each(), and each element can be searched using the
.children() method to get the different values in the XML data:

Click here to view code image

01 function updateTable(data){
02 var parks = $(data).find("park");
03 parks.each(function(){
04 var tr = $("<tr></tr>");
05 tr.append($("<td>
</td>").html($(this).children("name").text()));
06 tr.append($("<td>
</td>").html($(this).children("location").text()));
07 tr.append($("<td>
</td>").html($(this).children("established").text()));
08 var img = $('').attr("src",
"images/"+$(this).children("image").text());
09 tr.append($("<td></td>").append(img));
10 $("tbody").append(tr);
11 });
12 }

6. Save all three files and then open the HTML document in a web browser, as
shown in Figure 15.5. You should see the table populated from the XML file.

FIGURE 15.5 Table populated with XML data.

LISTING 15.13 load_xml.html HTML Document That Loads the jQuery and
JavaScript

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Loading XML Data</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/load_xml.js"></script>
08 <link rel="stylesheet" type="text/css" href="css/load_xml.css">
09 </head>
10 <body>
11 <table>
12 <caption>Favorite U.S. National Parks</caption>
13 <thead><th>Park</th><th>Location</th><th>Established</th>
<th> </th></thead>
14 <tbody></tbody>
15 </table>
16 <p></p>
17 </body>
18 </html>

LISTING 15.14 load_xml.js jQuery and JavaScript Code That Implements the
AJAX Request and Handles the XML Response

Click here to view code image

01 function updateTable(data){
02 var parks = $(data).find("park");
03 parks.each(function(){
04 var tr = $("<tr></tr>");
05 tr.append($("<td></td>").html($(this).children("name").text()));
06 tr.append($("<td>
</td>").html($(this).children("location").text()));
07 tr.append($("<td>
</td>").html($(this).children("established").text()));
08 var img = $('').attr("src",
"images/"+$(this).children("image").text());
09 tr.append($("<td></td>").append(img));
10 $("tbody").append(tr);
11 });
12 }
13 $(document).ready(function(){
14 $.get("data/parkdata.xml", updateTable);
15 });

LISTING 15.15 parkdata.xml XML Data File with Raw Table Data

Click here to view code image

01 <parkinfo>
02 <park>
03 <name>Yellowstone</name>
04 <location>Montana, Wyoming, Idaho</location>
05 <established>March 1, 1872</established>
06 
07 </park>
08 <park>
09 <name>Yosemite</name>
10 <location>California</location>
11 <established>March 1, 1872</established>
12 
13 </park>
14 <park>
15 <name>Zion</name>
16 <location>Utah</location>
17 <established>November 19, 1919</established>
18 
19 </park>
20 </parkinfo>

LISTING 15.16 load_xml.css CSS Code That Styles the Table

Click here to view code image

01 img {width:80px;}
02 th {
03 background-image: -moz-linear-gradient(top , #0000FF, #88BBFF);
04 background-image: -webkit-linear-gradient(top , #0000FF, #88BBFF);
05 background-image: -ms-linear-gradient(top , #0000FF, #88BBFF);
06 color:white; font:bold 18px arial black; }
07 caption { border-radius: 10px 10px 0px 0px; font-size:22px;
height:30px; }
08 td { border:1px dotted; padding:2px; }

Try it Yourself: Updating Server Data from jQuery Using AJAX
In this exercise, you get a chance to implement a more complex AJAX web page
with .get() and .post() requests, as well as some different AJAX event
handlers. The resulting web page provides links to different vacation spots that
you can rate. The data for the vacations is located in a data structure on the
Node.js webserver. When you change the rating, a POST request is sent to the
Node.js server and the server data is changed, making it permanent as long as the
server is up. The purpose of the exercise is to solidify the jQuery AJAX

concepts.
The code for the example is in Listings 15.17, 15.18, 15.19, and 15.20. Use the
following steps to create the dynamic web page:
1. In Eclipse, create the lesson15/ajax_post.html, lesson15/js/ajax_post.js, and

lesson15/css/ajax_post.css files.
2. Create a file in the root of the project named server_lesson15_ajax_post.js

and place the contents of Listings 15.5, 15.6, 15.7, and 15.8 into it. This file
will act as the Node.js webserver for this example only.

3. Stop the server.js webserver if it is already running for other examples. Then
start the server_lesson15_ajax_post.js webserver using the node command or
Run As, Node Application if you are using Eclipse.

Note
Don’t forget when you are done to stop the server_lesson15_ajax_post.js
server and start the normal server.js before moving on to additional
exercises.

4. Add the code shown in Listing 15.17 and Listing 15.19 to the HTML and CSS
files. These files define the style and framework for the vacations page. There
shouldn’t be anything new in these files that you haven’t already seen.

5. Open the ajax_post.js file and add the following .ready() function that will
make a .get() request to the server to get the list of vacations from the
server. Notice that a .done() function is added so that when the data has
been returned and the links are populated, the first link is automatically clicked
to set the vacation content. Notice that the sendRating() event handler is
added to the start elements to handle rating changes via the mouse:

Click here to view code image

27 $(document).ready(function(){
28 $.get("/getList", setList).done(function(){
29 $("span:first").click(); return false; });
30 $(".star").click(sendRating);
31 });

6. Add the following click handler setList() for the left navigation buttons.
For each of the buttons, the getTrip() event handler is added:

Click here to view code image

14 function setList(data){
15 var items = [];
16 $.each(data, function(key, val) {

17 var item = $("").html(val.title);
18 item.click(function(){getTrip(val.idx)});
19 $("#leftNav").append(item);
20 });
21 }

7. Add the following getTrip() event handler that will send a .get()
AJAX request to get a specific trip’s info by specifying /getTrip as the path
and idx:idx, which is the index to the trip on the webserver. The
setTrip() handler is called when the AJAX request is complete, so you
need to add code shown in Listing 15.18 lines 1–10. This function takes the
JSON data and populates the content elements:

Click here to view code image

11 function getTrip(idx){
12 $.get("/getTrip", {idx: idx}, setTrip);
13 }

8. Add the following sendRating() function that gets called when the user
clicks a star. The index of the .star element is sent to the server via a
.post() method with parameters idx:idx and rating: rating. The
resulting POST request updates the JSON file on the server, permanently
storing the new rating value:

Click here to view code image

22 function sendRating(){
23 var idx = $("#idx").html();
24 var rating = $(".star").index($(this))+1;
25 $.post("/setRating", {idx: idx, rating: rating}, setTrip);
26 }

9. Save all three files and then open the HTML document in a web browser, as
shown in Figure 15.6. You should be able to link to the different vacations, see
the images, and set the ratings.

FIGURE 15.6 Simple vacation page with the capability to load data dynamically and
update the rating via AJAX.

LISTING 15.17 ajax_post.html HTML Document That Loads the jQuery and
JavaScript

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>AJAX Post</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript" src="js/ajax_post.js"></script>
08 <link rel="stylesheet" type="text/css" href="css/ajax_post.css">
09 </head>
10 <body>
11 <div><div id="banner">Vacations</div>
12 <div>
13 <div id="leftNav"></div>
14 <div id="content">
15
16 <p id="title">Title</p>
17

18 <p id="date">date</p>
19 <p id="info">
20 <label>5</label> days of fun in <label>Location</label></p>
21
22
23
24
25
26 </div>
27 </div>
28 </body>
29 </html>

LISTING 15.18 ajax_post.js jQuery and JavaScript Code That Implements the
AJAX Request That Populates the Page and Updates the Server Data

Click here to view code image

01 function setTrip(data){
02 $("#idx").html(data.idx);
03 $("#title").html(data.title);
04 $("#photo").attr("src", "/images/"+data.image);
05 $("#date").html(data.date);
06 $("label:first").html(data.days);
07 $("label:last").html(data.location);
08 $(".star:gt("+(parseInt(data.rating)-1)+")").attr("src",
"/images/empty.png");
09 $(".star:lt("+(parseInt(data.rating))+")").attr("src",
"/images/star.png");
10 }
11 function getTrip(idx){
12 $.get("/getTrip", {idx: idx}, setTrip);
13 }
14 function setList(data){
15 var items = [];
16 $.each(data, function(key, val) {
17 var item = $("").html(val.title);
18 item.click(function(){getTrip(val.idx)});
19 $("#leftNav").append(item);
20 });
21 }
22 function sendRating(){
23 var idx = $("#idx").html();
24 var rating = $(".star").index($(this))+1;
25 $.post("/setRating", {idx: idx, rating: rating}, setTrip);
26 }
27 $(document).ready(function(){
28 $.get("/getList", setList).done(function(){
29 $("span:first").click(); return false; });
30 $(".star").click(sendRating);
31 });

LISTING 15.19 ajax_post.css CSS Code That Styles the Page Elements

Click here to view code image

01 * { font-family:Georgia; }
02 div { margin:0px; display:inline-block;
03 float:left; text-align:center; }
04 span { background-image: -moz-linear-gradient(top , #f1f1f1, #8F8F8F);
05 background-image: -webkit-linear-gradient(top , #f1f1f1, #8F8F8F);
06 background-image: -ms-linear-gradient(top , #f1f1f1, #8F8F8F);
07 color:black; font-size:20px; float:left; cursor:pointer;
08 width:150px; text-align:center; border-bottom:3px ridge; }
09 p { margin:0px; }
10 #banner {
11 background-image: -moz-linear-gradient(top , #0000FF, #88BBFF);
12 background-image: -webkit-linear-gradient(top , #0000FF, #88BBFF);
13 background-image: -ms-linear-gradient(top , #0000FF, #88BBFF);
14 color:white; height:80px; width:550px; font-size:60px;
15 border:3px ridge blue; }
16 #title { font-weight:bold; font-size:32px; }
17 #leftNav {width:150px; height:400px; font-size:20px;
18 border-right:3px ridge;}
19 #content { height:400px; width: 400px; }
20 #photo { margin:20px; border:5px ridge white;
21 box-shadow: 10px 10px 5px #888888; border-radius:30px;}
22 #date { color:red; font-style:italic; font-size:24px; }
23 #info, label { font-size:24px; }
24 .star {width:30px;}
25 #idx { display: none; }

LISTING 15.20 server_lesson15_ajax_post.js Node.js Server That Will Handle the
POST and GET Requests for This Exercise

Click here to view code image

01 var express = require('express');
02 var bodyParser = require('body-parser');
03 var app = express();
04 app.use(bodyParser.urlencoded({ extended: true }));
05 app.use(bodyParser.json());
06 app.use('/', express.static('./'));
07 var trips = [
08 {
09 "idx": 0,
10 "title": "Lost in Paradise",
11 "location": "Hawaii",
12 "date": "November 15th",
13 "days": "7",
14 "image": "flower.jpg",

15 "rating": "4"
16 },
17 {
18 "idx": 1,
19 "title": "Breathtaking Beauty",
20 "location": "Yosemite",
21 "date": "June 25th",
22 "days": "4",
23 "rating": "4",
24 "image": "falls.jpg"
25 },
26 {
27 "idx": 2,
28 "title": "Wild Expanse",
29 "location": "Yellowstone",
30 "date": "August 11th",
31 "days": "6",
32 "rating": "2",
33 "image": "bison.jpg"
34 },
35 {
36 "idx": 3,
37 "title": "Awe Inspiring",
38 "location": "Zion",
39 "date": "September 16th",
40 "days": "4",
41 "rating": "4",
42 "image": "peak.jpg"
43 }
44];
45 app.get('/getList', function(req, res){
46 res.setHeader('Content-Type', 'application/json');
47 res.end(JSON.stringify(trips));
48 });
49 app.get('/getTrip', function(req, res){
50 res.setHeader('Content-Type', 'application/json');
51 res.end(JSON.stringify(trips[req.query.idx]));
52 });
53 app.post('/setRating', function(req, res){
54 var test = 1;
55 trips[req.body.idx].rating = req.body.rating;
56 res.setHeader('Content-Type', 'application/json');
57 res.end(JSON.stringify(trips[req.body.idx]));
58 });
59 app.listen(80);

Using Advanced jQuery AJAX
The concepts already covered in this lesson should take care of most of your AJAX
needs. However, they do not cover the full power of the jQuery AJAX interface. The
following sections discuss some of the additional AJAX functionality built directly into

jQuery.

Reviewing Global Setup
jQuery provides the .ajaxSetup() method that allows you to specify options that
configure AJAX requests globally throughout the script. Table 15.3 lists some of the
options that can be specified when calling .ajaxSetup(). For example, the
following code sets the default global URL for requests:
Click here to view code image

$.ajaxSetup({url:"service.php", accepts:"json"})

Using Global Event Handlers
jQuery provides methods to create global event handlers that are called on events, such
as initialization or completion for all AJAX requests. The global events are fired on
each AJAX request. Table 15.2 lists the methods that you can use to register global
event handlers.

TABLE 15.2 jQuery Global AJAX Event Handler Registration Methods
An example of using global event handlers to set the class of a form is shown next:
Click here to view code image

$(document).ajaxStart(function(){
 $("form").addClass("processing");
});
$(document).ajaxComplete(function(){
 $("form").removeClass("processing");
});

Note
Global events are never fired for cross-domain script or JSONP requests,
regardless of the value of global.

Implementing Low-Level Ajax Requests
All AJAX request wrapper methods that you have been working with in this lesson are
handled underneath through the .ajax(url [, settings]) interface. This
interface is a bit more difficult to use, but it gives you much more flexibility and control
of the AJAX request.
The .ajax() method is called the same way that .get() and .post() are;
however, the settings argument allows you to set a variety of settings used when making
the request.
Table 15.3 lists the more common settings that can be applied to the .ajax() method.

TABLE 15.3 Common Settings Available in the .ajax() Request Method

A simple example of using the .ajax() interface is shown in the following code:
Click here to view code image

$.ajax({
 url:"setEmail",
 type:"get",
 accepts:"json",
 contentType: 'application/x-www-form-urlencoded; charset=UTF-8',
 data: {"first":"Brad", "last":"Dayley"}
}).fail(function(){ alert("request Failed"); });

The .ajax() method returns a jqXHR method that provides some additional
functionality, especially when handling the response. Table 15.4 lists some of the
methods and attributes attached to the jqXHR object.

TABLE 15.4 Common Methods and Attributes of the jqXHR Object Returned
by .ajax()

Summary
AJAX is the basic communication framework between jQuery/JavaScript and the web
server. Using AJAX allows you to get additional data from the web server and use it to

dynamically update the web page instead of completely reloading it. This enables you to
provide a much better experience for the user.
In this lesson, you learned the ins and outs of AJAX. You were able to implement
several examples that gave you experience with GET and POST requests, as well as
handling different types of data, such as HTML, JSON, and XML.

Q&A
Q. Why is there a GET and a POST request and not just one request?
A. The answer is optimization. Although you could do everything with just POST

requests, optimizations can be made at the web server as well as the browser by
using GET requests that have the parameters directly in the URL. This is
especially true with caching.

Q. Are there any other methods to send cross-domain requests besides
JSONP?

A. Yes. Flash and Silverlight both have mechanisms that allow you to send cross-
domain requests. HTML5 also introduces the postMessage interface designed
to allow cross-domain requests.

Workshop
The workshop consists of a set of questions and answers designed to solidify your
understanding of the material covered in this lesson. Try to answer the questions before
looking at the answers.

Quiz
1. Would you use a GET or a POST request to set a new password on a web

server?
2. True or false: The .done() event handler function is called only if the AJAX

request succeeds.
3. What data type is the response data converted to for XML data?
4. What data type is the response data converted to for JSON data?
5. Is it possible to specify the request headers sent with a GET request via jQuery?

Quiz Answers
1. POST.
2. True.
3. DOM object.

4. Basic JavaScript object.
5. Yes. You can use .ajax() with the headers parameter, or you can use
.ajaxSetup() to set the headers parameter globally.

Exercises
1. Modify the example in Listings 15.9, 15.10, 15.11, and 15.12. Add an additional

date value to each image in the JSON file. Then add the date value along with the
image on the web page by including it in the image caption.

2. Modify the example in Listings 15.13, 15.14, 15.15, and 15.16. Add an additional
column for rating. You will need to update the XML file, as well as the AJAX
response handlers, to add the additional column to the rows. Also, you will need
to fix up the CSS.

Part IV: Utilizing jQuery UI

Lesson 16. Introducing jQuery UI

What You’ll Learn in This Lesson:
 How to download and add the jQuery UI libraries
 How to create custom jQuery UI themes
 New functionality jQuery UI provides over jQuery alone
 Using jQuery UI selectors
 How to dynamically position UI elements using jQuery UI

jQuery UI is an additional library built on top of jQuery. The purpose of jQuery UI is to
provide a set of extensible interactions, effects, widgets, and themes that make it easier
to incorporate professional UI elements in your web pages. In this lesson, you get a
chance to download and implement jQuery UI in some web pages. The purpose of this
lesson is to introduce you to how jQuery interacts with HTML, CSS, jQuery, and
JavaScript.

Getting Started with jQuery UI
jQuery UI is made up of two parts, JavaScript and CSS. The JavaScript portion of
jQuery UI extends jQuery to add additional functionality specific to adding UI elements
or applying effects to those elements. The CSS portion of jQuery UI styles the page
elements so that developers don’t need to style the elements every time.
jQuery UI saves developers time by providing prebuilt UI elements, such as calendars
and menus, with interactions, such as dragging and resizing, right out of the box. The
following sections introduce you to the library; you learn how to download it and apply
it to your projects.
The jQuery UI library is made up of several components that are used to build, manage,
and interact with the UI elements on the web page. These elements can be categorized
into the following:

 JavaScript—jQuery UI comes with its own .js file that hooks into the main
jQuery library. This file must be loaded in your web pages along with jQuery to
implement jQuery UI components.
 CSS—Several css files are included with jQueryUI. The main one is jquery-
ui.css. These files contain all the CSS settings pertaining to jQuery UI and in
particular to the theme that is represented.
 Images—Query also provides several images that are used to build some of the
UI components.

Getting the jQuery UI Library

Getting the jQuery UI Library
You can implement jQuery UI in your projects in one of two ways. If you want to use a
specific theme already provided, you can select one of the themes in jQuery UI section
of the jQuery CDN location at https://code.jquery.com.
For example, the following lines load the jQuery UI library and the Smoothness theme
from the jQuery CDN locations:
Click here to view code image

<script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
<script type="text/javascript"
src="http://code.jquery.com/ui/1.11.2/jquery-ui.min.js"></script>
<link rel="stylesheet" type="text/css"
href="http://code.jquery.com/ui/1.11.2/themes/smoothness/jquery-ui.css">

You can also download the library along with a customized theme and store them on
your own web server. In that case, you would use your own location for the src and
href attributes rather than the CDN locations for the jquery-ui.js and jquery-ui.css
files.
The jQuery library can be downloaded from the following location by selecting the
options that you want to include, shown in Figure 16.1, and clicking the Download
button at the bottom. This downloads the jQuery UI files:

http://jqueryui.com/download

https://code.jquery.com
http://jqueryui.com/download

FIGURE 16.1 Using jQuery UI download builder to build and download a custom
version of jQuery UI.

Using ThemeRoller to Create a Custom Theme
In addition to the basic jQuery UI theme, you can also use the jQuery UI ThemeRoller,
shown in Figure 16.2, to select some different custom themes or customize your own
theme. A theme defines the colors, border radius, and multiple other styles applied to
jQuery UI widgets and elements.

FIGURE 16.2 Using jQuery UI ThemeRoller to define a custom theme.

To access the jQuery UI ThemeRoller:
1. Open the following URL in your browser:

http://jqueryui.com/download/
2. Scroll down to the bottom of the download page shown in Figure 16.1 and click

the Design a Custom Theme link. This brings up the ThemeRoller shown in Figure
16.2.

3. Select the Gallery tab and view the gallery of prebuilt themes shown in Figure
16.2.

4. Select the gallery that most fits your needs.
5. Select the Roll Your Own tab, also shown in Figure 16.2, and specify as many of

the specific settings as you want to define.
6. Click the Download Theme button. This takes you back to the main download

page.
7. Click the Download button to download the jQuery UI files.

http://jqueryui.com/download/

Try it Yourself: Adding jQuery UI to a Web Page
Use the following steps to download the jQuery UI library and add it to the
project you are using for this book:
1. In Eclipse, create the lesson16, lesson16/js, and lesson16/css folders, and

then add the lesson16/date_picker.html file.
2. Create the lesson16/js and lessong16/css folders.
3. Add the code shown in Listing 16.1. This is straightforward code to validate

that the jQuery UI library is installed properly.
4. The following lines load the jQuery library, jQuery UI library, and the

smoothness CSS theme for jQuery UI:
Click here to view code image

06 <script type="text/javascript"
src="https://code.jquery.com/jquery-2.1.3.min.js"></script>
07 <script type="text/javascript"
src="http://code.jquery.com/ui/1.11.2/jquery-ui.min.js"></script>
08 <link rel="stylesheet" type="text/css"
href="http://code.jquery.com/ui/1.11.2/themes/smoothness/jquery-
ui.css">

5. The following line adds a <div> element and assigns the datepicker id
to it in the HTML document:

Click here to view code image

16 <div id="datepicker"></div>

6. The following ready() function adds the jQuery UI Datepicker element to
the <div>:

Click here to view code image

10 $(document).ready(function(){
11 $("#datepicker").datepicker();
12 });

7. Save the file, and then open the HTML document in a web browser, as shown
in Figure 16.3. You should see the date picker displayed correctly if the
libraries are installed properly.

FIGURE 16.3 Simple jQuery UI date picker.

LISTING 16.1 date_picker.html HTML Document That Adds the jQuery UI
Libraries and Renders a Date Picker

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Calendar</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript"
src="http://code.jquery.com/ui/1.11.2/jquery-ui.min.js"></script>
08 <link rel="stylesheet" type="text/css"
href="http://code.jquery.com/ui/1.11.2/themes/smoothness/jquery-ui.css">
09 <script>
10 $(document).ready(function(){
11 $("#datepicker").datepicker();
12 });
13 </script>
14 </head>
15 <body>
16 <div id="datepicker"></div>
17 </body>
18 </html>

Applying jQuery UI in Your Scripts
Now that you’ve got the jQuery UI library loaded and ready to go, you can learn about
some of the enhancements that jQuery UI adds over jQuery. This section covers some
new functionality as well as some enhancements to the jQuery library. The meat of
jQuery UI—namely, the effects, interactions, and widgets—are covered in upcoming
lessons.

Understanding Enhanced jQuery UI Functionality
jQuery UI is in many ways an extension of the jQuery library. To get you up to speed so
that you can begin implementing jQuery UI components, the following sections discuss
some of the important upgrades from jQuery.

Adding and Removing Unique IDs
jQuery UI provides a couple of additional methods to jQuery objects that allow you to
easily add and remove unique IDs to a set of elements. This is especially useful when
you dynamically create a bunch of new elements that you must be able to access by ID
later.
To add unique IDs, use the .uniqueId() method. This method checks each element
in the set and adds an id attribute if one is not present. The new id will have a prefix of
"ui-id-". If the element already has an id attribute, it is not altered.
You can later delete the unique IDs using the .removeUniqueId() method on the
set. Only elements that had IDs created by .uniqueId() are affected.
For example, the following code adds id values to all <div> elements and then later
removes them:
Click here to view code image

var divs = $("div").uniqueId();
...
do something
...
$("div"). removeUniqueId ();

Getting the ScrollParent
Another helpful addition in jQuery UI is the .scrollParent() method. This
method searches the ancestors of the element and returns the first parent element that is
scrollable. This method works only on jQuery objects that have a single element in the
set.

Getting the zIndex
Another helpful addition in jQuery UI is the .zIndex() method. This method returns

a numeric z-index value of the element, if it has one, or the first ancestor that does.
This enables you to quickly determine the stacking placement of any item on the page.

Async Focus
jQuery UI extends the .focus(delay [. callback]) method of jQuery objects
to allow for a delay before setting the focus and including a callback function that
will be executed when the element gets the focus. The delay is specified in
milliseconds.
This functionality has a wide range of uses, from using a timer, to automatically
selecting a form element, to forcing the refocus of an element. For example, the
following code adds a half-second delay before setting the focus to an element
#timedInput:
Click here to view code image

$("#timedInput").focus(500, function(){
 $(this).val("Enter Text Now");
});

Using New Selectors in jQuery UI
One great feature of jQuery UI is the capability to extend the jQuery selectors that are
already pretty extensive. These new selectors make it easier to narrow down selections
specific to UI element needs. The following sections discuss each of the new selectors.

Using the :data() Selector
One of my favorite selectors in jQuery UI is the :data() selector. This selector
enables you to filter elements based on a specific key that was added to elements using
the .data() jQuery method. For example, the following code adds a color value to
all , <div>, and <p> elements, and then uses the :data() selector to set
those colors on the elements:
Click here to view code image

$(p).data("color", "red");
$(span).data("color", "blue");
$(div).data("color", "green");
$(":data(color)").each(function(){
 $(this).css({color:$(this).data("color")});
});

:focusable
The :focusable selector allows you to limit elements to only those that can receive
focus. For example, the following statement limits the changes to only those form
elements that can receive focus:

Click here to view code image

$("form:focusable").each(function(){
 $(this).css({color:red});
});

:tabbable
The :tabbable selector is similar to the :focusable selector. It allows you to
limit elements to only those that can be tabbed to. For example, the following statement
limits the changes to only those form elements that can be tabbed to:
Click here to view code image

$("form:tabbable").each(function(){
 $(this).css({color:red});
});

This filter is very useful, especially when you’re trying to exclude elements that are
disabled.

Tip
Elements that have a negative tab index are :focusable but not
:tabbable.

Try it Yourself: Applying jQuery UI Selectors Based on Data Values
In this example, you add several <div> elements to the web page. Then in
jQuery, you add an image data value to some of them. Using the :data()
selector, you then apply different changes to the elements with image data than
those without image data.
The code for the example is in Listings 16.2, 16.3, and 16.4. Use the following
steps to create the dynamic web page:
1. In Eclipse, create the lesson16/jquery_image_adder.html,

lesson16/js/jquery_image_adder.js, and lesson16/css/jquery_image_adder.css
files.

2. Add the code shown in Listing 16.2. The following lines are used to load the
jQuery library, jQuery UI library, and CSS files:

Click here to view code image

06 <script type="text/javascript"
src="https://code.jquery.com/jquery-2.1.3.min.js"></script>
07 <script type="text/javascript"
src="http://code.jquery.com/ui/1.11.2/jquery-ui.min.js"></script>
08 <script type="text/javascript" src="js/jquery_image_adder.js">

</script>
09 <link rel="stylesheet" type="text/css"
href="http://code.jquery.com/ui/1.11.2/themes/smoothness/jquery-
ui.css">
10 <link rel="stylesheet" type="text/css"
href="css/jquery_image_adder.css">

3. Open the jquery_image_adder.js file and add a basic .ready() function.
4. Add the following three lines. These lines add the image data value to some

of the <div> elements in the document:
Click here to view code image

02 $("#arch").data("image", "images/arch.jpg");
03 $("#volcano").data("image", "images/volcano.jpg");
04 $("#pyramid").data("image", "images/pyramid2.jpg");

5. Add the following click handler function that will first get all the <div>
elements that have an image value and use the image value to set the src of
an element that gets prepended. Then the function will get all <div>
elements that do not have an image value and append the generic insert.png
image:

Click here to view code image

05 $("#add").click(function(){
06 $("div:data(image)").each(function(){
07 $(this).prepend(
08 $('').attr("src", $(this).data("image")));
09 });
10 $("div:not(:data(image))").each(function(){
11 $(this).prepend(
12 $('').attr("src", "/images/insert.png"));
13 });
14 });

6. Save all three files and then open the HTML document in a web browser, as
shown in Figure 16.4. When you click the Add Images button, you should see
the images pop up for the <div> elements that had an image value and the
generic image for those that do not.

FIGURE 16.4 Using the jQuery UI selector to update the elements that have an image
data value.

LISTINGS 16.2 jquery_image_adder.html HTML Document That Adds the Web
Page

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Adding Images</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript"
src="http://code.jquery.com/ui/1.11.2/jquery-ui.min.js"></script>
08 <script type="text/javascript" src="js/jquery_image_adder.js">
</script>
09 <link rel="stylesheet" type="text/css"
href="http://code.jquery.com/ui/1.11.2/themes/smoothness/jquery-ui.css">
10 <link rel="stylesheet" type="text/css"
href="css/jquery_image_adder.css">
11 </head>
12 <body>
13 Add Images
14 <div id="arch">Arch</div>
15 <div id="river">River</div>
16 <div id="volcano">Volcano</div>
17 <div id="mountain">Mountain</div>
18 <div id="pyramid">Pyramid</div>
19 </body>
20 </html>

LISTING 16.3 jquery_image_adder.js jQuery and jQuery UI Code That Uses the
:data() Selector to Select Elements

Click here to view code image

01 $(document).ready(function(){
02 $("#arch").data("image", "/images/arch.jpg");
03 $("#volcano").data("image", "/images/volcano.jpg");
04 $("#pyramid").data("image", "/images/pyramid2.jpg");
05 $("#add").click(function(){
06 $("div:data(image)").each(function(){
07 $(this).prepend(
08 $('').attr("src", $(this).data("image")));
09 });
10 $("div:not(:data(image))").each(function(){
11 $(this).prepend(
12 $('').attr("src", "/images/insert.png"));
13 });
14 });
15 });

LISTING 16.4 jquery_image_adder.css CSS Code That Styles the Page Elements

Click here to view code image

01 img {
02 width:60px; margin-right:20px; vertical-align:middle; }
03 div {
04 margin-top:15px; border:1px dotted;
05 width:400px; font-size:35px;}
06 span {
07 background-image: -moz-linear-gradient(top , #B1B1B1, #FFFFFF);
08 background-image: -webkit-linear-gradient(top , #B1B1B1, #FFFFFF);
09 background-image: -ms-linear-gradient(top , #B1B1B1, #FFFFFF);
10 border:3px ridge white; box-shadow: 5px 5px 5px #888888;
11 padding:3px; cursor:pointer; }

Positioning UI Elements with jQuery UI
A great advantage that jQuery UI provides is the capability to position elements relative
to other elements and handle collisions. This is done by extending the .position()
method to allow for an options object that defines the relative positions between the
jQuery element and other elements or event locations.
For example, to position an element #div1 to the right of #div2, you could use the

following:
Click here to view code image

$("#div1").position("my:"left", at:"right", of:"#div2");

Pretty simple. Table 16.1 describes the options that jQuery UI provides to the
.position() method.

TABLE 16.1 Option Settings Used When Positioning Elements with jQuery UI
.position()

Try it Yourself: Using jQuery UI to Position Images on a Web Page
The best way to help you understand jQuery UI positioning is to give you some
hands-on experience. In this example, you use jQuery UI position to position
static image elements as well as a dynamic one that moves with the mouse. You
add some collision protections to keep the image from leaving a <div> element.
The code for the example is in Listings 16.5, 16.6, and 16.7. Use the following
steps to create the dynamic web page:
1. In Eclipse, create the lesson16/dynamic_positioning.html,

lesson16/js/dynamic_positioning.js, and lesson16/css/dynamic_positioning.css
files.

2. Add the code shown in Listing 16.5 and Listing 16.7 to the HTML and CSS
files.

3. Open the dynamic_positioning.js file and a .load().
4. Inside the .load() function, add the following lines to position #img2 at

the bottom-right corner of #img1 and position #img3 at the bottom-right
corner of #img2:

Click here to view code image

02 $("#img2").position(
03 {my:"left top", at:"right bottom", of:"#img1"});
04 $("#img3").position(
05 {my:"left top", at:"right bottom", of:"#img2"});

5. Add the following mousemove event handler to reposition #img3 with the
mouse movement. Notice that collision is set to "flip" within the
<div> element so that the image will not be repositioned outside:

Click here to view code image

06 $("div").mousemove(function(e) {
07 $("#img4").position({ my:"left top", at:"center", of:e,

08 collision:"flip", within:"div" });
09 })

6. Save all three files and then open the HTML document in a web browser, as
shown in Figure 16.5. You should see three images placed on the page, and the
fourth image will track with the mouse cursor as it is moved.

FIGURE 16.5 Positioning images using the .position() method in jQuery UI.

LISTING 16.5 dynamic_positioning.html HTML Document That Adds the Images
to the Web Page

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Dynamic Positioning</title>
05 <meta charset="utf-8" />

06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript"
src="http://code.jquery.com/ui/1.11.2/jquery-ui.min.js"></script>
08 <script type="text/javascript" src="js/dynamic_positioning.js">
</script>
09 <link rel="stylesheet" type="text/css"
href="http://code.jquery.com/ui/1.11.2/themes/smoothness/jquery-ui.css">
10 <link rel="stylesheet" type="text/css"
href="css/dynamic_positioning.css">
11 </head>
12 <body>
13 <div>
14
15
16
17
18 </div>
19 </body>
20 </html>

LISTING 16.6 dynamic_positioning.js jQuery and jQuery UI That Dynamically
Positions the Images

Click here to view code image

01 $(window).load(function(){
02 $("#img2").position(
03 {my:"left top", at:"right bottom", of:"#img1"});
04 $("#img3").position(
05 {my:"left top", at:"right bottom", of:"#img2"});
06 $("div").mousemove(function(e) {
07 $("#img4").position({ my:"left top", at:"center", of:e,
08 collision:"flip", within:"div" });
09 })
10 });

LISTING 16.7 dynamic_positioning.css CSS Code That Styles the Page

Click here to view code image

01 img {
02 position: absolute; height: 130px; width:auto; }
03 div {
04 height:500px; width:500px; border:3px ridge; }

Summary
In this lesson, you downloaded and implemented jQuery UI in a few examples. You
learned that jQuery UI extends jQuery with some additional functionality, such as new
selectors, as well as enhances existing jQuery functionality, such as element positioning.
You implemented some examples to illustrate how to use jQuery in your web pages.

Q&A
Q. Is there anything that can be done in jQuery UI that I can’t do myself in

jQuery and JavaScript?
A. No, but that’s not the point. The point is that jQuery and jQuery UI will save you

a ton of time.
Q. Can I use more than one theme at a time?
A. No, the themes will conflict with each other. You can, however, have multiple

themes in different locations on your website and then dynamically adjust which
.css files get loaded. This allows some users to have one theme and other users to
have another.

Workshop
The workshop consists of a set of questions and answers designed to solidify your
understanding of the material covered in this lesson. Try to answer the questions before
looking at the answers.

Quiz
1. What jQuery UI selector would you use to isolate elements that happen to have a

specific data value assigned to them?
2. True or false: There is no way to get the scroll parent for an element.
3. How would you delay setting the focus on an element?
4. How can you easily reposition an element directly to the right of another element

using jQuery UI?

Quiz Answers
1. :data()
2. False. You can use the .scrollParent() method to get the nearest scrolling

container.
3. Use the .focus() method in jQuery UI with a delay value.
4. Use the .position() method with one element at "right" and other

"left".

Exercises
1. Open the code in Listings 16.2, 16.3, and 16.4, and modify it to add an additional

data value that specifies the color; for example, .data("color","red").
Then, when the user clicks the Add Images button, change the color of the text
using .css().

2. Open the code in Listings 16.5, 16.6, and 16.7, and modify it so that the images
overlap each other as they cascade. The simplest way to do this is to add negative
values to the .position() settings.

Lesson 17. Using jQuery UI Effects

What You’ll Learn in This Lesson:
 Methods to apply effects using the jQuery UI library
 How easing effects make animation changes variable
 Ways to add cool effects when hiding/showing elements
 How to apply effects to class changes
 Applying animation effects when repositioning elements

jQuery UI provides a rich set of animation-type effects that can be applied to elements
on your web pages. There are a couple of reasons why animating elements is a good
thing. One is to leave the user with an impression that the website is interactive and fun
to use. The second is to help users understand the visual changes that are taking place in
your dynamic scripts.
In this lesson, you see the improvements that jQuery UI provides in animation effects.
You will be able to apply effects directly to elements, or you can apply effects when
making class, visibility, or position changes.

Applying jQuery UI Effects
The purpose of this section is to introduce you to the effects that jQuery UI provides.
This section discusses each of the effects and how to apply them using the .each()
method. You are also introduced to the multitude of easing functions that provide a
variable aspect to how values are applied during the effect animation.

Understanding jQuery UI Effects
jQuery UI effects are just animations to CSS position, size, and visibility properties.
The animated changes are implemented in such a way as to create visual effects that
give users a better experience.
For example, suppose a user tries to log in with an invalid password. In addition to the
form validation message, you can also use jQuery UI effects to make the login button
shake, which will catch the user’s attention better, letting the user know the login failed.
These are subtle changes to the web page, but they can have a large impact on the user
experience.
Table 17.1 lists the effects with values that can be applied to manipulate them. This
should give you an idea of the effects possible with jQuery UI. You implement some of
these effects later in this lesson.

TABLE 17.1 jQuery UI Effects

Setting the Effect Animation Easing
The easing function sets a value path that the effect uses when animating the effect. You
have already seen the linear and swing easing in jQuery animations. jQuery UI adds a
large number of new easing functions that can provide some fun effect animation.
The simplest way to illustrate how easing works is to show you the graphs published at
the following location and shown in Figure 17.1. Think of the horizontal axis of the
graphs as duration time, where left is 0 and the right is complete. Think of the vertical
axis of the graph as how complete the transition of the effect is. For example, in a fade-
out transition, the bottom would be fully opaque and the top would be fully transparent:
http://api.jqueryui.com/easings/

http://api.jqueryui.com/easings/

FIGURE 17.1 jQuery UI easing functions.

Adding Effects to jQuery Objects
There are multiple ways to apply effects to jQuery objects. Effects can be added as a
part of another transition, such as a class change or visibility change. You can also
apply effects to an element using the .effect() method. The .effect() method
has the following syntax:
Click here to view code image

.effect(effect [, options] [, duration] [, complete])

In the .effect() method, effect is the name of the effect and options is an object
containing the option values. Table 17.1 lists the effect names and options that you can
apply to each effect. The duration is specified in milliseconds, and you can add an
optional complete handler function that will be executed when the effect has been
applied.
The following example illustrates the full syntax of applying a size effect to an
element:
Click here to view code image

("img").effect("size",
 {to:{height:100, width:100}, origin:["right","top"],
scale:"box"},
 3000,
 function(){alert("effect complete");});

Try it Yourself: Adding jQuery UI Effects
In this example, you apply several effects to elements. You add four
images to the web pages and apply a different effect on each when the user clicks
the image. The purpose of the example is to familiarize you with how to
implement different effects, set the effect options, and apply a complete
function.
The code for the example is in Listings 17.1, 17.2, and 17.3. Use the following
steps to create the dynamic web page:
1. In Eclipse, create the lesson17, lesson17/js, and lesson17/css folders, and

then add the lesson17/jquery_effects.html, lesson17/js/jquery_effects.js, and
lesson17/css/jquery_effects.css files.

2. Add the code shown in Listing 17.1 and Listing 17.3 to the HTML and CSS
files.

3. Open the jquery_effects.js file and add a .ready() function.
4. Add the following click handler to #img1. The click handler applies a

basic shake effect; 20 pixels in the down direction first and shake 5 times.
3000 milliseconds means the effect will take 3 seconds:

Click here to view code image

02 $("#img1").click(function(e) {
03 $(this).effect("shake",
04 { direction:"down", distance:20, times:5}, 3000);
05 });

5. Add the following click handler to #img2. The click handler applies a
scale effect in both directions to the middle, right vanishing point. The effect
scales the image down to 40 percent. Also notice that the easeInBounce
easing is added to adjust the flow of the animation:

Click here to view code image

06 $("#img2").click(function(e) {
07 $(this).effect("scale",
08 { direction:"both", origin:["middle", "right"],
09 percent:40, scale:"box", easing:"easeInBounce"}, 3000);
10 });

6. Add the following click handler to #img3. The click handler applies a
double effect. The first effect is a slide in the downward direction for 200
pixels and the second, which slides right, is placed in the callback handler for
the first effect, so it will not occur until the first effect is finished:

Click here to view code image

11 $("#img3").click(function(e) {
12 $(this).effect("slide",
13 { direction:"down", distance:200}, 3000, function(){
14 $(this).effect("slide",
15 {direction:"right", distance:200}, 3000);
16 });
17 });

7. Add the following click handler to #img4. The click handler applies an
explode effect, breaking the image into 16 pieces and having them fade as they
move apart:

Click here to view code image

18 $("#img4").click(function(e) {
19 $(this).effect("explode", {pieces:16}, 3000);
20 });

8. Save all three files and then open the HTML document in a web browser, as
shown in Figure 17.2. You should see the effects as you click the images.

FIGURE 17.2 Applying jQuery UI effects to images.

LISTING 17.1 jquery_effects.html HTML Document That Adds the Web Page

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>jQeury Effects Showcase</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript"
src="http://code.jquery.com/ui/1.11.2/jquery-ui.min.js"></script>

08 <script type="text/javascript" src="js/jquery_effects.js"></script>
09 <link rel="stylesheet" type="text/css"
href="http://code.jquery.com/ui/1.11.2/themes/smoothness/jquery-ui.css">
10 <link rel="stylesheet" type="text/css"
href="css/jquery_effects.css">
11 </head>
12 <body>
13 <div id="frame1">
14 </div>
15 <div id="frame2">
16 </div>
17 <div id="frame3">
18 </div>
19 <div id="frame4">
20 </div>
21 </body>
22 </html>

LISTING 17.2 jquery_effects.js jQuery and jQuery UI That Apply Several Effects
on Images

Click here to view code image

01 $(document).ready(function(){
02 $("#img1").click(function(e) {
03 $(this).effect("shake",
04 { direction:"down", distance:20, times:5}, 3000);
05 });
06 $("#img2").click(function(e) {
07 $(this).effect("scale",
08 { direction:"both", origin:["middle", "right"],
09 percent:40, scale:"box", easing:"easeInBounce"}, 3000);
10 });
11 $("#img3").click(function(e) {
12 $(this).effect("slide",
13 { direction:"down", distance:200}, 3000, function(){
14 $(this).effect("slide",
15 {direction:"right", distance:200}, 3000);
16 });
17 });
18 $("#img4").click(function(e) {
19 $(this).effect("explode", {pieces:16}, 3000);
20 });
21 });

LISTING 17.3 jquery_effects.js CSS Code That Styles the Page

Click here to view code image

01 img {
02 height:200px; }
03 div {
04 height:200px; width:200px; border:1px dotted;
05 display:inline-block; position:fixed; }
06 #frame1 {
07 top:80px; left:20px; }
08 #frame2 {
09 top:80px; left:240px; }
10 #frame3 {
11 top:80px; left:460px; }
12 #frame4 {
13 top:80px; left:720px; }

Adding Effects to Class Transitions
A very important part of jQuery UI effects is the capability to animate transitions when
applying classes to elements. This is done by adding a duration to the class transition
function and specifying the easing function to control the animation effect. Any
numerical class values that are changing will be animated each step of the class
transition.

Note
Colors can be tricky; jQuery UI is not able to animate the transition from
red to blue, but it can animate the transition from #FF0000 to #0000FF. If
you want to animate color transitions, use the hex numerical value for them.

The following is a list of the class transition methods that you can use to apply effects
on jQuery objects by setting duration and easing values:

 .addClass(className [, duration] [, easing] [, complete])—
Adds the class and animates the changes to numerical class properties.
 .removeClass(className [, duration] [, easing] [, complete])
)—Removes the class and animates the changes to numerical class properties.
 .switchClass(removeClassName, addClassName [, duration] [,
easing] [, complete]))—First removes the removeClassName and
animates the changes to numerical class properties, and then adds the
addClassName animating the numerical class property changes.
 .toggleClass(className [, switch] [, duration] [, easing] [,
complete])—Adds the class if the object(s) do not already have it or removes
it if they do. Any changes to numerical class properties will be animated based on

the easing function.

Try it Yourself: Applying Easing to Class Transitions
It’s time to jump in and add some effects to class changes. In this example, you
apply animation effects by applying different easing functions to
elements dressed up as buttons. The purpose of this example is to show each of
the class transitions applying easing functions.
The code for the example is in Listings 17.4, 17.5, and 17.6. Use the following
steps to create the dynamic web page:
1. In Eclipse, add the lesson17/class_transitions.html,

lesson17/js/class_transitions.js, and lesson17/css/class_transitions.css files.
2. Add the code shown in Listing 17.4 and Listing 17.6 to the HTML and CSS

files. Notice the different class styles defined in the CSS file. These will be
used to animate the class changes.

3. Now open the class_transitions.js file and add the following .ready()
function that implements a click handler for each of the elements in
the HTML document. The click handlers call the .addClass(),
.removeClass(), .switchClass(), and .toggleClass()
methods for the different button elements:

Click here to view code image

01 $(document).ready(function(){
02 $("#btn1").click(function(e) {
03 $(this).addClass("round", 2000, "easeInElastic"); });
04 $("#btn2").click(function(e) {
05 $(this).switchClass("active", "inactive", 2000,
06 "easeInOutElastic"); });
07 $("#btn3").click(function(e) {
08 $(this).toggleClass("round", 2000, "easeOutQuart"); });
09 $("#btn4").click(function(e) {
10 $(this).removeClass("round", 2000, "easeInCirc"); });
11 });

4. Save all three files and then open the HTML document in a web browser, as
shown in Figure 17.3. You should see the animated class transitions as you
click each of the buttons.

FIGURE 17.3 Adding animated effects to class transitions.

LISTING 17.4 class_transitions.html HTML Document That Adds the Web Page

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Class Transitions</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript"
src="http://code.jquery.com/ui/1.11.2/jquery-ui.min.js"></script>
08 <script type="text/javascript" src="js/class_transitions.js">
</script>
09 <link rel="stylesheet" type="text/css"
href="http://code.jquery.com/ui/1.11.2/themes/smoothness/jquery-ui.css">
10 <link rel="stylesheet" type="text/css"
href="css/class_transitions.css">
11 </head>
12 <body>
13 Add Class

14 Switch Class

15 Toggle Class

16 Remove Class

17 </body>
18 </html>

LISTING 17.5 class_transitions.js jQuery and jQuery UI Code That Implements
the Class Transitions with Animation Effects

Click here to view code image

01 $(document).ready(function(){

02 $("#btn1").click(function(e) {
03 $(this).addClass("round", 2000, "easeInElastic"); });
04 $("#btn2").click(function(e) {
05 $(this).switchClass("active", "inactive", 2000,
06 "easeInOutElastic"); });
07 $("#btn3").click(function(e) {
08 $(this).toggleClass("round", 2000, "easeOutQuart"); });
09 $("#btn4").click(function(e) {
10 $(this).removeClass("round", 2000, "easeInCirc"); });
11 });

LISTING 17.6 class_transitions.css CSS Code That Styles the Page

Click here to view code image

01 span {
02 display:inline-block; height:30px; width:200px;
03 margin-top:20px; border:1px ridge;
04 text-align:center; font:bold 20px/30px arial; }
05 .round {
06 border-width:3px; border-radius:60px 30px;
07 height:60px; width:320px; line-height:60px;
08 background-color:steelblue; color:white; font-size:40px; }
09 .square {
10 border-width:6px; background-color:gold; color:black; }
11 .active {
12 background-image: -moz-linear-gradient(top , lightblue, gainsboro);
13 background-image: -webkit-linear-gradient(top , lightblue,
gainsboro);
14 background-image: -ms-linear-gradient(top , lightblue, gainsboro);
15 border-radius:4px 4px; border:3px outset slategrey; }
16 .inactive {
17 background-image: -moz-linear-gradient(top , darkgrey, white);
18 background-image: -webkit-linear-gradient(top , darkgrey, white);
19 background-image: -ms-linear-gradient(top , darkgrey, white);
20 border-radius:4px; color:#steelblue; }

Adding Effects to Element Visibility Transitions
Another very cool effect that you can add to your web pages with jQuery UI is visibility
changes. This can be one of the most useful in allowing users to visualize what is
happening, and it provides them with a chance to follow the page flow better.
Visibility effects are applied in the same manner as the .effect() function you
learned earlier in this lesson. You specify an effect from Table 17.1 and then set the
desired options, including an easing function if you want to control the animation.
The following is a list of the different element visibility transition methods that you can
add effects to using jQuery UI:

 .hide(effect [, options] [, duration] [, complete])—Applies the
effect with options while hiding the element.
 .show(effect [, options] [, duration] [, complete])—Applies the
effect with options while showing the element.
 .toggle(effect [, options] [, duration] [, complete])—Either
shows or hides the object based on its current visibility and applies the specified
effect while doing so.

Try it Yourself: Applying Effects to jQuery Visibility Transitions
In this example, you apply effects to the visibility of menu items. The purpose of
the example is to familiarize you with how to implement jQuery UI effects in
jQuery’s visibility methods.
The code for the example is in Listings 17.7, 17.8, and 17.9. Use the following
steps to create the dynamic web page:
1. In Eclipse, add the lesson17/visibility_transitions.html,

lesson17/js/visibility_transitions.js, and lesson17/css/visibility_transitions.css
files.

2. Add the code shown in Listing 17.7 and Listing 17.9 to the HTML and CSS
files.

3. Open the visibility_transitions.js file and add the following .ready()
function that will hide the secondary menus initially:

Click here to view code image

01 $(document).ready(function(){
02 $("#showMenu, #showMenu2, #toggleMenu").hide();
...
15 })

4. Add the following click handlers for the different menu items. Notice that you
use several, including fold, scale, explode, and blind. The reason is
so you can see how the effects work. On the blind effect, you set easing to
easeOutBounce; this provides a simple bounce effect, as if the menu
bounces at the bottom:

Click here to view code image

03 $("#show").click(function(e) {
04 $("#showMenu").show("fold", {size:22}, 2000); });
05 $("#show2").click(function(e) {
06 $("#showMenu2").show("scale",
07 {origin:["top","left"]}, 2000); });
08 $("#showMenu").click(function(e) {
09 $("#showMenu").hide("fold", {size:22}, 2000); });

10 $("#showMenu2").click(function(e) {
11 $("#showMenu2").hide("explode", {pieces:9}, 2000); });
12 $("#toggle, #toggleMenu").click(function(e) {
13 $("#toggleMenu").toggle("blind",
14 {direction:"up", easing:"easeOutBounce"}, 1000); });

5. Save all three files and then open the HTML document in a web browser, as
shown in Figure 17.4. You should be able to select the menus and see the
.show(), .hide(), and .toggle() effects working.

FIGURE 17.4 Using jQuery UI effects to improve showing and hiding menu options.

LISTING 17.7 visibility_transitions.html HTML Document That Adds the Web
Page

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Visibility Transitions</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript"
src="http://code.jquery.com/ui/1.11.2/jquery-ui.min.js"></script>
08 <script type="text/javascript" src="js/visibility_transitions.js">
</script>
09 <link rel="stylesheet" type="text/css"
href="http://code.jquery.com/ui/1.11.2/themes/smoothness/jquery-ui.css">
10 <link rel="stylesheet" type="text/css"
href="css/visibility_transitions.css">
11 </head>
12 <body>
13 Show Fold

14 Show Scale

15 Toggle Blind

16 <div id="showMenu">
17 Fold 1
Fold 2

18 Fold 3
Fold 4

19 </div>
20 <div id="showMenu2">
21 Explode 1
Explode 2

22 Explode 3
Explode 4

23 </div>
24 <div id="toggleMenu">
25 Toggle 1
Toggle 2

26 Toggle 3
Toggle 4

27 </div>
28 </body>
29 </html>

LISTING 17.8 visibility_transitions.js jQuery and jQuery UI That Implements the
Visibility and Effects

Click here to view code image

01 $(document).ready(function(){
02 $("#showMenu, #showMenu2, #toggleMenu").hide();
03 $("#show").click(function(e) {
04 $("#showMenu").show("fold", {size:22}, 2000); });
05 $("#show2").click(function(e) {
06 $("#showMenu2").show("scale",
07 {origin:["top","left"]}, 2000); });
08 $("#showMenu").click(function(e) {
09 $("#showMenu").hide("fold", {size:22}, 2000); });
10 $("#showMenu2").click(function(e) {
11 $("#showMenu2").hide("explode", {pieces:9}, 2000); });
12 $("#toggle, #toggleMenu").click(function(e) {
13 $("#toggleMenu").toggle("blind",
14 {direction:"up", easing:"easeOutBounce"}, 1000); });
15 });

LISTING 17.9 visibility_transitions.css CSS Code That Styles the Page

Click here to view code image

01 span {
02 display:inline-block; width:130px; border:1px ridge;
03 text-align:center; cursor:pointer;
04 background-image: -moz-linear-gradient(top , lightblue, white);
05 background-image: -webkit-linear-gradient(top , lightgray, white);
06 background-image: -ms-linear-gradient(top , lightgray, white); }
07 div span{
08 width:120px; margin-left:10px; }
09 #showMenu {
10 position:fixed; left:130px; top:8px; }
11 #showMenu2 {

12 position:fixed; left:130px; top:30px; }

Try it Yourself: Adding Effects to Animations
The new easing functionality in jQuery UI can also be applied to the jQuery
.animation() method. Using the different easing, you can alter the effect
of the animation through varying the rate that the transition occurs. One of the best
examples of this is to apply a bounce transition to an animation that alters the
position of an element.
The best way to illustrate this is through an example. In this example, you apply
several animation effects to the movement of an image. The image is a simple
ball that moves around the screen when clicked. At the final position, the ball hits
a needle and “pops” using an explode effect. The purpose of the example is for
you to see how the effects apply to the animation process.
The code for the example is in Listings 17.10, 17.11, and 17.12. Use the
following steps to create the dynamic web page:
1. In Eclipse, add the lesson17/animation_effects.html,

lesson17/js/animation_effects.js, and lesson17/css/animation_effects.css files.
2. Add the code shown in Listing 17.10 and Listing 17.12 to the HTML and CSS

files. The elements are set to fixed positioning so their movement
can be animated by changing the CSS position.

3. Open the animation_effects.js file and add the coords array shown at the top
of Listing 17.11. This array provides positioning coordinates and easing
function names that will be used by the click handler.

4. The following .ready() function adds the click handler to the ball:
Click here to view code image

14 $(document).ready(function(){
15 $("#ball").click(reposition);
16 });

5. Add the following click handler reposition() code. This function will
pop off a coordinate and use the values in an .animate() call that will
animate moving the ball. The easing value is set using the easing attribute of
the coord object. Notice that the callback handler loops back to the
reposition() function. When there are no more coordinates left, an
explode effect is applied to the ball:

Click here to view code image

07 function reposition(){

08 if (coords.length){
09 coord = coords.pop();
10 $(this).animate(coord, 1000, coord.easing, reposition);
11 } else{
12 $("#ball").effect("explode", {pieces:100}, 2000); }
13 }

6. Save all three files and then open the HTML document in a web browser, as
shown in Figure 17.5. When you click the ball, it should move around the web
page with varying speed, illustrating the easing functions. At the end, it should
hit the needle and disappear.

FIGURE 17.5 Using jQuery UI effects to adjust the timing of position animation.

LISTING 17.10 animation_effects.html HTML Document That Adds the Web
Page

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Adding Effects to Animations</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript"
src="http://code.jquery.com/ui/1.11.2/jquery-ui.min.js"></script>
08 <script type="text/javascript" src="js/animation_effects.js">
</script>
09 <link rel="stylesheet" type="text/css"
href="http://code.jquery.com/ui/1.11.2/themes/smoothness/jquery-ui.css">
10 <link rel="stylesheet" type="text/css"

href="css/animation_effects.css">
11 </head>
12 <body>
13
14
15 </body>
16 </html>

LISTING 17.11 animation_effects.js jQuery and jQuery UI That Implements the
Reposition Effects

Click here to view code image

01 var coords = [{top:140, left:470, easing:"easeInBounce"},
02 {top:100, left:200, easing:"easeOutElastic"},
03 {top:300, left:200, easing:"easeInOutCirc"},
04 {top:20, left:300, easing:"easeInBounce"},
05 {top:10, left:10, easing:"easeOutExpo"},
06 {top:200, left:100, easing:"easeInSine"}]
07 function reposition(){
08 if (coords.length){
09 coord = coords.pop();
10 $(this).animate(coord, 1000, coord.easing, reposition);
11 } else{
12 $("#ball").effect("explode", {pieces:100}, 2000); }
13 }
14 $(document).ready(function(){
15 $("#ball").click(reposition);
16 });

LISTING 17.12 animation_effects.css CSS Code That Styles the Page

Click here to view code image

01 img {
02 position:fixed; z-index: -1;}
03 #needle {
04 left:450px; top:50px; width: 150px; }
05 #ball {
06 left:50px; top:50px; width: 100px; }

Summary
jQuery UI effects are basically animations to the CSS properties of page elements. The
benefit that they provide is that rather than having the effect happen instantaneously, you
can have it happen gradually. Using easing functions, you can adjust the rate that the

changes occur in the animation to give elements more of an interactive feel.

Q&A
Q. Is there a way to animate changing an element from one source to

another so that part of both elements are visible at the same time?
A. Not directly, but there is a trick you can employ. Use two elements and

animate the opacity property changes at the same time. As one disappears, the
other one will become visible.

Q. Is there a way to create custom easing functions?
A. Yes, you can create a custom easing function and attach it to $.easing. The

function needs to accept the following parameters and return a new value based
on those parameters:
 tPercent—Percentage of time passed in the animation from 0.0 to 1.0.
 tMS—Milliseconds since animation started.
 startValue—Starting value of the property.
 endValue—Ending value of the property.
 tTotal—Duration of the animation.

Click here to view code image

 $.easing.myCustom = function(tPercent, tMS, startValue, endValue,
tTotal) {
 var newValue= <your code here>>...
 return newValue;
 }

Workshop
The workshop consists of a set of questions and answers designed to solidify your
understanding of the material covered in this lesson. Try to answer the questions before
looking at the answers.

Quiz
1. How do you control the amount of time the effect will take?
2. How do you define the number of pieces the explode effect will generate to 25?
3. True or false: You cannot animate changes to the border-style.
4. What effect would you use to simulate an element shrinking?

Quiz Answers

1. Setting the duration value.
2. Set the options value to {pieces:25}.
3. True. You can animate only numerical changes.
4. Scale or Size.

Exercises
1. Open the code in Listings 17.1, 17.2, and 17.3 and change which effects are

applied to the images. Try applying the pulsate, drop, and puff effects.
2. Modify the code in Listings 17.10, 17.11, and 17.12. Add a duration attribute to

each of the coordinates so that you can also adjust the duration time for each
point in the ball’s animation. Add a few new points as well. The coordinate
values should look something like this:

Click here to view code image

{top:20, left:300, easing:"easeInBounce", duration:1500},

Lesson 18. Advanced Interactions Using jQuery UI
Interaction Widgets

What You’ll Learn in This Lesson:
 Implementing drag-and-drop functionality
 Making elements and children resizable
 How to select multiple pages elements using a bounding box
 Creating sortable tables, lists, and containers

A special set of jQuery UI widgets are intended to provide generalized interactions for
various elements. These widgets allow you to make elements draggable and droppable
and provide sorting, box selection, and resize functionality to elements.
The jQuery UI interaction widgets can be attached to elements to provide a rich set of
predefined interactions. The following sections cover the different interaction widgets
and how to implement them in your web pages.

Introducing jQuery UI Interactions
All jQuery UI interactions are based on two main components—the jQuery.widget
factory and the mouse widget. The jQuery.widget factory provides the base
functionality for all widgets, including creation, disabling, enabling, and option settings.
The mouse widget provides the base mouse interactions with the widget that captures
mouse events and allows the widgets to interact with them.

Reviewing the jQuery.widget Factory
The jQuery.widget factory defines an interface that is used by all jQuery UI
widgets. The options, methods, and events of the factory are available to all widgets.
Table 18.1 lists the methods and events defined in the factory and available in all
widgets.

TABLE 18.1 Methods and Events Available on All jQuery UI Widgets
You can get more information about the jQuery.widget factory at
http://api.jqueryui.com/jQuery.widget/.

Understanding the Mouse Interaction Widget
The mouse interaction widget is automatically applied to all widgets. Typically, you
will not need to interact with it much. However, it does expose a few options that are
very useful at times. Those options are the following:

 cancel—Cancels interaction for specific elements. For example, to cancel
mouse interactions for elements with class="label" in the #item1, you use
the following:

Click here to view code image

$("#item1").mouse("option", "cancel", ".label");

 delay—Delays the time after the mousedown event occurs before the
interaction takes place. For example, to add a 1-second delay for mouse
interactions on #item2, use the following:

Click here to view code image

$("#item2").mouse("option", "delay", 1000);

 distance—Specifies the distance in pixels the mouse must travel after the
mousedown event occurs before the interaction should start. For example, to set
the distance to 10 pixels for mouse interactions on #item3, use the following:

Click here to view code image

http://api.jqueryui.com/jQuery.widget/

$("#item3").mouse("option", "distance", 10);

Using the Drag-and-Drop Widgets
Now that you have reviewed the widget interface and the mouse interaction widget, you
are ready to look at some of most common jQuery UI widgets—the draggable and
droppable widgets. These widgets are designed to work in tandem.
You can define one element to be draggable and then another to be droppable. When
draggable elements are dropped on droppable widgets, you can apply JavaScript and
jQuery code to provide whatever interaction for the user you would like.

Dragging Elements with the Draggable Widget
The draggable widget defines an element as draggable by holding down the mouse and
moving it. This allows you to move the element to whatever position on the screen you
would like.
The draggable widget will handle scrolling elements and provides several options to
control the look and feel while dragging. Table 18.2 describes the more common
draggable options. The following shows an example of attaching the draggable
widget to an element with the cursor and opacity options:
Click here to view code image

$("#img1").draggable({cursor:"move", opacity:.5});

TABLE 18.2 Common Draggable Widget Options
The draggable widget also provides the additional events so handlers can be attached to
the element when dragging starts, is in progress, and stops. Table 18.3 lists the events
that you can access on draggable items. The following shows an example of adding a
dragstop event to apply a bounce effect when the item is dropped:
Click here to view code image

$("#drag1").draggable({cursor:"move", opacity:.5});
$("#drag1").on("dragstop", function(){$(this).effect("bounce", 1000); });

TABLE 18.3 Draggable Widget Events

Try it Yourself: Adding Draggable Images to a Web Page
In this example, you implement draggable multiple image elements. Each image
behaves a bit differently, as described in the following steps. The purpose of the
example is to help you see how easy it is to make web elements draggable.
The code for the example is in Listings 18.1, 18.2, and 18.3. Use the following
steps to create the dynamic web page:
1. In Eclipse, create the lesson18, lesson18/js, and lesson18/css folders, and

then add the lesson18/draggable_images.html,
lesson18/js/draggable_images.js, and lesson18/css/draggable_images.css
files.

2. Add the code shown in Listing 18.1 and Listing 18.3 to the HTML and CSS
files.

3. Open the draggable_images.js file and add a .load() function.
4. Add the following lines. Line 2 adds the draggable widget to #drag1 and

sets the cursor to move while dragging; also, the opacity is at 50% while
dragging. Line 3 adds a dragstop hander function that applies the bounce
effect to the image when it is dropped:

Click here to view code image

02 $("#drag1").draggable({cursor:"move", opacity:.5});
03 $("#drag1").on("dragstop", function(){
04 $(this).effect("bounce", 1000); });

5. Add the following lines that implement draggable on the #drag2 element.

The helper option is set to "clone" so that the object stays in place while
dragging; a dragstop event handler is added to animate changing the
position from the original to the location of the helper clone. Notice that the
offset is collected using the ui parameter:

Click here to view code image

05 $("#drag2").draggable({helper:"clone"});
06 $("#drag2").on("dragstop", function(e, ui){
07 $("#drag2").animate(ui.offset); });

6. Add the following lines that implement draggable on the #drag3 element.
This time, you implement a drag handler that updates a paragraph element
with the current mouse coordinates while dragging. The dragstop handler
will clear out the position text:

Click here to view code image

08 $("#drag3").draggable();
09 $("#drag3").on("drag", function(e){
10 $(this).children("p").html(e.pageX+", "+e.pageY); });
11 $("#drag3").on("dragstop", function(e){
12 $(this).children("p").html(""); });

7. Save all three files and then open the HTML document in a web browser, as
shown in Figure 18.1. You should be able to drag the images around and test
the interactions.

FIGURE 18.1 Applying jQuery UI dragging widgets to move images on the screen.

LISTING 18.1 draggable_images.html HTML Document That Adds the Web Page

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Making Images Drag-able</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript"
src="http://code.jquery.com/ui/1.11.2/jquery-ui.min.js"></script>
08 <script type="text/javascript" src="js/draggable_images.js">
</script>
09 <link rel="stylesheet" type="text/css"
href="http://code.jquery.com/ui/1.11.2/themes/smoothness/jquery-ui.css">
10 <link rel="stylesheet" type="text/css"

href="css/draggable_images.css">
11 </head>
12 <body>
13 <div id="drag1">
14 </div>
15 <div id="drag2">
16 </div>
17 <div id="drag3">
18 </div>
19 </body>
20 </html>

LISTING 18.2 draggable_images.js jQuery and jQuery UI Implements Draggable
Images

Click here to view code image

01 $(window).load(function(){
02 $("#drag1").draggable({cursor:"move", opacity:.5});
03 $("#drag1").on("dragstop", function(){
04 $(this).effect("bounce", 1000); });
05 $("#drag2").draggable({helper:"clone"});
06 $("#drag2").on("dragstop", function(e, ui){
07 $("#drag2").animate(ui.offset); });
08 $("#drag3").draggable();
09 $("#drag3").on("drag", function(e){
10 $(this).children("p").html(e.pageX+", "+e.pageY); });
11 $("#drag3").on("dragstop", function(e){
12 $(this).children("p").html(""); });
13 });

LISTING 18.3 draggable_images.css CSS Code That Styles the Page

Click here to view code image

01 p {
02 margin:0px; }
03 div {
04 height:80px; width:100px; position:fixed; }
05 #drag2 {
06 top:100px; }
07 #drag3 {
08 top:200px; }
09 img {
10 width:200px; }
11 img:hover{
12 cursor:move; }

Creating Drop Targets with the Droppable Widget
The droppable widget defines an element as a valid drop container usable by draggable
items. This enables you to provide interactions between elements using simple mouse
controls.
The droppable widget allows you to specify an accept function that can process the
information about the event, such as mouse coordinates as well as the draggable item
involved. Table 18.4 describes the more common droppable options. The following
shows an example of attaching the droppable widget to an element and specifying the
tolerance level:
Click here to view code image

$("#div1"). droppable ({tolerance:"touch"});

TABLE 18.4 Common Droppable Widget Options
The droppable widget also provides the additional events so handlers can be attached
to the element when dragging and dropping. Table 18.5 lists the events that you can
access on droppable items. The following shows an example of adding a
dropactivate event to apply a shake effect when a droppable item is activated by
a drag start:
Click here to view code image

$("#drop1").droppable({tollerance:"pointer"});

$("# drop1").on("dropactivate", function(){$(this).effect("shake", 1000);
});

TABLE 18.5 Droppable Widget Events

Try it Yourself: Applying Drag and Drop to a Web Page
In this example, you implement draggable and droppable on page elements. The
first droppable element displays an image, and the second adds the image and
src text to a list. The purpose of the example is to help you see how easy it is to
make web elements droppable.
The code for the example is in Listings 18.4, 18.5, and 18.6. Use the following
steps to create the dynamic web page:
1. In Eclipse, add the lesson18/drag_n_drop.html, lesson18/js/drag_n_drop.js,

and lesson18/css/drag_n_drop.css files.
2. Add the code shown in Listing 18.4 and Listing 18.6 to the HTML and CSS

files.
3. Open the drag_n_drop.js file and add a .ready() function.
4. Add the following lines that add the draggable widget to #drag1,
#drag2, and #drag3. Use clone for the helper setting to keep the
images in place, set the cursor and the opacity. Also, you set up zIndex
so that the images will show on top of other page elements, even while
dragging over them:

Click here to view code image

02 $("#drag1, #drag2, #drag3").draggable(
03 {helper:"clone", cursor:"move", opacity:.7, zIndex:99});

5. Add the following lines that implement droppable on #drop1. accept is
set to "img" so that only elements will be accepted. In line 6, a
dropover event handler is added that applies a pulsate effect to the
droppable box when the draggable item is hovering over it. Also, a drop
event handler is added in line 8 that will add an element to #drop1
with the same src attribute as the draggable element. A bounce effect is
also added to show the user the content changed:

Click here to view code image

04 $("#drop1").droppable(
05 { accept:"img", tolerance:"fit"});
06 $("#drop1").on("dropover", function(e,ui){
07 $(this).effect("pulsate"); });
08 $("#drop1").on("drop", function(e,ui){
09 $(this).html($("").attr("src",
10 ui.draggable.attr("src")));
11 $(this).effect("bounce");
12 });

6. Add the following lines that implement droppable on #drop2. Notice that in
line 15, a hoverClass is added. The class will cause the background to turn
light blue when the box is hovered over by a droppable item. Also in line 16,
the drop handler function is implemented that adds a <div> element with the
 and src text to #drop2:

Click here to view code image

13 $("#drop2").droppable(
14 { accept:"img", tolerance:"intersect",
15 hoverClass:"drop-hover"});
16 $("#drop2").on("drop", function(e,ui){
17 var item = $("<div></div>");
18 item.append($("").attr("src",
19 ui.draggable.attr("src")));
20 item.append($("").html(
21 ui.draggable.attr("src")));
22 $(this).append(item);
23 });

7. Save all three files and then open the HTML document in a web browser, as
shown in Figure 18.2. You should be able to drag and drop the images around
and test the interactions.

FIGURE 18.2 Applying jQuery UI drag and drop.

LISTING 18.4 drag_n_drop.html HTML Document That Adds the Web Page

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>drag'n'droppin</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript"
src="http://code.jquery.com/ui/1.11.2/jquery-ui.min.js"></script>
08 <script type="text/javascript" src="js/drag_n_drop.js"></script>
09 <link rel="stylesheet" type="text/css"
href="http://code.jquery.com/ui/1.11.2/themes/smoothness/jquery-ui.css">
10 <link rel="stylesheet" type="text/css" href="css/drag_n_drop.css">
11 </head>
12 <body>
13 <div id="images">
14
15
16
17 </div>
18 <div id="drop1"></div>
19 <div id="drop2"></div>

20 </body>
21 </html>

LISTING 18.5 drag_n_drop.js jQuery and jQuery UI Implements Draggable and
Droppable Elements

Click here to view code image

01 $(document).ready(function(){
02 $("#drag1, #drag2, #drag3").draggable(
03 { helper:"clone", cursor:"move", opacity:.7, zIndex:99 });
04 $("#drop1").droppable(
05 { accept:"img", tolerance:"fit"});
06 $("#drop1").on("dropover", function(e,ui){
07 $(this).effect("pulsate"); });
08 $("#drop1").on("drop", function(e,ui){
09 $(this).html($("").attr("src",
10 ui.draggable.attr("src")));
11 $(this).effect("bounce");
12 });
13 $("#drop2").droppable(
14 { accept:"img", tolerance:"intersect",
15 hoverClass:"drop-hover"});
16 $("#drop2").on("drop", function(e,ui){
17 var item = $("<div></div>");
18 item.append($("").attr("src",
19 ui.draggable.attr("src")));
20 item.append($("").html(
21 ui.draggable.attr("src")));
22 $(this).append(item);
23 });
24 });

LISTING 18.6 drag_n_drop.js CSS Code That Styles the Page

Click here to view code image

01 div {
02 display:inline-block; vertical-align:top; }
03 img {
04 width:100px; margin:0px; }
05 #images {
06 width:100px; height:300px; }
07 #drop1, #drop2 {
08 width:300px; min-height:150px; padding:3px; margin:10px;
09 border:3px ridge white; box-shadow: 5px 5px 5px #888888; }
10 #drop1 img {
11 width:300px; }
12 #drop2 div{

13 height:80px; width:280px; padding:4px;
14 border:3px ridge darkblue; margin-top:5px; }
15 #drop2 div img {
16 height:80px; margin-right:10px; }
17 #drop2 div span {
18 display:inline-block; vertical-align:top;
19 font:16px/70px arial; }
20 .drop-hover {
21 background-color:#BBDDFF; }

Resizing Elements Using the Resizable Widget
A frequent request for users is the capability to define the size and shape of images,
lists, tables, and so on. The resizable widget provides the capability to easily resize an
image with mouse controls. This allows users to resize page elements as they desire.
The resizable widget attaches several handle controls to the page elements that interact
with the mouse to resize the elements. You can also resize other elements at the same
time.
Table 18.6 describes the more common resizable options. The following shows an
example of attaching the resizable widget to an element and specifying the
aspectRatio as true:
Click here to view code image

$("#div1"). resizable ({aspectRatio:true});

TABLE 18.6 Common Resizable Widget Options

The resizable widget also provides the additional events so handlers can be attached to
the element when resizing. Table 18.7 lists the events that you can access on resizable
items. The following shows an example of adding a resizestop event to apply a
pulsate effect when a resizable item has finished being resized:
Click here to view code image

$("#resize1"). resizable ({aspectRatio:true });
$("#resize1").on("dropactivate", function(){$(this).effect("pulsate"); });

TABLE 18.7 Resizable Widget Events

Try it Yourself: Creating Resizable Elements
In this example, you implement draggable and resizable elements to allow users
to customize the position and size of items on the web page. The purpose of the
example is to illustrate the interaction between draggable and resizable.
The code for the example is in Listings 18.7, 18.8, and 18.9. Use the following
steps to create the dynamic web page:
1. In Eclipse, add the lesson18/resizable_elements.html,

lesson18/js/resizable_elements.js, and lesson18/css/resizable_elements.css
files.

2. Add the code shown in Listing 18.7 and Listing 18.9 to the HTML and CSS
files.

3. Open the resizable_elements.js file and add a .ready() function.
4. Add the following line that will add draggable to the main <div>

elements:
Click here to view code image

2 $("#resize1, #resize2, #resize3").draggable();

5. Add the following line that implements the resizable widget on
#resize1. Notice that the aspectRatio is true, so it will force the aspect
ratio to be constant when resizing. The alsoResize option is set to the
image contained in #resize1 so that the element will be resized:

Click here to view code image

03 $("#resize1").resizable(
04 {aspectRatio:true, alsoResize:"#resize1 img" });

6. Add the following line that implements resizable on #resize2. This
time, aspectRatio is not set, so you can adjust the box freely, which
distorts the image:

Click here to view code image

05 $("#resize2").resizable(
06 {alsoResize:"#resize2 img"});

7. Add the following lines that append a series of <p> elements to #resize3
and then add the resizable widget. You also resize the #list <div> when
resizing the widget to shrink the scrollable list with the box. Also, you changed
the handles option to "n,s,e,w", which allows you to resize the elements
from the top, bottom, or sides, but not the corners:

Click here to view code image

07 for(var i=0; i<100; i++){
08 $("#list").append($("<p></p>").html("Item "+i)); }
09 $("#resize3").resizable(
10 {alsoResize:"#resize3 #list", handles:"n,s,e,w"});

8. Save all three files and then open the HTML document in a web browser, as
shown in Figure 18.3. You should be able to drag and resize the elements and
test the interactions.

FIGURE 18.3 Applying jQuery UI resizing.

LISTING 18.7 resizable_elements.html HTML Document That Adds the Web
Page

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Making Resizable Elements</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript"
src="http://code.jquery.com/ui/1.11.2/jquery-ui.min.js"></script>
08 <script type="text/javascript" src="js/resizable_elements.js">
</script>
09 <link rel="stylesheet" type="text/css"
href="http://code.jquery.com/ui/1.11.2/themes/smoothness/jquery-ui.css">
10 <link rel="stylesheet" type="text/css"
href="css/resizable_elements.css">
11 </head>
12 <body>
13 <div id="resize1"></div>
14 <div id="resize2">
15 <p>Ocean View</p>
16
17 </div>
18 <div id="resize3"><div id="list"></div></div>
19 </body>
20 </html>

LISTING 18.8 resizable_elements.js jQuery and jQuery UI Implements Resizing
and Moving the Page Elements

Click here to view code image

01 $(document).ready(function(){
02 $("#resize1, #resize2, #resize3").draggable();
03 $("#resize1").resizable(
04 {aspectRatio:true, alsoResize:"#resize1 img" });
05 $("#resize2").resizable(
06 {alsoResize:"#resize2 img"});
07 for(var i=0; i<100; i++){
08 $("#list").append($("<p></p>").html("Item "+i)); }
09 $("#resize3").resizable(
10 {alsoResize:"#resize3 #list", handles:"n,s,e,w"});
11 });

LISTING 18.9 resizable_elements.css CSS Code That Styles the Page

Click here to view code image

1 img {
2 width:230px; }
3 #resize1, #resize2, #resize3 {
4 width:250px; padding:10px; display:inline-block;
5 margin:10px; vertical-align:top;
6 border:3px ridge white; box-shadow: 5px 5px 5px #888888; }
7 p {
8 margin:2px; border:1px dotted; text-align:center; }
9 #list {
10 height:200px; overflow-y:auto; }

Applying the Selectable Widget
Another frequent request for users is the capability to easily select multiple items on a
page using a bounding box. The selectable widget provides that functionality by
allowing the user to draw a box, or “lasso,” around selectable children inside the
selectable element using the mouse. Items inside the box are selected in the list.
Table 18.8 describes the more common selectable options. The following shows an
example of attaching the selectable widget to an element and specifying the
tolerance as fit:
Click here to view code image

$("#ul1"). selectable ({tolerance:"fit"});

TABLE 18.8 Common Selectable Widget Options
The selectable widget also provides the additional events so handlers can be attached to
the selectable element or its children when changing the selection. Table 18.9 lists the
events that you can access on selectable items.

TABLE 18.9 Selectable Widget Events
Each of the selectable events will pass the event object along with a ui object that will
have a value for each of the events representing the selectable element. For example, the
following code adds a selectableselected event to an element and then
accesses the selected attribute:
Click here to view code image

$("#list1").selectable();
$("#list1").on("selectableselected", function(e, ui){
ui.selected.effect("shake");
});

Note
The .ui-selecting class is appended to child elements that are
currently being selected. After a child element is selected, the .ui-
selected class will be appended. This allows you to define some basic
styles in CSS without having to add/remove classes in the selectable event
handlers.

Try it Yourself: Creating Selectable Sets
In this example, you implement selectable on a <list> and a group of
images. The purpose of the example is to give you a look at a couple of ways to
implement the selectable widget. You will get a chance to apply some of the
options and use different event handlers to interact with the selection process.
The code for the example is in Listings 18.10, 18.11, and 18.12. Use the
following steps to create the dynamic web page:
1. In Eclipse, add the lesson18/selectable_sets.html,

lesson18/js/selectable_sets.js, and lesson18/css/selectable_sets.css files.
2. Add the code shown in Listings 18.10 and Listings 18.12 to the HTML and

CSS files. Notice in Listings 18.12 that .ui-selected and .ui-
selecting classes are added for both #set1 and #set2.

3. Open the selectable_sets.js file and add a .ready() function.
4. Add the following line that will populate the #set1 list:

Click here to view code image

02 for(var i=0; i<100; i++){
03 $("#set1").append($("<p></p>").html("Item "+i)); }

5. Add the following lines to implement selectable on #set1 along with
selectablestart, selectableselecting, and
selectablestop event handlers. Notice in the selectable
selecting event handler that the ui.selecting.innerHTML value is
used to update the list of items being selected:

Click here to view code image

04 $("#set1").selectable({ filter:"p" });
05 $("#set1").on("selectablestart", function(e, ui){
06 $("span").html("Selecting "); });
07 $("#set1").on("selectableselecting", function(e, ui){
08 $("span").append(ui.selecting.innerHTML+", "); });
09 $("#set1").on("selectablestop", function(e, ui){
10 $("span").html("Selection Complete"); });

6. Add the following lines to implement selectable on #set2, which is a
<div> full of images. Inside the selectablestop event handler, you use
the .ui-selected class attribute to find the selected images. In line 12, a
highlight effect is applied to the selected images, and the
element is updated with the count of selected images:

Click here to view code image

11 $("#set2").selectable();
12 $("#set2").on("selectablestop", function(e, ui){
13 var selection = $("#set2 .ui-selected");
14 selection.effect("highlight");
15 $("span").html("Selected "+ selection.length +
16 " Photos"); });

7. Save all three files and then open the HTML document in a web browser, as
shown in Figure 18.4. You should be able to drag to select items in the list as
well as images.

FIGURE 18.4 Applying jQuery UI selecting items in a list using a bounding box.

LISTING 18.10 selectable_sets.html HTML Document That Adds the Web Page

Click here to view code image

01 <!DOCTYPE html>
02 <html>

03 <head>
04 <title>Sorting Elements</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
07 <script type="text/javascript"
src="http://code.jquery.com/ui/1.11.2/jquery-ui.min.js"></script>
08 <script type="text/javascript" src="js/selectable_sets.js">
</script>
09 <link rel="stylesheet" type="text/css"
href="http://code.jquery.com/ui/1.11.2/themes/smoothness/jquery-ui.css">
10 <link rel="stylesheet" type="text/css"
href="css/selectable_sets.css">
11 </head>
12 <body>
13 Nothing Selected

14 <div id="set1"></div>
15 <div id="set2">
16
17
18
19 </div>
20 </body>
21 </html>

LISTING 18.11 selectable_sets.js jQuery and jQuery UI Implements Item
Selection

Click here to view code image

01 $(document).ready(function(){
02 for(var i=0; i<100; i++){
03 $("#set1").append($("<p></p>").html("Item "+i)); }
04 $("#set1").selectable({ filter:"p" });
05 $("#set1").on("selectablestart", function(e, ui){
06 $("span").html("Selecting "); });
07 $("#set1").on("selectableselecting", function(e, ui){
08 $("span").append(ui.selecting.innerHTML+", "); });
09 $("#set1").on("selectablestop", function(e, ui){
10 $("span").html("Selection Complete"); });
11 $("#set2").selectable();
12 $("#set2").on("selectablestop", function(e, ui){
13 var selection = $("#set2 .ui-selected");
14 selection.effect("highlight");
15 $("span").html("Selected "+ selection.length +
16 " Photos"); });
17 });

LISTING 18.12 selectable_sets.js CSS Code That Styles the Page

Click here to view code image

01 span {
02 display:inline-block; border:1px solid;
03 font:bold 18px/26px arial;
04 width:800px; text-align:center; margin:10px;}
05 div {
06 display:inline-block; border:3px ridge white;
07 vertical-align:top; margin:10px; }
08 p {
09 border:1px dotted; margin:0px; }
10 #set1 {
11 height:300px; width:200px; overflow-y:auto;
12 text-align:center; }
13 #set1 .ui-selecting {
14 background-image: -moz-linear-gradient(top , #88BBFF, #DDEEFF);
15 background-image: -webkit-linear-gradient(top , #88BBFF, #DDEEFF);
16 background-image: -ms-linear-gradient(top , #88BBFF, #DDEEFF); }
17 #set1 .ui-selected {
18 background-color:blue; color:white; }
19 img {
20 height:90px; border:3px ridge white; margin:15px;
21 box-shadow: 5px 5px 5px #888888; opacity:.6; }
22 #set2 {
23 width:500px; padding:25px; border-radius:15px; }
24 #set2 .ui-selecting{
25 border:5px ridge green; box-shadow: 5px 5px 5px #558822; }
26 #set2 .ui-selected{
27 border:5px ridge blue; box-shadow: 5px 5px 5px #225588;
28 opacity:1; }

Sorting Elements with the Sortable Widget
One of the coolest interactions provided by jQuery UI is the sortable widget. The
sortable widget allows you to drag and reposition the order of HTML elements that are
flowing together in a list, table, or just inside a container.
The sortable widget repositions the other elements as you drag an item. You can
also link sortable containers together so that you can drag an item from one sortable
container to another.
Table 18.10 describes the more common sortable options. The following shows an
example of attaching a sortable widget to an element and specifying the
tolerance as fit:
Click here to view code image

$("#ul1").sortable({tolerance:"fit"});

TABLE 18.10 Common Sortable Widget Options

Note
To sort table rows using sortable, you need to make <tbody>
sortable, not <table>.

The sortable widget also provides the additional events so handlers can be attached
to the sortable element or its children when sorting. Table 18.11 lists the events that you
can access on selectable items.

TABLE 18.11 Sortable Widget Events

Tip
jQuery UI will add the .ui-sortable-helper class to the helper
element being sorted. You can define your own settings in the CSS for the
helper class to control the look while moving the element in the
sortable.

Each of the sortable events will pass the event object along with a ui object that
will have the following values attached to it:

 helper—jQuery object representing the helper object being dragged.
 item—jQuery object representing the actual object being sorted.
 offset—{top, left} object for the current offset.
 originalPosition—{top, left} object for the original position.
 position—{top, left} object for the current position.
 sender—Sortable object that the item is being dragged from when dragging from
one sortable to another.

For example, the following code connects #list1 to #list2 and then adds a
sortreceived event that will add a pulsate effect on both the sender and
recipient:

Click here to view code image

$("#list1").sortable({connectWith:"#list2"});
$("#list1").on("sortreceived", function(e, ui){
 ui.sender.effect("pulsate");
 $(this).effect("pulsate "); });

Try it Yourself: Implementing Sortable Elements
In this example, you implement sortable on a list and a table. There are two
lists that are connected together so you can sort from one list to the other. The
purpose of the example is to provide some practical examples of using sortable
elements along with handling sort events.
The code for the example is in Listings 18.13, 18.14, and 18.15. Use the
following steps to create the dynamic web page:
1. In Eclipse, add the lesson18/sortable_elements.html,

lesson18/js/sortable_elements.js, and lesson18/css/sortable_elements.css
files.

2. Add the code shown in Listing 18.13 and Listing 18.15 to the HTML and CSS
files. Notice on line 13 of Listing 18.15 that .ui-sortable-helper
classes are added to style elements while sorting.

3. Open the sortable_elements.js file and add a .ready() function.
4. Add the images array with image name and src locations and the
buildLists() function shown in lines 1–21 of Listing 18.14. The
buildLists() function uses the array to populate the elements in
#sorter1 and #sortTable.

5. Add the following line that makes #sorter1 sortable and connects it to
#sorter2:

Click here to view code image

24 $("#sorter1").sortable(
25 {cursor:"move", connectWith:"#sorter2"});

6. Add the following lines that implement sortable on #sorter2 and adds
the sort- receive event handler. The event handler adds a pulsate
effect on both the sender and receiver when an item is added to #sorter2
from the other list:

Click here to view code image

26 $("#sorter2").sortable(
27 {cursor:"move", connectWith:"#sorter1"});
28 $("#sorter2").on("sortreceive", function(e, ui){
29 ui.sender.effect("pulsate");

30 $(this).effect("pulsate"); });

7. Add the following code to implement sortable on the #sortTable
<tbody> element. Notice that the sort axis is restricted to the y direction.
Also the sortupdate event handler is added that makes the sorting item
pulsate when it has been moved to a new position:

Click here to view code image

31 $("#sortTable").sortable(
32 {axis:"y", cursor:"n-resize", });
33 $("#sortTable").on("sortupdate", function(e, ui){
34 ui.item.effect("pulsate"); });

8. Save all three files and then open the HTML document in a web browser, as
shown in Figure 18.5. You should be able to drag elements from the div on the
left to the one in the middle and back. You should also be able to reorder
elements in the table.

FIGURE 18.5 Applying jQuery UI selecting items in a list using a bounding box.

LISTING 18.13 sortable_elements.html HTML Document That Adds the Web
Page

Click here to view code image

01 <!DOCTYPE html>
02 <html>
03 <head>
04 <title>Sorting Things Out</title>
05 <meta charset="utf-8" />
06 <script type="text/javascript" src="https://code.jquery.com/jquery-

2.1.3.min.js"></script>
07 <script type="text/javascript"
src="http://code.jquery.com/ui/1.11.2/jquery-ui.min.js"></script>
08 <script type="text/javascript" src="js/sortable_elements.js">
</script>
09 <link rel="stylesheet" type="text/css"
href="http://code.jquery.com/ui/1.11.2/themes/smoothness/jquery-ui.css">
10 <link rel="stylesheet" type="text/css"
href="css/sortable_elements.css">
11 </head>
12 <body>
13 <div id="sorter1"></div>
14 <div id="sorter2"></div>
15 <table border=1>
16 <tbody>
17 <tr>
18 <th>Icon</th>
19 <th>Number</th>
20 <th>Name</th>
21 <th>Source</th>
22 </tr>
23 </tbody>
24 <tbody id="sortTable"></tbody>
25 </table>
26 </body>
27 </html>

LISTING 18.14 sortable_elements.js jQuery and jQuery UI Implements Sorting

Click here to view code image

01 var images = [
02 {src:"/images/lake.jpg",name:"Lake"},
03 {src:"/images/cliff.jpg",name:"Cliff"},
04 {src:"/images/flower2.jpg",name:"Violet"},
05 {src:"/images/tiger.jpg",name:"Tiger"},
06 {src:"/images/volcano.jpg",name:"Volcano"},
07 {src:"/images/flower.jpg",name:"Flower"}];
08 function buildLists(){
09 $.each(images, function(i,item){
10 var img = $("").attr("src", item.src);
11 var name = $("<p></p>").html(item.name);
12 $("#sorter1").append($("<div></div>").append(img, name));
13 var tr = $("<tr></tr>");
14 tr.append($("<td></td>").append(
15 $("").attr("src", item.src)));
16 tr.append($("<td></td>").html(i));
17 tr.append($("<td></td>").html(item.name));
18 tr.append($("<td></td>").html(item.src));
19 $("#sortTable").append(tr);
20 });
21 }

22 $(document).ready(function(){
23 buildLists();
24 $("#sorter1").sortable(
25 {cursor:"move", connectWith:"#sorter2"});
26 $("#sorter2").sortable(
27 {cursor:"move", connectWith:"#sorter1"});
28 $("#sorter2").on("sortreceive", function(e, ui){
29 ui.sender.effect("pulsate");
30 $(this).effect("pulsate"); });
31 $("#sortTable").sortable(
32 {axis:"y", cursor:"n-resize", });
33 $("#sortTable").on("sortupdate", function(e, ui){
34 ui.item.effect("pulsate"); });
35 });

LISTING 18.15 sortable_elements.css CSS Code That Styles the Page

Click here to view code image

01 #sorter1, #sorter2, table {
02 display:inline-block; cursor:move;
03 width:200px; padding:10px; vertical-align:top;
04 margin:15px; height:auto; box-shadow: 5px 5px 5px #888888;
05 border:3px ridge white; }
06 #sorter1 div, #sorter2 div {
07 width:180px; display:inline-block; height:50px;
08 padding:5px; margin:5px; border:1px dotted;
09 vertical-align:middle; }
10 p {
11 float:right; margin:0px; display:inline-block; height:50px;
12 font:bold 18px/50px arial; vertical-align:top;
13 text-align:center; }
14 img {
15 height:50px; }
16 table {
17 width:auto; padding:5px; }
18 tr {
19 background-color:white; }
20 td {
21 min-width:80px; }
22 #sortTable img {
23 height:20px; }
24 .ui-sortable-helper {
25 background-color:blue; color:white; opacity:.5; }
26 table:hover{
27 cursor:move}

Summary
Using interaction widgets, you can easily provide some advanced features to your web

pages. In this lesson, you created some drag-and-drop elements by making some
elements draggable and others droppable using jQuery UI draggable and droppable
widgets.
Adding the selectable widget allowed you to draw a bounding box or lasso around
multiple items. You used the resizable widget to make a container such as a <div>
resizable. You also resized the content inside.
Finally, you learned how to implement the sortable widget to sort items in a <div> and
<tbody>. Elements from sortable containers can also be dragged from one container
to another.

Q&A
Q. Is it possible to create a custom interaction widget?
A. Yes. Using the jQuery UI jquery.widget factory, you can create a custom

widget and provide whatever functionality in the prototype that you need.
Q. Is there a way to prevent mouse events from occurring on elements inside

an item extended with a jQuery UI widget?
A. Yes. The following code cancels mouse events for items in an element
#myList that have class="notSelectable":

Click here to view code image

$("#myList").mouse({ cancel:".notSelectable"});

Workshop
The workshop consists of a set of questions and answers designed to solidify your
understanding of the material covered in this lesson. Try to answer the questions before
looking at the answers.

Quiz
1. When making an item draggable, what option should you use to keep the original

in place while dragging?
2. What droppable event will be triggered when a draggable item is ready to be

dropped in it?
3. True or false: It is not possible to keep a fixed ratio when using the resizeable

widget on an image.
4. Is there a way to limit what items are selected by the selectable widget?

Quiz Answers

1. Set helper to "clone" or another DOM object.
2. dropover
3. False. You can set the aspectRatio option to set a fixed ratio.
4. Yes. Use the filter option.

Exercises
1. Open the code in Listings 18.7, 18.8, and 18.9 and add a resize handler for the
#resize2 handler. Change the font-size attribute based on the width and
height the element is resized to.

2. Open the code in Listings 18.13, 18.14, and 18.15 and modify the #sortTable
element so that it connects with #sorter2. You will need to remove the axis
restriction and change the width of #sort2 to handle the additional width.

Lesson 19. Using jQuery UI Widgets to Add Rich
Interactions to Web Pages

What You’ll Learn in This Lesson:
 Adding autocomplete, slider, and spinner elements
 How to add a datepicker calendar to your forms
 Ways to stylize dialogs and buttons
 Implementing tooltips
 Organizing your web pages with custom menus and tabbed panels
 How to apply status bars to your work flow

jQuery UI provides a wide array of prebuilt widgets that provide extended functionality
to HTML elements. These widgets provide functionality that makes forms and other
input controls much more intuitive and easy to use, such as a calendar view for choosing
dates and expandable menus.
This lesson introduces you to each of those built-in widgets to get you started with them.
The purpose of this lesson is an introduction so that you understand what widgets are
available and how to implement them into your web pages. The examples are pretty
basic, so you should also look at the docs at the jQuery UI site for more information
about specific widgets that you might like to use:
http://api.jqueryui.com/category/widgets/.
No “Try It Yourself” sections are included this lesson because the examples are basic
and easy to follow. The code for each of the listings and the supporting images can be
found at the book’s website at code/lesson19.

Reviewing Widgets
Before you get started, this section reviews how options and attribute values are
accessed on widget elements, because it is a little different than on normal jQuery
objects.
When you are creating the widget, options are specified in the object passed to the
constructor. For example, the following code sets the min and max options for a slider
widget:
Click here to view code image

$("#mySlider").slider({min:2, max:10});

To access those options later, you need to specify "options" as a parameter to the
.slider() call. For example, the following code sets and then gets the max option:

http://api.jqueryui.com/category/widgets/

Click here to view code image

var slider = $("#mySlider").slider({min:2, max:10});
slider.slider("option", "max", 100);
var currentMax = slider.slider("option", "max");

Attribute values for the widgets are accessed in a similar way. For example, the
following code gets and then sets the value of the value attribute on a slider:
Click here to view code image

var value = $("#mySlider").slider("value");
$("#mySlider").slider("value", value+5);

In fact, value and options are methods on the slider widget that get called when
passed in as the first argument.

Adding an Expandable Accordion Element
The accordion widget combines pairs of headers and content into an expandable
accordion view. The accordion widget is applied to a container element, and all the
headers are identified. The header will become a tab and the content in between the
headers will be attached to a separate <div> element that is expandable/collapsible.
The code in Listing 19.1 creates an accordion view with an image as the content in each
tab. The visual can be seen in Figure 19.1. The following options are part of the
example:

 header—Specifies a selector to use when determining the header elements.
 collapsible—Boolean. If true, all content in the accordion can be collapsed.

FIGURE 19.1 Simple accordion view.

LISTING 19.1 widgets_accordian.html jQuery, CSS, and HTML to Implement the
Accordion

Click here to view code image

...jQuery...
11 $(window).load(function(){
12 $("#accordion").accordion(
13 {header:"p", collapsable:true});
14 });
...CSS...
17 div { width:300px; }
18 img { width:300px; }
...HTML...
21 <div id="accordion">
22 <p>Fort</p><div>
23 </div>
24 <p>Bison</p><div>
25 </div>
26 <p>Sunset</p><div>
27 </div>
28 <p>tiger</p><div>
29 </div>
30 </div>

Implementing Autocomplete in Form Elements

The autocomplete widget gets attached to text input elements. As the user types into the
text input, suggestions from a list are displayed. This is especially helpful in
circumstances where you have a finite set of possibilities that can be typed in and you
want to make sure the correct spelling is used.
The code in Listing 19.2 creates a basic autocomplete input to specify the day of the
week. The visual can be seen in Figure 19.2. The set of days to autocomplete are added
by setting the source attribute to an array of day names in line 15.

FIGURE 19.2 Autocompleting typing in a day of the week.

LISTING 19.2 widgets_autocomplete.html jQuery, CSS, and HTML to Implement
the Autocomplete Field

Click here to view code image

...jQuery...
11 function dateChanged(dateStr, Object){
12 $("span").html("Updated to" + dateStr); }
13 $(document).ready(function(){
14 $("#autocomplete").autocomplete({
15 source: ["Monday", "Tuesday", "Wednesday",
16 "Thursday", "Friday"]
17 });
18 });
...CSS...
21 input {
22 border:2px ridge steelblue; border-radius:5px;
23 padding:3px; }
...HTML...
26 <label for="autocomplete">Day of Week: </label>
27 <input id="autocomplete">

Applying jQuery UI Buttons to Form Controls
A great feature of jQuery UI is the work that has been done to stylize buttons. Let’s face

it, the HTML button styles are outdated and ugly. Using jQueryUI, you can quickly
stylize button, check box, and radio elements.
To stylize a single item, all you need to do is call .button(options) on the jQuery
object that represents it. To stylize a set of radios or check boxes, you call
.buttonset().
The code in Listing 19.3 illustrates styling HTML elements as jQuery UI buttons. Notice
in line 12, the icons option is set to "ui-icon-gear", which is one of the icons
included with jQuery UI download. Also, the text option is set to true. If this option
is false, only the icon would be displayed. The visual can be seen in Figure 19.3.

FIGURE 19.3 Styling form elements as jQuery UI buttons.

LISTING 19.3 widgets_controls.html jQuery, CSS, and HTML to Implement the
Autocomplete Field

Click here to view code image

...jQuery...
11 $(window).ready(function(){
12 $("#button1").button(
13 {icons: {primary: "ui-icon-gear"},text: true});
14 $("#check").button();
15 $("#format").buttonset();
16 $("#radio").buttonset();
17 });
...CSS...
20 div { margin:15px; }
...HTML...

23 <div>
24 <button id="button1">Configure</button>
25 </div>
26 <div>
27 <input type="checkbox" id="check" />
28 <label for="check">Toggle</label>
29 </div>
30 <div id="format">
31 <input type="checkbox" id="check1" />
32 <label for="check1">B</label>
33 <input type="checkbox" id="check2" />
34 <label for="check2">I</label>
35 <input type="checkbox" id="check3" />
36 <label for="check3">U</label>
37 </div>
38 <div id="radio">
39 <input type="radio" id="radio1" name="radio" />
40 <label for="radio1">option 1</label>
41 <input type="radio" id="radio2" name="radio" />
42 <label for="radio2">option 2</label>
43 <input type="radio" id="radio3" name="radio" />
44 <label for="radio3">option 3</label>
45 </div>

Creating a Calendar Input
The datepicker widget provided with jQuery enables you to implement a calendar
interface that allows users to select a specific day using a simple click of the mouse.
This can save a lot of problems when users input dates incorrectly because they are
typing them by hand.
The datepicker widget is attached to a text, date, or datetime <input>
element. When the user clicks the <input>, the calendar is displayed. You also add an
icon image to launch the datepicker.
The code in Listing 19.4 creates a date with an image icon. The visual can be seen in
Figure 19.4. Settings for the following illustrate some of the available options:

 onSelect—Specifies a function that will be called each time a new date is
selected.
 showOn—This is set to “button” so that the datepicker will be launched when
the button icon is clicked.
 buttonImage—Specifies the location of the image file to use.
 buttonImageOnly—When true, the datepicker is launched only when the
button icon is clicked and not the <input>.
 numberOfMonths—Specifies the number of months to display.

 showButtonPanel—When true, the Today and Done buttons are displayed on
the bottom of the datepicker.
 dateFormat—String that describes the format that will be placed in the
<input> field.

FIGURE 19.4 Adding a datepicker to a date input.

LISTING 19.4 widgets_calendar.html jQuery, CSS, and HTML to Implement the
Datepicker Widget

Click here to view code image

...jQuery...
11 function dateChanged(dateStr, Object){
12 $("span").html("Updated to" + dateStr); }
13 $(document).ready(function(){
14 $("#month").datepicker({
15 onSelect:dateChanged,
16 showOn: "button",
17 buttonImage: "/images/calendar32.png",
18 buttonImageOnly: true,
19 numberOfMonths:2,
20 showButtonPanel:true,
21 dateFormat: "yy-mm-dd"

22 });
23 });
...CSS...
26 input { border:2px ridge steelblue; border-radius:3px; }
...HTML...
29 <label>Start Date: </label>
30 <input type="text" id="month"></input>
31

Generating Stylized Dialogs with jQuery UI
The dialog widget is a very useful inclusion to jQuery UI. You can easily get rid of the
plain dialogs provided in JavaScript and replace them with dialogs that have styled
attributes and even forms.
The code in Listing 19.5 creates a jQuery UI dialog that includes an image, icon, button,
and some stylized text. The visual can be seen in Figure 19.5. The following options are
part of the example:

 modal—Boolean. When true, other items on the page are disabled until the
dialog returns.
 buttons—This is an object where the property key specifies the button name as
well as the text displayed in the button. The property value specifies a function
that will be called when that button is clicked. Notice that in line 13, the
buttons property is used to specify a button named Sweet that executes a
function that closes the dialog.

FIGURE 19.5 Stylized jQuery UI dialog.

LISTING 19.5 widgets_dialogs.html jQuery, CSS, and HTML to Implement the
Dialog

Click here to view code image

...jQuery...
11 $(document).ready(function(){
12 $("#dialog").dialog({ modal: true,
13 buttons: { Sweet: function() {
14 $(this).dialog("close"); }}});
15 });
...CSS...
18 img { height:60px; float:left; }
...HTML...
21 <div id="dialog" title="Upload Successful">
22 <p>
23
24
25 Image Uploaded Successfully.
26 </p>
27 <p>You are currently using

28 32% of your storage space.</p>

29 </div>

Implementing Stylized Menus
One of the most used jQuery UI widgets is the menu widget. The menu widget enables
you to turn an element tree into an expanding menu. Typically, menus are created by
using cascading sets of / elements with an <a> element that defines the link
behavior and menu text.

Tip
You can customize the element tags that are used to build the element using
the menus option; for example, menus:"div.menuItem".

The code in Listing 19.6 creates a jQuery UI menu from a set of list items. Notice in the
HTML that some of the fields include a that has class="ui-icon
ui-icon-{type}". These items include the jQuery UI icon specified along with the
menu text.
The selected item is displayed in the <p> element to show how the selection handler
works using the menuselect event handler defined in line 14. Also, the width of the
menu is defined in the CSS code on line 20 by setting the width value in the .ui-
menu class. The visual can be seen in Figure 19.6.

FIGURE 19.6 Stylized jQuery menu.

LISTING 19.6 widgets_menus.html jQuery, CSS, and HTML to Implement the
Menus

Click here to view code image

...jQuery...
11 $(document).ready(function(){
12 $("#menu").menu();
13 $("#menu").on("menuselect", function(e, ui){
14 $("p").html("Selected " +
15 ui.item.children("a:first").html());
16 });
17 });
...CSS...
20 .ui-menu { width: 200px; }
21 p { box-shadow: 5px 5px 5px #888888;
22 border:3px ridge steelblue; color:teal;
23 display:inline-block; height:80px; width:100px; }
...HTML...
26 <ul id="menu">
27 Open
28 Recent

29 Some File
30 Another File
31
32 Save
33 <li class="ui-state-disabled">
34
35 Print...
36 Slide Show
37
38
39 Prev
40
41
42
43 Stop
44
45
46
47 Play
48
49
50
51 Next
52
53
54
55 <p></p>

Creating Progress Bars
The progress bar widget allows you to create some very simple-to-implement progress
bars. The progress bar is controlled by changing the value property that ranges from 0
to 100. The progress is represented by an element with a class .ui-progressbar-
value.
The code in Listing 19.7 provides an example of implementing a progress bar. The bar
is updated in the inc() function, which illustrates getting and setting the value of the
progress bar. setTimeout() is used for time delay. The visual can be seen in Figure
19.7.

FIGURE 19.7 Progress bar being updated by setTimeout().

LISTING 19.7 widgets_progress_bars.html jQuery, CSS, and HTML to Implement
the Progress Bar

Click here to view code image

...jQuery...
11 function inc(){
12 var value = $("#progressbar").progressbar("value") + 5;
13 if (value <= 100){
14 $("p").html("Progress: " + value + "%");
15 $("#progressbar").progressbar("value", value);
16 setTimeout(inc, 100);
17 }
18 }
19 $(document).ready(function(){
20 $("#progressbar").progressbar({ value: 0});
21 inc();
22 });
...CSS...
25 #progressbar {
26 box-shadow: 5px 5px 5px #888888; border:2px ridge;
27 display:inline-block; height:20px; width:300px; }
28 #progressbar .ui-progressbar-value{
29 background-image: -moz-linear-gradient(top, steelblue, skyblue);
30 background-image: -webkit-linear-gradient(top, steelblue,
skyblue);
31 background-image: -ms-linear-gradient(top , steelblue, skyblue);
}
...HTML...
34 <p></p>
35 <div id="progressbar"></div>

Note
The progressbar widget is often used in conjunction with the jQuery
Ajax beforeSend() function to display the progress of a request.

Implementing Slider Bars
The slider widget allows you to create slider controls that adjust a value by dragging
the mouse. The slider has two components: the slide and the handle. The slide is styled
by the .ui-slider-range class, and the handle is styled by the .ui-slider-
handle class.

Tip
You can define both a min and max handle that allows you to use a single
slider control to define a range instead of a single value.

The code in Listing 19.8 provides an example of implementing a set of sliders that are
used to adjust the background color of another element. The slider is applied to the
<div> elements in lines 22–29 and sets the following options:

 orientation—Can be set to "horizontal" or "vertical".
 range—Can be set to true, "min", or "max". Used to define the range.
"min" goes from the slider min to one handle on the slider, and "max" goes
from one handle on the slider to the slider max.
 max—Specifies the maximum value.
 value—Specifies the current value.
 slide—Event handler to call when the slide moves.
 change—Event handler to call when the slide value changes.

Also pay attention to the class settings in lines 41–46 of the CSS. Those alter the
appearance of the slider and handler. The visual can be seen in Figure 19.8.

FIGURE 19.8 Sliders used to choose a color based on the RGB value.

LISTING 19.8 widgets_slider_bars.html jQuery, CSS, and HTML to Implement
the Sliders

Click here to view code image

...jQuery...
11 function cValue(selector){
12 var v = $(selector).slider("value").toString(16);
13 if (v.length ===1) { v = "0" + v;}
14 return v;
15 }
16 function refreshSwatch() {
17 $("#mix").css("background-color", "#" + cValue("#red") +
18 cValue("#green") + cValue("#blue"));
19 $("#mix").html($("#mix").css("background-color"));
20 }
21 $(document).ready(function(){
22 $("#red, #green, #blue").slider({
23 orientation: "horizontal",
24 range: "min",
25 max: 255,
26 value: 127,
27 slide: refreshSwatch,
28 change: refreshSwatch
29 });
30 $("#red").slider("value", 128);
31 $("#green").slider("value", 128);
32 $("#blue").slider("value", 128);
33 });

...CSS...
36 #mix {
37 width:160px; height:100px; text-align:center;
38 font:18px/100px arial; }
39 #red, #green, #blue {
40 float: left; clear: left; width: 150px; margin: 15px; }
41 #red .ui-slider-range { background:red; }
42 #red .ui-slider-handle { border-color:red; }
43 #green .ui-slider-range { background:green; }
44 #green .ui-slider-handle { border-color:green; }
45 #blue .ui-slider-range { background:blue; }
46 #blue .ui-slider-handle { border-color:blue; }
...HTML...
49 <div id="mix"></div>
50 <div id="red"></div>
51 <div id="green"></div>
52 <div id="blue"></div>

Adding a Value Spinner Element
The spinner widget allows you to create a value input that has up and down arrows that
enable you to increment/decrement the value with the mouse instead of typing in
numbers.
The code in Listing 19.9 provides an example of implementing basic spinner input with
3 inputs: one that counts by .5, one that counts by 1s, and one that counts by 10s. The
step value determines the amount each click of the mouse increments or decrements the
input value. The visual can be seen in Figure 19.9.

FIGURE 19.9 Simple spinner input.

LISTING 19.9 widgets_spinner.html jQuery, CSS, and HTML to Implement the
Spinner

Click here to view code image

...jQuery...

11 $(document).ready(function(){
12 $("#spin1").spinner({step: 0.5});
13 $("#spin2").spinner({step: 1});
14 $("#spin3").spinner({step: 10});
15 });
...CSS...
18 label { display:inline-block; width:100px; }
...HTML...
21 <p>
22 <label for="spin1">Count by .5s:</label>
23 <input id="spin1" name="value" />

24 <label for="spin2">Count by 1s:</label>
25 <input id="spin2" name="value" />

26 <label for="spin3">Count by 10s:</label>
27 <input id="spin3" name="value" />

28 </p>

Creating Tabbed Panels
The tabs widget allows you to create a series of tabbed panels. This provides the
capability to easily break chunks of content up and yet have it easily accessible. Each
tab represents a panel that contains content that can be revealed by activating the tab.
Tabs are a list of elements containing an <a>. The tabs widget links the tab with content
using the href value of an <a> element. Tabs can be activated by clicking them, or
you can set options to have the tabs enabled on mouseover or some other event.
The code in Listing 19.10 provides an example of three tabs: one with image content,
one with text, and another with a list. The tabs are defined with the following options.
The visual can be seen in Figure 19.10:

 event—Specifies what event on the tab element will cause the tab to become
active; for example, click or mouseover.
 collapsible—Boolean. Specifies whether the active tab can be collapsed by
clicking on it or by setting active to false.
 active—When set to false, the active tab is collapsed. Requires
collapsible to be true.

FIGURE 19.10 Three tabs with different content.

Note
In the example, the tabs link to locations on the page using id values. You
can also specify links external to the web page or even retrieve data from
the server via AJAX to populate the panel content.

LISTING 19.10 widgets_tabs.html jQuery, CSS, and HTML to Implement the
Tabbed Panel

Click here to view code image

...jQuery...

11 $(document).ready(function(){
12 $("#tabs").tabs(
13 { event: "mouseover", collapsible: true,
14 active:"false"});
15 });
...CSS...
18 * { vertical-align:top; }
19 img { height:120px; margin:5px; }
20 .mini {height:23px; margin:0px; }
21 #tabs { width:450px; }
22 p { text-align:justify; }
...HTML...
25 <div id="tabs">
26
27
28
29 Images
30
31 Content
32 Widgets
33
34 <div id="tabs1">
35
36
37
38
39 </div>
40 <div id="tabs2">
41 <h3>jQuery UI Widgets</h3>
42 <p><i>jQuery UI</i>
43 provides a wide array of pre-built widgets that
44 provide extended functionality to HTML elements.
45 These widgets provide functionality that make forms
46 and other input controls more intuitive
47 and easy to use. For example a calendar
48 view for choosing dates and expandable menus.
49 </p>
50 </div>
51 <div id="tabs3">
52
53 Accordion
54 Menu
55 Button
56 Slider
57 Progress Bar
58 Tabs
59
60 </div>
61 </div>

Adding Tooltips to Page Elements
The tooltips widget allows you to easily add tooltips to form input, images, and just

about any other page element. To implement tooltips, apply .tooltip(options) to
the document or other container. Inside the options, specify the items that should include
tooltips and then the tooltip content handler.
As the mouse hovers over an item supported by the tooltip, the tooltip message is
displayed. The code in Listing 19.11 provides an example of implementing tooltips on
<input> and elements. The visual can be seen in Figure 19.11:

 items—Specifies the selector used to determine whether the page element
supports tooltips.
 content—Tooltip handler function called when a supported element is hovered
over. The function should return the content to be displayed. Notice that for the
image, a mini version is displayed in the tooltip.
 position—Specifies the position to place the tooltip; for example:

Click here to view code image

position: {my: "left top+15", at: "left bottom", collision: "flipfit" }

FIGURE 19.11 Tooltips are displayed when page elements are hovered over.

LISTING 19.11 widgets_tooltips.html jQuery, CSS, and HTML to Implement the
Tabbed Panel

Click here to view code image

...jQuery...
11 $(document).ready(function(){
12 $(document).tooltip({
13 items: "img, input",
14 position: { my: "left+15 top", at: "left bottom",
15 collision: "flipfit" },
16 content: function() {
17 var obj = $(this);
18 if (obj.is("input")) { return obj.attr("title"); }
19 if (obj.is("img")) {

20 var img = $("").addClass("mini")
21 .attr("src", obj.attr("src"));
22 var span = $("")
23 .html(obj.attr("alt"));
24 return $("<div></div>").append(img, span); }
25 }});
26 });
...CSS...
29 input {
30 border:2px ridge blue; border-radius:5px; padding:3px; }
31 img { height:200px; margin:15px; }
32 .mini {height:30px; }
...HTML...
35 <label for="size">Who are You?</label>
36 <input id="size" title="Nosce Te Ipsum (Know Thyself)" />

37

Creating Custom Widgets
Creating custom widgets is a fairly simple process. The $.widget() factory needs a
name and then the prototype object shown next. The widget factory will handle setting
everything up so that the widget can be applied to page elements.
The code in Listing 19.12 shows a basic outline for a custom widget. To create the
widget, follow these steps:

1. Replace “custom.mywidget” with your own name.
2. Add the options with default values.
3. Add any additional code in _create(), _refresh(), _destroy(),
_setOptions(), and _setOption().

4. Add additional attributes or methods to the prototype object to implement the
widget.

LISTING 19.12 widgets_custom.html jQuery Code Outline to Implement a Custom
Widget

Click here to view code image

01 $.widget("custom.mywidget", {
02 options : {
03 // custom options
04 },
05 _create: function() {
06 //creation code
07 },
08 _refresh: function() {
09 //refresh code called when element refreshed
10 },

11 _destroy: function() {
12 //cleanup code called when widget is destroyed
13 },
14 _setOptions: function() {
15 // _super and _superApply handle keeping the right this-context
16 this._superApply(arguments);
17 this._refresh();
18 },
19 _setOption: function(key, value) {
20 // set individual option value override code
21 this._super(key, value);
22 }
23 });

Summary
jQuery UI includes a large set of built-in widgets that provide some much-desired
functionality and styling left out of conventional HTML elements. In this lesson, you saw
the widgets and how to implement them on pages, including autocomplete elements,
buttons, datepicker, dialog, menu, progress bar, sliders, spinners, tabs, and tooltips.

Q&A
Q. What is the Globalize plug-in and why would I want to use it?
A. The Globalize plug-in is a project that simplifies the process of

internationalizing your web pages to match currency, time, and other value
formatting that varies from locale to locale. If you plan to have a website with
elements that need localization, it is a good idea to at least check it out.

Workshop
The workshop consists of a set of questions and answers designed to solidify your
understanding of the material covered in this lesson. Try to answer the questions before
looking at the answers.

Quiz
1. How do you get the value of a slider from element #mySlider?
2. True or false: Datepicker widgets must be attached to an <input> element.
3. How do you attach an event handler to a button, a check box, or a radio stylized

by jQuery UI?
4. How do you populate the possible values for an autocomplete element?

Quiz Answers

1. $("#mySlider").slider("value");
2. False.
3. The normal way you would with jQuery or JavaScript.
4. Set the value of the source option to a JavaScript array of values.

Exercises
1. Open the code in Listing 19.5 and add an Input element to the dialog box. Then

add a second button that gets that value and displays it on the web page
somewhere.

2. Open the code in Listing 19.10 and add a new tab called Sliders. Then have it
link to the widgets_slider_bars.html file that contains the sliders example.

Part V: Building Web Applications with
AngularJS

Lesson 20. Getting Started with AngularJS

What You’ll Learn in This Lesson:
 The components of an AngularJS application
 The stages of the AngularJS life cycle
 How to bootstrap AngularJS in your webpages
 What functionality is provided in the AngularJS Global APIs
 How to build an AngularJS application

AngularJS is a JavaScript framework that provides a very structured method of creating
websites and web applications. Essentially, AngularJS is a JavaScript library that is
built on a lightweight version of jQuery—a combination that enables AngularJS to
provide the best of JavaScript and jQuery and at the same time enforce a structured
Model View Controller (MVC) framework.
AngularJS is a perfect client-side library for most web applications because it provides
a very clean and structured approach. With a clean, structured front end, you will find
that it is much easier to implement clean, well-structured server-side logic.
This lesson introduces you to AngularJS and the major components involved in an
AngularJS application. Understanding these components is critical before you try to
implement an AngularJS application, because the framework is different from more
traditional JavaScript web application programming.
After you have a good grasp of the components and the life cycle of an AngularJS
application, you’ll learn how to construct a basic AngularJS application, step-by-step.
This should prepare you to jump into the following lessons, which provide much more
detail on implementing AngularJS.

Note
The examples in this book are based on AngularJS 1.x. Google has
announced AngularJS 2 and given us some sneak peeks at what it will be
like (although it seems like a release is still a long way out). AngularJS 2
will be a major upgrade from AngularJS 1. It appears the biggest changes
that will affect developers will be around custom directives, which are the
most complex part of AngularJS 1.x. The question is: Should I still learn
AngularJS 1.x? The simple answer is yes. From what we can tell, the
majority of the knowledge from AngularJS 1.x will translate to AngularJS 2
as the core concepts of code structure and separation of concern are the
same. In the meantime, a good way to prep for AngularJS 2 is to keep your
code as modularized as possible. Google has indicated that you will be

able to run AngularJS 1.x wrapped inside AngularJS 2, and having
modularized code will allow you to update a piece at a time.

Why AngularJS?
AngularJS is an MVC framework that is built on top of JavaScript and a lightweight
version of jQuery. MVC frameworks separate the business logic in code from the view
and the model. Without this separation, JavaScript-based web applications can quickly
get out of hand when you are trying to manage all three together and a complex maze of
functions.
Everything that AngularJS provides, you could implement yourself by using JavaScript
and jQuery, or you could even try using another MVC JavaScript framework. However,
AngularJS has a lot of functionality, and the design of the AngularJS framework makes it
easy to implement MVC in the correct manner. The following are some of the reasons to
choose AngularJS.
The AngularJS framework forces correct implementation of MVC and also makes it
easy to implement MVC correctly:

 The declarative style of AngularJS HTML templates makes the intent of the
HTML more intuitive and makes the HTML easier to maintain.
 The model portion of AngularJS is basic JavaScript objects, making it easy to
manipulate, access, and implement.
 AngularJS uses a declarative approach to extend the functionality of HTML by
having a direct link between the HTML declaratives and the JavaScript
functionality behind them.
 AngularJS provides a very simple and flexible filter interface that enables you to
easily format data as it passes from the model to the view.
 AngularJS applications tend to use a fraction of the code that traditional
JavaScript applications use because you need to focus only on the logic and not
all the little details, such as data binding.
 AngularJS requires a lot less Document Object Model (DOM) manipulation than
traditional methods do and guides you to put the manipulations in the correct
locations in applications. It is easier to design applications based on presenting
data than on DOM manipulation.
 AngularJS provides several built-in services and enables you to implement your
own in a structured and reusable way. This makes your code more maintainable
and easier to test.
 Due to the clean separation of responsibilities in the AngularJS framework, it is
easy to test your applications and even develop them using a test-driven approach.

Understanding AngularJS
AngularJS provides a very structured framework based on a Model View Controller
(MVC) model. This framework enables you to build structured applications that are
robust and easily understood and maintained. If you are not familiar with the MVC
model, the following paragraph provides a quick synopsis to help you understand the
basics. It is by no means complete and is intended only to give you enough reference to
see how AngularJS applies MVC principles. The Wikipedia website is a great resource
if you want additional information about MVC in general.
In MVC, there are three components: the Model is the data source, View is the rendered
web page, and the Controller handles the interaction between the two. The idea is that
when the model changes, the view is automatically updated with new data. As the user
interacts with the view, the controller handles those interactions, which usually ends up
in updating the model which then updates the view again.
A major purpose of MVC is to separate out responsibilities in your JavaScript code to
keep it clean and easy to follow. AngularJS is one of the best MVC frameworks
available because it makes it very easy to implement MVC
To get started with AngularJS, you first need to understand the various components that
you will be implementing and how they interact with each other. The following sections
discuss the various components involved in an AngularJS application, their purpose,
and what each is responsible for.

Modules
AngularJS introduces the concept of a module representing components in an
application. The module provides a namespace that enables you to reference directives,
scopes, and other components based on model name. This makes it easier to package
and reuse parts of an application.
Each view or web page in AngularJS has a single module assigned to it via the ng-
app directive. (Directives are discussed later in this lesson.) However, you can add
other modules to the main module as dependencies, which provides a very structured
and componentized application. The main AngularJS module acts similar to the root
namespace in C# and Java.

Scopes and the Data Model
AngularJS introduces the concept of a scope. A scope is just a JavaScript representation
of data used to populate a view presented on a web page. The data can come from any
source, such as a database, a remote web service, or the client-side AngularJS code, or
it can be dynamically generated by the web server.
A great feature of scopes is that they are just plain JavaScript objects, which means you

can manipulate them as needed in your AngularJS code with ease. Also, you can nest
scopes to organize your data to match the context that they are being used in.

Views with Templates and Directives
HTML web pages are based on a DOM in which each HTML element is represented by
a DOM object. A web browser reads the properties of a DOM object and knows how to
render the HTML element on the web page, based on the DOM object’s properties.
Most dynamic web applications use direct JavaScript or a JavaScript-based library
such as jQuery to manipulate a DOM object to change the behavior and appearance of
the rendered HTML element in the user view.
AngularJS introduces a new concept of combining templates that contain directives that
extend the HTML tags and attributes directly with JavaScript code in the background to
extend the capability of HTML. Directives have two parts. The first part is extra
attributes, elements, and CSS classes that are added to an HTML template. The second
part is JavaScript code that extends the normal behavior of the DOM.
The advantage of using directives is that the intended logic for visual elements is
indicated by the HTML template so that it is easy to follow and is not hidden within a
mass of JavaScript code. One of the best features of AngularJS is that the built-in
AngularJS directives handle most of the necessary DOM manipulation functionality that
you need to bind the data in the scope directly to the HTML elements in the view.
You can also create your own AngularJS directives to implement any necessary custom
functionality you need in a web application. In fact, you should use your own custom
directives to do any direct DOM manipulation that a web application needs.

Expressions
A great feature of AngularJS is the capability to add expressions inside the HTML
template. AngularJS evaluates expressions and then dynamically adds the result to a
web page. Because expressions are linked to the scope, you can have an expression that
utilizes values in the scope, and as the model changes, so does the value of the
expression.

Controllers
AngularJS completes the MVC framework through the implementation of controllers.
Controllers augment the scope by setting up the initial state or values in the scope and
by adding behavior to the scope. For example, you can add a function that sums values
in a scope to provide a total so that if the model data behind the scope changes, the total
value always changes.
You add controllers to HTML elements by using a directive and then implement them as

JavaScript code in the background.

Data Binding
One of the best features of AngularJS is the built-in data binding. Data binding is the
process of linking data from the model with what is displayed in a web page. AngularJS
provides a very clean interface to link the model data to elements in a web page.
In AngularJS, data binding is a two-way process: When data is changed on a web page,
the model is updated, and when data is changed in the model, the web page is
automatically updated. This way, the model is always the only source for data
represented to the user, and the view is a projection of the model.

Services
Services are the major workhorses in the AngularJS environment. Services are
singleton objects that provide functionality for a web app. For example, a common task
of web applications is to perform AJAX requests to a web server. AngularJS provides
an HTTP service that houses all the functionality to access a web server.
The service functionality is completely independent of context or state, so it can be
easily consumed from the components of an application. AngularJS provides a lot of
built-in service components for basic uses, such as HTTP requests, logging, parsing,
and animation. You can also create your own services and reuse them throughout your
code.

Dependency Injection
Dependency injection is a process in which a code component defines dependencies on
other components. When the code is initialized, the dependent component is made
available for access within the component. AngularJS applications make heavy use of
dependency injection.
A common use for dependency injection is consuming services. For example, if you are
defining a module that requires access to the web server via HTTP requests, you can
inject the HTTP service into the module, and the functionality is available in the module
code. In addition, one AngularJS module consumes the functionality of another via
dependency.

Compiler
AngularJS provides an HTML compiler that will discover directives in the AngularJS
template and use the JavaScript directive code to build out extended HTML elements.
The AngularJS compiler is loaded into the browser when the AngularJS library is
bootstrapped. When loaded, the compiler will search through the HTML DOM in the

browser and link in any back-end JavaScript code to the HTML elements, and then the
final application view will be rendered to the user.

An Overview of the AngularJS Life Cycle
Now that you understand the components involved in an AngularJS application, you
need to understand what happens during the life cycle, which has three phases:
bootstrap, compilation, and runtime. Understanding the life cycle of an AngularJS
application makes it easier to understand how to design and implement your code.
The three phases of the life cycle of an AngularJS application happen each time a web
page is loaded in the browser. The following sections describe these phases of an
AngularJS application.

The Bootstrap Phase
The first phase of the AngularJS life cycle is the bootstrap phase, which occurs when
the AngularJS JavaScript library is downloaded to the browser. AngularJS initializes
its own necessary components and then initializes your module, which the ng-app
directive points to. The module is loaded, and any dependencies are injected into your
module and made available to code within the module.

The Compilation Phase
The second phase of the AngularJS life cycle is the HTML compilation stage. Initially
when a web page is loaded, a static form of the DOM is loaded in the browser. During
the compilation phase, the static DOM is replaced with a dynamic DOM that represents
the AngularJS view.
This phase involves two parts: traversing the static DOM and collecting all the
directives, and then linking the directives to the appropriate JavaScript functionality in
the AngularJS built-in library or custom directive code. The directives are combined
with a scope to produce the dynamic or live view.

The Runtime Data Binding Phase
The final phase of the AngularJS application is the runtime phase, which exists until the
user reloads or navigates away from a web page. At that point, any changes in the scope
are reflected in the view, and any changes in the view are directly updated in the scope,
making the scope the single source of data for the view.
AngularJS behaves differently from traditional methods of binding data. Traditional
methods combine a template with data received from the engine and then manipulate the
DOM each time the data changes. AngularJS compiles the DOM only once and then
links the compiled template as necessary, making it much more efficient than traditional

methods.

Separation of Responsibilities
An extremely important part of designing AngularJS applications is the separation of
responsibilities. The whole reason you choose a structured framework is to ensure that
code is well implemented, easy to follow, maintainable, and testable. Angular provides
a very structured framework to work from, but you still need to ensure that you
implement AngularJS in the appropriate manner.
The following are a few rules to follow when implementing AngularJS:

 The view acts as the official presentation structure for the application. Indicate
any presentation logic as directives in the HTML template of the view.
 If you need to perform any DOM manipulation, do it in a built-in or your own
custom directive JavaScript code—and nowhere else.
 Implement any reusable tasks as services and add them to your modules by using
dependency injection.
 Ensure that the scope reflects the current state of the model and is the single
source for data consumed by the view.
 Ensure that the controller code acts only to augment the scope data and doesn’t
include any business logic.
 Define controllers within the module namespace and not globally. This ensures
that your application can be packaged easily and prevents overwhelming the
global namespace.

Integrating AngularJS with Existing JavaScript and jQuery
The fact that AngularJS is based on JavaScript and jQuery makes it tempting to try to
add it to existing applications to provide data binding or other functionality. That
approach will almost always end up in problem code that is difficult to maintain.
However, using AngularJS doesn’t mean that you need to simply toss out your existing
code, either. Often you can selectively take working JavaScript/jQuery components and
convert them to either directives or services.
This also brings up another issue: when to use the full version of jQuery rather than the
jQuery lite version that is provided with AngularJS? I know that many people have
strong views in both directions. On one hand, you want to keep your implementation as
clean and simple as possible. But on the other hand, there might be times when you need
functionality that’s available only in the full version of jQuery. Our advice is to use
what makes sense. If you need functionality that is not provided with AngularJS jQuery
lite, load the full library. The mechanics of loading jQuery rather than jQuery lite are
discussed later in this lesson.

The following steps suggest a method to integrate AngularJS into your existing
JavaScript and jQuery applications:

1. Write at least one small AngularJS application from the ground up that uses a
model, custom HTML directives, services, and controllers. In other words, in this
application, ensure that you have a practical comprehension of the AngularJS
separation of responsibilities.

2. Identify the model portion of your code. Specifically, try to separate out the code
that augments the model data in the model into controller functions and code that
accesses the back-end model data into services.

3. Identify the code that manipulates DOM elements in the view. Try to separate out
the DOM manipulation code into well-defined custom directive components and
provide an HTML directive for them. Also identify any of the directives for which
AngularJS already provides built-in support.

4. Identify other task-based functions and separate them out into services.
5. Isolate the directives and controllers into modules to organize your code.
6. Use dependency injection to link up your services and modules appropriately.
7. Update the HTML templates to use the new directives.

Obviously, in some instances, it doesn’t make sense to use much, if any, of your existing
code. However, by running through the preceding steps, you will get well into the
design phase of implementing a project using AngularJS and can then make an informed
decision.

Adding AngularJS to Your Environment
AngularJS is a client-side JavaScript library, which means the only thing you need to do
to implement AngularJS in your environment is to provide a method for the client to get
the angular.js library file by using a <script> tag in the HTML templates.
The simplest method of providing the angular.js library is to use the Content
Delivery Network (CDN), which provides a URL for downloading the library from a
third party. The downside of this method is that you must rely on a third party to serve
the library, and if the client cannot connect to that third-party URL, your application will
not work. For example, the following <script> tag loads the angular.js library
from Google APIs CDN:
Click here to view code image

<script
src="https://ajax.googleapis.com/ajax/libs/angularjs/1.2.5/angular.min.js">
</script>

The other method of providing the angular.js library is to download it from the

AngularJS website (http://angularjs.org) and use your own web server to serve the file
to the client. This method takes more effort and also requires extra bandwidth on your
web server; however, it might be a better option if you want more control over how the
client obtains the library.

Bootstrapping AngularJS in an HTML Document
To implement AngularJS in your web pages, you need to bootstrap the HTML document.
Bootstrapping involves two parts. The first part is to define the application module by
using the ng-app directive, and the second is to load the angular.js library in a
<script> tag.
The ng-app directive tells the AngularJS compiler to treat that element as the root of
the compilation. The ng-app directive is typically loaded in the <html> tag to ensure
that the entire web page is included; however, you could add it to another container
element, and only elements inside that container would be included in the AngularJS
compilation and consequently in the AngularJS application functionality.
When possible, you should include the angular.js library as one of the last tags, if
not the last tag, inside the <body> of the HTML. When the angular.js script is
loaded, the compiler kicks off and begins searching for directives. Loading
angular.js last allows the web page to load faster.
The following is an example of implementing the ng-app and angular.js
bootstrap in an HTML document:
Click here to view code image

<!doctype html>
<html ng-app="myApp">
 <body>
 <script src="http://code.angularjs.org/1.3.8/angular.min.js"></script>
 <script src="/lib/myApp.js"></script>
 </body>
</html>

Using the Global APIs
As you are implementing AngularJS applications, you will find that there are common
JavaScript tasks that you need to perform regularly, such as comparing objects, deep
copying, iterating through objects, and converting JSON data. AngularJS provides a lot
of this basic functionality in the global APIs.
The global APIs are available when the angular.js library is loaded, and you can
access them by using the angular object. For example, to create a copy of an object
named myObj, you use the following syntax:
Click here to view code image

http://angularjs.org

var myCopy = angular.copy(myObj);

The following code shows an example of iterating through an array of objects by using
the forEach() global API:
Click here to view code image

var objArr = [{score: 95}, {score: 98}, {score: 92}];
var scores = [];
angular.forEach(objArr, function(value, key){
 this.push(key + '=' + value);
}, scores);
// scores == ['score=95', 'score=98', 'score=92']

Table 20.1 lists some of the most useful utilities provided in the global APIs. You will
see these used in a number of examples in this book.

TABLE 20.1 Useful Global API Utilities Provided in AngularJS

Try it Yourself: Creating a Basic AngularJS Application
Now that you understand the basic components in the AngularJS framework, the
intent and design of the AngularJS framework, and how to bootstrap AngularJS,
you are ready to get started implementing an AngularJS application. This section
walks you through a very basic AngularJS application that implements an HTML
template, an AngularJS module, a controller, a scope, and an expression.
The code for this example is an AngularJS HTML template, first.html
shown in Listing 20.1, and an AngularJS JavaScript module, first.js shown
in Listing 20.2. The following steps describe the important steps in implementing
this code for the AngularJS application.
Each of these steps is described in more detail in later lessons, so don’t get
bogged down in the details here. What is important at this point is that you
understand the process of implementing the template, module, controller, and
scope and generally how they interact with each other:
1. In Eclipse, add the lesson20/first.html and lesson18/js/first.js files.
2. In the first.html file, add the standard web page elements for doctype, html,

head, and body.

3. Then you need to get the library loaded in an HTML template. Add the
following lines shown in Listing 20.1 that load the angular.js library and
then load the first.js JavaScript custom module:

Click here to view code image

15 <script src="http://code.angularjs.org/1.3.8/angular.min.js">
</script>
16 <script src="/js/first.js"></script>

4. The next step is to define the ng-app parameter in the root element for the
application so that AngularJS knows where to begin compiling. Add the
following line shown in Listing 20.1 that bootstraps AngularJS in the <html>
element. Notice that ng-app is assigned the module name firstApp, which
corresponds to the module in the JavaScript code shown in Listing 20.2:

02 <html ng-app="firstApp">

5. Add the following line to the first.js file shown in Listing 20.2 to define the
AngularJS application module with the name firstApp:

Click here to view code image

01 var firstApp = angular.module('firstApp', []);

6. Add a controller for HTML elements that you want the AngularJS module to
control. Add the following line shown in Listing 20.1 that assigns a controller
named FirstController to a <div> element. This maps the element in
the view to a specific controller, which contains a scope:

Click here to view code image

07 <div ng-controller="FirstController">

7. Define the controller in your module code by adding the following lines
shown in Listing 20.2 that define FirstController in the firstApp
module:

Click here to view code image

02 firstApp.controller('FirstController', function($scope) {
09 });

8. After the controller has been defined, you can implement the scope, which
involves linking HTML elements to scope variables, initializing the variables
in the scope, and providing functionality to handle changes to the scope values.
Add the following lines in Listing 20.1 to define two <input> elements that
are bound to the first and last values in the scope using the ng-model
directive. When the value of the input changes, so does the value of first
and last in the scope and vice versa:

Click here to view code image

09 <input type="text" ng-model="first">
10 <input type="text" ng-model="last">

9. Add the following lines to Listing 20.2 to define the initial values of first,
last, and heading in the scope:

Click here to view code image

03 $scope.first = 'Some';
04 $scope.last = 'One';
05 $scope.heading = 'Message: ';

10. Add the following line that will define a button in the HTML template that
uses ng-click to bind the mouse button click event to the function
updateMessage() function that will be defined in the scope:

Click here to view code image

11 <button ng-click='updateMessage()'>Message</button>

11. Define the updateMessage() function in the controller code shown in
Listing 20.2 by adding the following lines. Notice that the variable message
in the scope is set to a combination of the values of first and last:

Click here to view code image

06 $scope.updateMessage = function() {
07 $scope.message = 'Hello ' + $scope.first +' '+ $scope.last +
'!';
08 };

12. Add the following line in the template file shown in Listing 20.1 that
implements an expression that displays the value of the heading and
message variables from the scope on the HTML page:

13 {{heading + message}}

13. Now test the AngularJS application by starting the web server if necessary
and loading first.html in a browser. You should be able to type strings into the
text box inputs and then click the Message button and see the dynamic message
created by the AngularJS application displayed, as shown in Figure 20.1.

FIGURE 20.1 Implementing a basic AngularJS web application that uses inputs and
a button to manipulate the model and consequently the view.

LISTING 20.1 first.html A Simple AngularJS Template That Provides Two Input
Elements and a Button to Interact with the Model

Click here to view code image

01 <!doctype html>
02 <html ng-app="firstApp">
03 <head>
04 <title>First AngularJS App</title>
05 </head>
06 <body>
07 <div ng-controller="FirstController">
08 Name:
09 <input type="text" ng-model="first">
10 <input type="text" ng-model="last">
11 <button ng-click='updateMessage()'>Message</button>
12 <hr>
13 {{heading + message}}
14 </div>
15 <script src="http://code.angularjs.org/1.3.8/angular.min.js">
</script>
16 <script src="js/first.js"></script>
17 </body>
18 </html>

LISTING 20.2 first.js A Simple AngularJS Module That Implements a Controller
to Support the Template in Listing 20.1

Click here to view code image

01 var firstApp = angular.module('firstApp', []);
02 firstApp.controller('FirstController', function($scope) {
03 $scope.first = 'Some';
04 $scope.last = 'One';
05 $scope.heading = 'Message: ';
06 $scope.updateMessage = function() {
07 $scope.message = 'Hello ' + $scope.first +' '+ $scope.last + '!';
08 };
09 });

Using jQuery or jQuery Lite in AngularJS Applications
You will be using at least jQuery lite in your AngularJS applications, so it is important
to understand the interactions between jQuery, jQuery lite, and AngularJS. Even if you
are not a jQuery developer, understanding these interactions will help you write better
AngularJS applications. If you are a jQuery developer, understanding the interactions
will enable you to leverage your jQuery knowledge in your AngularJS applications.
The following sections describe jQuery lite implementation and provide a brief
introduction to the jQuery/jQuery lite interactions that you will be seeing in your
AngularJS applications. The following lessons will expand on this topic as you see
some practical examples that utilize jQuery objects in AngularJS applications.

What Is jQuery Lite?
jQuery lite is a stripped-down version of jQuery that is built directly into AngularJS.
The intent is to provide all the useful features of jQuery and yet keep it constrained
within the AngularJS separation of responsibilities paradigm.
Table 20.2 lists the jQuery methods available in jQuery lite along with any restrictions
that might apply. The restrictions are necessary to enforce things like manipulating
elements only within a custom directive, and so on.

TABLE 20.2 jQuery Methods That Are Supported in jQuery Lite
Table 20.3 lists the additional events and methods that AngularJS adds to jQuery lite
objects.

TABLE 20.3 Methods and Events Added to jQuery Lite Objects

Accessing jQuery or jQuery Lite Directly
For most AngularJS applications, the jQuery lite library built in to AngularJS is
sufficient. However, if you need the additional functionality of the full version of
jQuery, load the jQuery library before loading the AngularJS library. For example:
Click here to view code image

<script src="http://code.jquery.com/jquery-1.11.0.min.js"></script>
<script src="http://code.angularjs.org/1.3.8/angular.min.js"></script>

By the Way
If you decide to use the full version of jQuery with AngularJS, make certain
that you load the jQuery library <script> tag before the AngularJS
library <script> tag in your HTML. Otherwise, AngularJS will not be
properly bound to the jQuery library.

Regardless of whether jQuery lite or the full jQuery library is loaded, jQuery is
accessed from the AngularJS code using the element attribute of the angular
variable available when AngularJS is bootstrapped. Essentially, angular.element
will be an alias for the jQuery variable that is normally used in jQuery applications.
One of the best ways this relationship is described is as follows:

Click here to view code image

angular.element() === jQuery() === $()

More often than not, you will be using the jQuery or jQuery lite functionality in jQuery
objects that AngularJS creates for you.
For example, when you create a directive in AngularJS as discussed later in this book,
an element is passed to the link function. That element, as shown here, is a jQuery or
jQuery lite object, and you can use the jQuery functionality accordingly:
Click here to view code image

angular.module('myApp', [])
 .directive('myDirective', function() {
 . . .
 link: function(scope, elem, attrs, photosControl) {
 //elem is a jQuery lite object
 elem.addClass(...);
 }
 };

Another example of accessing the jQuery functionality is from events that are triggered
on AngularJS bindings. For example, consider the following code that uses the
ngClick binding to bind a browser click event on a <div> element to a
clicked() function in the AngularJS code:
Click here to view code image

<div ng-click="clicked($event)">Click Me</div>

You can access a jQuery version of the object using the following AngularJS code:
Click here to view code image

$scope.clicked = function(event){
 var jQueryElement = angular.element(event.target);
};

Note that it was necessary to use the angular.element() method to convert the
target DOM object into a jQuery object.

Summary
AngularJS is a JavaScript library framework that provides a very structured method for
creating websites and web applications. AngularJS structures a web application into a
very clean MVC-styled approach. AngularJS scopes provide contextual binding to the
data model for the application and are made up of basic JavaScript objects. AngularJS
utilizes templates with directives that extend HTML capabilities, enabling you to
implement totally customized HTML components.
In this lesson, you looked at the different components in an AngularJS application and

how they interact with each other. You also learned about the life cycle of an AngularJS
application, which involves bootstrap, compilation, and runtime phases. At the end of
this lesson, you walked through a step-by-step example of implementing a basic
AngularJS application, including a template, module, controller, and scope.

Q&A
Q. Where can I go to learn more about developing AngularJS applications?
A. The AngularJS developer guide at https://docs.angularjs.org/guide provides

good resources on AngularJS development topics.
Q. Is there a way to build end-to-end testing of AngularJS applications?
A. You can use Protractor, a Node.js program, to run end-to-end tests. This is

described at https://docs.angularjs.org/guide/e2e-testing in the developer guide.

Workshop
The workshop consists of a set of questions and answers designed to solidify your
understanding of the material covered in this hour. Try to answer the questions before
looking at the answers.

Quiz
1. When using the full version of jQuery, should the jQuery library be loaded before

or after AngularJS library?
2. What are the three phases of the AngularJS life cycle?
3. When do global APIs become available?
4. Which AngularJS directive is used to bootstrap the AngularJS application in your

HTML file?

Quiz Answers
1. Before the AngularJS library.
2. Bootstrapping, Compilation, and Runtime Data Binding.
3. When the angular.js library is loaded.
4. ng-app

Exercises
1. Load up the current AngularJS documentation by going to

https://docs.angularjs.org/api and review some of the global API functions, such
as angular.copy and angular.element. This will familiarize you with

https://docs.angularjs.org/guide
https://docs.angularjs.org/guide/e2e-testing
https://docs.angularjs.org/api

using the API documentation.
2. Load up the current index of versions of AngularJS by going to

https://code.angularjs.org/ so that you can see which versions of AngularJS are the
latest and know where to load them from.

https://code.angularjs.org/

Lesson 21. Understanding AngularJS Application
Dynamics

What You’ll Learn in This Lesson:
 How AngularJS uses dependency injection
 How to create a dependency provider in AngularJS
 What the configuration block of an AngularJS application is used for
 What the run block of an AngularJS application is used for

One of the most important aspects of AngularJS to understand is dependency injection
and how it relates to modules. Dependency is a common concept across many server-
side languages but has not really been implemented much in JavaScript until AngularJS.
Dependency injection allows AngularJS modules to maintain a very clean, organized
form yet more easily access functionality from other modules. When implemented
correctly, it also tends to reduce the amount of code by a considerable amount.
This lesson provides a basic overview of dependency injection and then describes how
to create modules that provide functionality and how to consume that functionality in
other modules as well as other AngularJS components, such as controllers.

Looking at Modules and Dependency Injection
As you begin writing AngularJS applications, it is vital that you understand the basics of
modules and dependency injection in the AngularJS world. This seems to be a difficult
concept to grasp and implement correctly for some, especially those coming from a
more open, anything-goes JavaScript background.
This section introduces you to the concepts behind AngularJS modules and dependency
injection. Understanding how modules utilize dependency injection to access
functionality in other modules will make it easier for you to implement your code inside
the AngularJS framework.

Understanding Modules
AngularJS modules are containers that enable you to compartmentalize and organize
your code into concise, clean, reusable chunks. Modules themselves do not provide
direct functionality, but they contain instances of other objects that do, such as
controllers, filters, services, and animations.
You build a module by defining the objects it provides. Then, by linking together
modules through dependency injection, you build a full application.
AngularJS is built on the module principle. Most of the functionality provided by

AngularJS is built in to a module named ng, which contains most of the directives and
services used throughout this book.

Dependency Injection
Dependency injection can be a difficult concept to fully grasp. However, it is a very
important part of AngularJS, and after you understand the basics, the AngularJS
implementation becomes quite clear. Dependency injection is a well-known design
pattern in most server-side languages but has not been used extensively in a JavaScript
framework until AngularJS.
The idea of AngularJS dependency injection is to define and dynamically inject a
dependency object into another object, making available all the functionality provided
by the dependency object.
An analogy I like to use for dependency injection is the virtual room. If you just wanted
to create a virtual room, you would define four walls, a floor, and a ceiling as the
basics. However, that room is not very functional for most purposes. If you want the
room to be a dining room, you would need a table and dining chairs; however, if you
want the room to be a living room, you may want a sofa and TV.
So in the virtual world, you would define a way to create a sofa, dining chair, dining
table, TV, lamps, pictures, end table, and so on. Keep in mind that this is simply a way
to create these objects, not an actual instance of a sofa or table object.
Then, dependency injection allows you to easily define any type of room you may want
by stating which types of objects should be injected into the room when it is created.
For example, you could define something like LivingRoom equals [sofa,
table, TV] injected into Room. This is a definition only, so there is not an instance
of Room, sofa, table, or TV until you create an instance LivingRoom, at which
point the sofa, table, and TV objects would be created and automatically injected
into the newly created LivingRoom to provide the living room functionality you need
to sit down and watch a virtual movie.
AngularJS provides dependency injection through the use of providers and an injector
service. The providers define how to create the injectable objects with certain
functionality. The injector service creates an instance of the injectable objects and
makes it available in newly created objects that use them.

Providers
A provider is essentially a definition of how to create an instance of an object with all
the necessary functionality. Providers should be defined as part of an AngularJS
module. A module registers the provider with the injector server. Only one instance of a
provider’s object is ever created in the AngularJS application.

Injectors
The injector service is responsible for keeping track of instances of provider objects.
An injector service instance is created for each module that registers a provider.
When an object that requires a provider is created, a dependency request is made for an
instance of the provider object. The injector service first checks whether an instance
already exists in the injector cache. If so, that instance is returned. If no instance is
found in the cache, a new instance is created using the provider definition; it is stored in
the cache, and then returned.

Defining an AngularJS Module Object
Creating AngularJS modules is a simple process that involves calling the
angular.module() method. This method creates an instance of a Module object,
registers it with the injector service, and then returns an instance of the newly created
Module object that you can use to implement provider functionality. The
angular.module() method uses the following syntax:
Click here to view code image

angular.module(name, [requires], [configFn])

The name parameter is the name under which the module is registered in the injector
service. The requires parameter is an array of names of modules that are added to
the injector service for this module to use. If you need functionality from another
module, you need to add it in the requires list. The ng module is automatically
added to every module instantiated by default, so you have access to the AngularJS
providers without explicitly specifying ng in the list.
Instances of all dependencies are automatically injected into an instance of a module.
Dependencies can be modules, services, and any other objects registered in the injector
service. The configFn parameter is another function that is called during the module
configuration phase. Configuration functions are described in the next section.
The following is an example of creating an AngularJS module with dependencies on the
$window and $http services. The definition also includes a configuration function
that adds a value provider named myValue:
Click here to view code image

var myModule = angular.module('myModule', ['$window', '$http'], function()
{
 $provide.value('myValue', 'Some Value');
});

If you do not specify a requires parameter, instead of a Module object being
created, the already created instance is returned. For example, the following code

overwrites the instance defined previously:
Click here to view code image

var myModule2 = angular.module('myModule', []);

However, the following code returns the instance created previously because no
dependencies are listed in the require array in the parameters list:
Click here to view code image

var myModule3 = angular.module('myModule');

Creating Providers in AngularJS Modules
AngularJS provides a number of built-in providers for various objects and services. For
example, the $window service has a provider that builds the AngularJS service object
that enables you to interact with the underlying Window object in JavaScript. In
addition to these providers, you can create providers of your own to inject functionality
into AngularJS application components.
The Module object provides several helper methods for adding providers as an
alternative to using the config() method. These methods are simpler to use and
clearer in your code. You can add two types of provider objects to AngularJS modules.
Each of these methods accepts two parameters: the name that will be registered with the
dependency injector and the provider function that defines how to build the specific
object. The following sections describe these methods in more detail.

Specialized AngularJS Object Providers
The Module object provides special constructor methods to add providers for the
AngularJS objects that you need to implement in your modules. These specialized
methods enable you to add definitions for the following types of objects:

 animation(name, animationFactory)
 controller(name, controllerFactory)
 filter(name, filterFactory)
 directive(name, directiveFactory)

These are specialized methods because there are corresponding animation,
controller, filter, and directive objects defined in AngularJS for these
provider methods.
Each of these objects is covered in more detail in later lessons. For now, here’s a quick
look at a basic controller definition:
Click here to view code image

var mod = angular.module('myMod', []);

mod.controller('myController', function($scope) {
 $scope.someValue = 'Some Value';
});

A simple module named mod is created, and then the controller() method is
called and passed in myController along with a controllerFactory function.
The controllerFactory function accepts the $scope variable as a parameter.
This is because AngularJS has a built-in controller object and knows that all controller
objects must receive a scope object as the first parameter.

Service Providers
The service providers are a unique category of providers because there is not already a
specific format for the resulting provider objects. Instead, a provider acts as a service
to provide functionality. AngularJS provides some specific creation methods for
building services and exposes them through the following methods:

 value(name, object): This is the most basic of all providers. The object
parameter is simply assigned to name, so a direct correlation exists in the
injector between the name value and the object value.
 constant(name, object): This is similar to the value() method, but the
value is not changeable. Also, constant() methods are applied before other
provider methods.
 factory(name, factoryFunction): This method uses the
factoryFunction parameter to build an object that will be provided by the
injector.
 service(name, serviceFactory): This method adds the concept of
implementing a more object-oriented approach to the provider object. Much of the
built-in functionality of AngularJS is provided through service providers.
 provider(name, providerFactory): This method is the core for all the
other methods. Although it provides the most functionality, it is not used frequently
because the other methods are simpler.

Later lessons cover these objects in more detail. For now, here’s a quick example of
some basic value and constant definitions:
Click here to view code image

var mod = angular.module('myMod', []);
mod.constant("cID", "ABC");
mod.value('counter', 0);
mod.value('image', {name:'box.jpg', height:12, width:20});

A simple module named mod is created, and then the constant() and two
value() providers are defined. The values defined in these methods are registered in

the injector server for the myMod module and are then accessible by name.

Implementing Providers and Dependency Injection
After you have defined a module and appropriate providers, you can add the module as
a dependency to other modules, controllers, and various other AngularJS objects. You
can set the value of the $inject property of the object that depends on the providers.
The $inject property contains an array of provider names that should be injected into
it.
For example, the following code defines a basic controller that accepts the $scope
and appMsg parameters. Then the $inject property is set to an array that contains
$scope, which is the AngularJS scope service that provides access to the scope and a
custom appMsg. Both $scope and appMsg are injected into the myController
function:
Click here to view code image

var myController = function($scope, appMsg) {
 $scope.message = appMsg;
};
controller['$inject'] = ['$scope', 'appMsg'];
myApp.myController('controllerA', controller);

This method can become a bit clumsy when you’re implementing certain objects, so
AngularJS also provides a more elegant method for injecting the dependencies, using
the following syntax in place of the normal constructor function:
Click here to view code image

[providerA, providerB, . . ., function(objectA, objectB, . . .) {}]

For example, the preceding code can also be written this way:
Click here to view code image

myApp.controller('controllerA', ['$scope', 'appMsg', function($scope,
appMsg) {
 $scope.message = appMsg;
}]);

It is critical that you understand dependency injection before continuing, so the
following sections provide sample listings that implement dependency injection in
AngularJS applications.

Try it Yourself: Injecting a Built-In Provider into a Controller
In this section, you learn how to inject some of the providers that are built into
AngularJS into your controllers. The code shown in Listing 21.1 implements the
basic controller that is injected with the $scope and $window providers. The

code in Listing 22.2 shows the HTML template that loads the AngularJS
application.
The following describes the important aspects of using dependency injection to
add functionality from AngularJS providers to a controller:
1. Add the lesson21/inject_builtin.html and lesson21/js/inject_builtin.js files.
2. Add the code shown in Listing 21.1 and Listing 21.2 to the HTML and

JavaScript files.
3. The following lines of code define a controller that uses the $scope and
$window providers built in to AngularJS. Notice that in the function()
definition, the parameter names are also $scope and $window. That is not
necessary, but it may make it easier to follow the code:

Click here to view code image

02 myMod.controller('controllerA', ['$scope', '$window',
03 function($scope, $window) {

4. The following line of code in Listing 21.1 uses the $scope object created by
the $scope provider to set a value in controller’s scope:

Click here to view code image

04 $scope.message = "My Module Has Loaded!";

5. The following line in Listing 21.2 uses the $window object injected into the
controller to display an alert in the browser:

Click here to view code image

05 $window.alert($scope.message);

6. When you load inject_builtin.html in a browser, you should see a page similar
to Figure 21.1 with the resulting web page and alert message.

FIGURE 21.1 Implementing dependency injection of the $window service to
display an alert message from the $scope.

LISTING 21.1 inject_builtin.js Implementing Dependency Injection of Built-in
Services in a Controller

Click here to view code image

01 var myMod = angular.module('myApp', []);
02 myMod.controller('controllerA', ['$scope', '$window',
03 function($scope, $window) {
04 $scope.message = "My Module Has Loaded!";
05 $window.alert($scope.message);
06 }]);

LISTING 21.2 inject_builtin.html Using HTML Code to Implement an AngularJS
Module That Implements Dependency Injection

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>
04 <title>AngularJS Dependency Injection</title>

05 </head>
06 <body>
07 <div ng-controller="controllerA">
08 <h2>This Page has an Alert</h2>
09 </div><hr>
10 <script src="http://code.angularjs.org/1.3.8/angular.min.js">
</script>
11 <script src="js/inject_builtin.js"></script>
12 </body>
13 </html>

Try it Yourself: Injecting One Module into Another Module
In this example, you learn how to inject the functionality of one module into
another module. The code in Listing 21.3 implements two modules, myMod and
myApp, and then uses dependency injection to inject the functionality of myMod
into myApp. Listing 21.4 shows HTML that implements the myApp module as
the AngularJS application. Notice that it uses both the controllerA and the
controllerB controllers. They can be used because the myMod module was
injected into the myApp module.
Use the following steps to build the modules and implement dependency
injection:
1. Add the lesson21/inject_custom.html and lesson21/js/inject_custom.js files.
2. Add the code shown in Listing 21.3 and Listing 21.4 to the HTML and

JavaScript files.
3. The following line of code defines the myMod module:

Click here to view code image

01 var myMod = angular.module('myMod', []);

4. The following line of code defines a value provider named modMsg for
myMod that contains a simple string:

Click here to view code image

02 myMod.value('modMsg', 'Hello from My Module');

5. The following lines of code define controllerB and inject the $scope
and modMsg providers into it and then sets the message value that will be
displayed in the template:

Click here to view code image

03 myMod.controller('controllerB', ['$scope', 'modMsg',
04 function($scope, msg) {
05 $scope.message = msg;

06 }]);

6. Then the following line of code defines myApp with myMod as an injectable
provider. The rest of the lines are similar to the definition of the value
provider and controller defined in the preceding steps:

Click here to view code image

07 var myApp = angular.module('myApp', ['myMod']);

7. Notice in the following lines from Listing 21.4 that only the myApp module is
bootstrapped but that controllerB from myMod is able to be used because
it is injected into myApp:

Click here to view code image

02 <html ng-app="myApp">
. . .
07 <div ng-controller="controllerA">
. . .
11 <div ng-controller="controllerB">

8. Figure 21.2 shows the resulting web page, with a different message from each
module’s controller.

FIGURE 21.2 Implementing dependency injection to provide additional functionality
to modules and controllers.

LISTING 21.3 inject_custom.js Implementing Dependency Injection in Controller
and Module Definitions

Click here to view code image

01 var myMod = angular.module('myMod', []);
02 myMod.value('modMsg', 'Hello from My Module');
03 myMod.controller('controllerB', ['$scope', 'modMsg',
04 function($scope, msg) {
05 $scope.message = msg;
06 }]);
07 var myApp = angular.module('myApp', ['myMod']);
08 myApp.value('appMsg', 'Hello from My App');
09 myApp.controller('controllerA', ['$scope', 'appMsg',
10 function($scope, msg) {
11 $scope.message = msg;
12 }]);

LISTING 21.4 inject_custom.html Using HTML Code to Implement an AngularJS
Module That Depends on Another Module

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>
04 <title>AngularJS Dependency Injection</title>
05 </head>
06 <body>
07 <div ng-controller="controllerA">
08 <h2>Application Message:</h2>
09 {{message}}
10 </div><hr>
11 <div ng-controller="controllerB">
12 <h2>Module Message:</h2>
13 {{message}}
14 </div>
15 <script src="http://code.angularjs.org/1.3.8/angular.min.js">
</script>
16 <script src="/js/injector_custom.js"></script>
17 </body>
18 </html>

Applying Configuration and Run Blocks to Modules
Now that you understand the relationship between modules and dependency injection,
you need to look at the process of implementing AngularJS modules. AngularJS modules
are implemented in two phases: the configuration phase and the run phase. The
following sections discuss these phases and the basic process of adding providers to an
AngularJS module.

Adding Configuration Blocks

The AngularJS module configuration phase is executed when a module is being defined.
During this phase, any providers defined are registered with the dependency injector.
You should put only configuration and provider code inside the configuration block.
You implement the configuration block by calling the config() method on the
instance of the Module object, using the following syntax:
Click here to view code image

config(function([injectable, . . .]))

A function with the injectable parameters is passed in. The injectable parameters are
typically provider services functions, such as $provide.
The following is an example of a basic configuration block:
Click here to view code image

var myModule = angular.module('myModule', []).
 config(function($provide, $filterProvider) {
 $provide.value("startTime", new Date());
 $filterProvider.register('myFilter', function(){});
});

Notice that the $provide and $filterProvider services are passed into the
config function. They are used to register a value provider named startTime and
a filter provider named myFilter with the injector service.

Adding Run Blocks
After an entire configuration block has finished, the run phase of an AngularJS module
can execute. During this phase, you can implement any code necessary to instantiate the
module. You cannot implement any provider code during the run block because the
entire module should already be configured and registered with the dependency injector
by this point.
The run block is a great place to put event handlers that need to be executed at the root
level for the application (for example, authentication handlers).
You implement the run block by calling the run() method of the Module object,
using the following syntax:
Click here to view code image

run(function([injectable, . . .]))

A function with the instance injectable parameters is passed in. The
injectable parameters should only be instances of injectors because configuration
should already have been completed.
The following is a basic implementation of the run block continued from the example:

Click here to view code image

myModule.run(function(startTime) {
 startTime.setTime((new Date()).getTime());
});

Notice that the startTime instance defined in the config() section shown
previously is passed into the run() function. This allows the run() function to
update the startTime provider to a new value.

Try it Yourself: Implementing Configuration and Run Blocks
In this example, you learn how to implement very basic configuration and run
blocks. The code in Listing 21.5 uses the config() method to implement two
providers, configTime and runTime, that are JavaScript Date objects that
will be used to display time values at configuration and then at run.
Use the following steps to build the application and implement the configuration
and run blocks:
1. Add the lesson21/config_run_blocks.html and

lesson21/js/config_run_blocks.js files.
2. Add the code shown in Listing 21.5 and Listing 21.6 to the HTML and

JavaScript files.
3. The following code from Listing 21.5 implements the configuration block that

defines two value providers named configTime and runTime. Notice
that in lines 5–7, a simple loop is implemented to inject a delay simulating a
delay that might be caused during configuration:

Click here to view code image

02 myModule.config(function($provide) {
03 $provide.value("configTime", new Date());
04 $provide.value("runTime", new Date());
05 for(var x=0; x<1000000000; x++){
06 var y = Math.sqrt(Math.log(x));
07 }
08 });

4. The following code then defines the run block that changes the value of
runTime:

Click here to view code image

09 myModule.run(function(configTime, runTime) {
10 runTime.setTime((new Date()).getTime());
11 });

5. In the following lines, the controller is defined and injected with

configTime and runTime, which are added to the scope values:
Click here to view code image

12 myModule.controller('controllerA',['$scope', 'configTime',
'runTime',
13 function($scope, configTime, runTime){
14 $scope.configTime = configTime;
15 $scope.runTime = runTime;
16 }]);

6. The template from Listing 21.6 displays the configTime and runTime
values, as shown in Figure 21.3.

FIGURE 21.3 Implementing configuration and run blocks that set and utilize
JavaScript Date objects to display the time executed for each.

LISTING 21.5 config_run_blocks.js Implementing Configuration and Run Blocks in
an AngularJS Module

Click here to view code image

01 var myModule = angular.module('myApp', []);
02 myModule.config(function($provide) {
03 $provide.value("configTime", new Date());
04 $provide.value("runTime", new Date());
05 for(var x=0; x<1000000000; x++){
06 var y = Math.sqrt(Math.log(x));
07 }
08 });
09 myModule.run(function(configTime, runTime) {
10 runTime.setTime((new Date()).getTime());
11 });

12 myModule.controller('controllerA',['$scope', 'configTime', 'runTime',
13 function($scope, configTime, runTime){
14 $scope.configTime = configTime;
15 $scope.runTime = runTime;
16 }]);

LISTING 21.6 run_blocks.html Using HTML Code to Display the configTime
and runTime Values Generated in the Configuration and Run Blocks of the
AngularJS Module

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>
04 <title>AngularJS Configuration and Run Blocks</title>
05 </head>
06 <body>
07 <div ng-controller="controllerA">
08 <hr>
09 <h2>Config Time:</h2>
10 {{configTime}}
11 <hr>
12 <h2>Run Time:</h2>
13 {{runTime}}
14 </div><hr>
15 <script src="http://code.angularjs.org/1.3.8/angular.min.js">
</script>
16 <script src="js/config_run_blocks.js"></script>
17 </body>
18 </html>

Summary
Dependency injection enables you to define provider functionality that can be injected
into other AngularJS components. The provider functionality is contained inside
modules and registered with an injector service. Providers define how to build the
functionality so that when another component defines a dependency on a provider, an
instance of the provider object can be created and injected.
AngularJS provides a fairly robust dependency injection model that enables you to
define different types of service providers. Using dependency injection rather than
global definitions makes your code more modularized and easier to maintain. In this
lesson, you were introduced to the dependency injection model and saw how to
implement it in both modules and a controller component.

Q&A
Q. Will the controller and directive code for an AngularJS application be run

before or after the run block?
A. The order of execution is config, run, directive.compile, controller, and directive

link.

Workshop
The workshop consists of a set of questions and answers designed to solidify your
understanding of the material covered in this hour. Try to answer the questions before
looking at the answers.

Quiz
1. Which block is executed first—the run block or the configuration block?
2. Would you place provider code in the run block or configuration block?
3. How would you inject the $scope and $http services into a controller?
4. True or false: You can inject one controller into another.

Quiz Answers
1. The configuration block is run first.
2. You should place provider code in the configuration block because the instance

of injectable objects should have been created before executing the run block.
3. Use something similar to the following code:

Click here to view code image

 app.controller('myController', ['$scope', '$http'], function($scope,
$http) { ...

4. True

Exercises
1. Modify the code in Listing 21.1 to show the screenX and screenY values in the

alert pop-up. You can do that by adding the following code to the message:
Click here to view code image

+ ' ' + $window.screenX + 'x'+ $window.screenY

2. Modify the code in Listings 21.3 and 21.4 to add a third controller named
controllerC that displays a third message.

Lesson 22. Implementing the Scope as a Data Model

What You’ll Learn in This Lesson:
 How the scope relates to the data model
 How scopes relate to the AngularJS templates
 How the scope hierarchy in nested controllers works
 Understanding the scope life cycle

One of the most important aspects of an AngularJS application is scope. Scope not only
provides the data represented in a model but also binds together all the other
components of the AngularJS application, such as modules, controllers, services, and
templates. This lesson explains the relationships between scope and other AngularJS
components.
Scope provides the binding mechanism that enables DOM elements and other code to be
updated when changes occur in the model data. In this lesson, you learn about the root
scope and child scopes. You also learn about the scope hierarchies and how to
implement them.

Understanding Scopes
In AngularJS, the scope acts as a data model for an application. It is one of the most
critical parts of any application that relies on data in any fashion because it acts as the
glue that binds together the views, business logic, and server-side data. Understanding
how scopes work enables you to design your AngularJS applications to be more
efficient, use less code, and be easier to follow.
The following sections discuss the relationships between scope and applications,
controllers, templates, and server-side data. There is also a section that covers the life
cycle of scope to help you see how scope is built, manipulated, and updated during the
application life cycle.

The Relationship Between the Root Scope and Applications
When an application is bootstrapped, a root scope is created. The root scope stores data
at the application level, and you can access it by using the $rootScope service. The
root scope data should be initialized in the run() block of the module, but you can
also access it in components of the module. To illustrate this point, the following code
defines a value at the root scope level and then accesses it in a controller:
Click here to view code image

angular.module('myApp', [])
.run(function($rootScope) {

 $rootScope.rootValue = 5;
})
.controller('myController', function($scope, $rootScope) {
 $scope.value = 10;
 $scope.difference = function() {
 return $rootScope.rootValue - $scope.value;
 };
});

The Relationship Between Scopes and Controllers
Controllers are pieces of code that are intended to provide business logic by augmenting
scope. You create controllers by using the controller() method on the Model
object of an application. This function registers a controller as a provider in the module,
but it does not create an instance of the controller. That occurs when the ng-
controller directive is linked in an AngularJS template.
The controller() method accepts the controller name as the first parameter and an
array of dependencies as the second parameter. For example, the following code
defines a controller that uses dependency injection to access a value provider named
start:
Click here to view code image

angular.module('myApp', []).
 value('start', 200).
 controller('Counter', ['$scope', 'start',
 function($scope, startingValue) {
 }]);

Notice that the value() and controller() methods are chained together using the
dot ‘.’ notation. You will see this used often in AngularJS applications. When a new
instance of a controller is created in AngularJS, a new child scope specific to that
controller is also created and is accessible via the $scope service that is injected into
the preceding Counter controller. Also in the example shown previously, the start
provider is injected into the controller and passed to the controller function as
startingValue. The parameter injection is based on their position in the array
passed to the controller() function.
The controller must initialize the state of a scope that is created and added to it. The
controller is also responsible for any business logic attached to that scope. This can
mean handling update changes to the scope, manipulating scope values, or emitting
events based on the state of the scope.

Try it Yourself: Implementing a Basic Controller
In this example, you get a chance to play around a bit with controller code.
Listing 22.1 shows how to implement a controller that utilizes dependency

injection, initializes some values, and implements rudimentary business logic,
using the inc(), dec(), and calcDiff() functions. Listing 22.2 shows a
basic AngularJS HTML template that provides the view to see and manipulate the
values stored in the scope.
Use the following steps to build the application and implement the application
and controller:
1. Add the lesson22/scope_controller.html and lesson22/js/scope_controller.js

files.
2. Add the code shown in Listing 22.1 and Listing 22.2 to the HTML and

JavaScript files.
3. The following code from Listing 22.1 implements an AngularJS module and

with a controller named Counter:
Click here to view code image

01 angular.module('myApp', []).
02 value('start', 200).
03 controller('Counter', ['$scope', 'start',
04 function($scope, start) {

4. Then the following lines define values in the $scope of the Counter
controller:

Click here to view code image

05 $scope.start = start;
06 $scope.current = start;
07 $scope.difference = 0;
08 $scope.change = 1;

5. Notice that in the following lines, the functions inc(), dec(), and
calcDiff() are defined that manipulate the values for current and
difference:

Click here to view code image

09 $scope.inc = function() {
10 $scope.current += $scope.change;
11 $scope.calcDiff();
12 };
13 $scope.dec = function() {
14 $scope.current -= $scope.change;
15 $scope.calcDiff();
16 };
17 $scope.calcDiff = function() {
18 $scope.difference = $scope.current - $scope.start;
19 };

6. The code Listing 22.2 implements an AngularJS template that provides a

number input to set the value of change in the scope, as well as + and –
buttons that call inc() and dec() to change the value of current. The
template also displays the starting, current, and difference values using simple
AngularJS filters. Figure 22.1 shows the web page in action. You can set the
increment/decrement value and then click +/– buttons to decrement the current
value and see the difference change in the scope.

FIGURE 22.1 A basic AngularJS application that stores initial and current values in
the scope and then displays the difference to illustrate scope data interaction.

LISTING 22.1 scope_controller.js Implementing a Basic Controller That Uses
Dependency Injection, Initializes Scope Values, and Implements Business Logic

Click here to view code image

01 angular.module('myApp', []).
02 value('start', 200).
03 controller('Counter', ['$scope', 'start',
04 function($scope, start) {
05 $scope.start = start;
06 $scope.current = start;
07 $scope.difference = 0;
08 $scope.change = 1;
09 $scope.inc = function() {
10 $scope.current += $scope.change;
11 $scope.calcDiff();
12 };
13 $scope.dec = function() {
14 $scope.current -= $scope.change;
15 $scope.calcDiff();
16 };
17 $scope.calcDiff = function() {
18 $scope.difference = $scope.current - $scope.start;
19 };

20 }]);

LISTING 22.2 scope_controller.html HTML Template That Enables You to See
the Data in the Scope Change Dynamically Based on Incrementing and
Decrementing Values

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>
04 <title>AngularJS Basic Scope</title>
05 </head>
06 <body>
07 <div ng-controller="Counter">
08 Change Amount:
09 <input type="number" ng-model="change"><hr>
10 Starting Value:
11 {{start}}
12

13 CurrentValue:
14 {{current}}
15 <button ng-click='inc()'>+</button>
16 <button ng-click='dec()'>-</button><hr>
17 Difference:
18 {{difference}}
19 </div>
20 <script src="http://code.angularjs.org/1.3.8/angular.min.js">
</script>
21 <script src="js/scope_controller.js"></script>
22 </body>
23 </html>

The Relationship Between Scopes and Templates
Templates provide the view for an AngularJS application. HTML elements are defined
as controllers, using the ng-controller attribute. Inside a controller HTML
element and its children, the scope for that controller is available for expressions and
other AngularJS functionality.
Values in a scope can be directly linked to the values of <input>, <select>, and
<textarea> elements in the template, using the ng-model directive. This directive
links the value of an element to a property name in the scope. When the user changes the
value of the input element, the scope is automatically updated. For example, the
following links the value of a number of an <input> element to the scope named
valueA:

Click here to view code image

<input type="number" ng-model="valueA" />

You can add scope properties and even functions to expressions in a template by using
the {{expression}} syntax. The code inside the brackets is evaluated, and the
results are displayed in the rendered view. For example, if a scope contains properties
named valueA and valueB, you can reference these properties in an expression in
the template, as shown here:

{{valueA + valueB}}

You can also use scope properties and functions when defining AngularJS directives in
a template. For example, the ng-click directive binds the browser click event to a
function in a scope named addValues() and passes the values of properties
valueA and valueB in the scope:
Click here to view code image

Add Values{{valueA}} &
{{valueB}}

Notice that in this code, the {{}} brackets are required. However, in the
addValues() function call, they are not required. That is because ng-click and
other AngularJS directives automatically evaluate as expressions.

Try it Yourself: Looking at Scope Values in the AngularJS Template
In this example, you put all these concepts together in a very basic example to
make it easy to understand the relationship between the model and the scope.
Listing 22.3 implements a controller named SimpleTemplate that initializes
a scope with three values: valueA, valueB, and valueC. The scope also
contains a function named addValues() that accepts two parameters and adds
them together to set the value of $scope.valueC.
Listing 22.4 is an AngularJS template that initializes the SimpleTemplate
controller defined in Listing 22.3 and provides number inputs to set the values of
valueA and valueB and a button to calculate the value of valueC.
Use the following steps to build the application and implement the interaction
between the scope and template:
1. Add the lesson22/scope_template.html and lesson22/js/scope_template.js

files.
2. Add the code shown in Listing 22.3 and Listing 22.4 to the HTML and

JavaScript files.
3. The following code from Listing 22.3 to define the values of valueA,

valueB, and valueC in the scope:
03 $scope.valueA = 5;
04 $scope.valueB = 7;
05 $scope.valueC = 12;

4. The following code provides a function in the scope that accepts two
parameters and adds them together to set the value of valueC:

Click here to view code image

06 $scope.addValues = function(v1, v2) {
07 $scope.valueC = v1 + v2;
08 };

5. The following lines in Listing 22.4 implement the number inputs and bind them
to the values of valueA and valueB:

Click here to view code image

08 ValueA: <input type="number" ng-model="valueA" />

09 ValueB: <input type="number" ng-model="valueB" />

6. The following line shows the value of valueA and valueB in the template
using the simple AngularJS expressions:

Click here to view code image

10 Expression: {{valueA}} + {{valueB}}

7. The following line then uses an angularJS expression to display the value of
valueA added to valueB:

Click here to view code image

11 Live Expression Value: {{valueA + valueB}}

8. The following lines of code from Listing 22.4 implement an input button that
calls addValues() when you click it and then passes in the value of
valueA and valueB:

Click here to view code image

12 <input type="button" ng-click="addValues(valueA, valueB)"
13 value ="Click to Add Values {{valueA}} & {{valueB}}" />

9. The following line of code displays the value of valueC in the scope:
Click here to view code image

14 Clicked Expression Value: {{valueC}}

10. Figure 22.2 shows this simple application in a web browser. As the two input
elements are changed, the expressions change automatically. However, the

valueC expression changes only when the Click to Add Values
button is clicked.

FIGURE 22.2 A basic AngularJS template that implements a controller and links
several fields to the scope to provide both input of values and displayed results.

LISTING 22.3 scope_template.js Implementing a Basic Controller to Support
Template Functionality

Click here to view code image

01 angular.module('myApp', []).
02 controller('SimpleTemplate', function($scope) {
03 $scope.valueA = 5;
04 $scope.valueB = 7;
05 $scope.valueC = 12;
06 $scope.addValues = function(v1, v2) {
07 $scope.valueC = v1 + v2;
08 };
09 });

LISTING 22.4 scope_template.html HTML Template Code That Implements a
Controller and Various HTML Fields Linked to the Scope

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>
04 <title>AngularJS Scope and Templates</title>
05 </head>

06 <body>
07 <div ng-controller="SimpleTemplate">
08 ValueA: <input type="number" ng-model="valueA" />

09 ValueB: <input type="number" ng-model="valueB" />

10 Expression: {{valueA}} + {{valueB}}

11 Live Expression Value: {{valueA + valueB}}

12 <input type="button" ng-click="addValues(valueA, valueB)"
13 value ="Click to Add Values {{valueA}} & {{valueB}}" />

14 Clicked Expression Value: {{valueC}}

15 </div>
16 <script src="http://code.angularjs.org/1.3.8/angular.min.js">
</script>
17 <script src="js/scope_template.js"></script>
18 </body>
19 </html>

The Relationship Between Scope and Back-End Server Data
Data that is used for an AngularJS application often comes from a back-end data source,
such as a database. In such instances, the scope still acts as the definitive source of data
for the AngularJS application. You should use the following rules when interacting with
data that is coming from the server side:

 Access data from the database or other back-end sources via AngularJS services,
which are discussed in Lesson 27, “Implementing AngularJS Services in Web
Applications.” This includes both reading and updating data.
 Ensure that data read from the server updates the scope, which in turn updates the
view. Avoid the temptation to manipulate the HTML values directly from the
database, which can lead to the scope becoming out of sync with the view.
 Reflect changes that are made to the database or other back-end source in scope as
well. You can do this by first updating the scope and then updating the database
using a service, or you can update the database and then use the results from the
database to repopulate the appropriate values in the scope.

The Scope Life Cycle
Scope data goes through a life cycle while the application is loaded in the browser.
Understanding this life cycle will help you understand the interaction between scope
and other AngularJS components, especially templates.
Scope data goes through the following life cycle phases:

1. Creation
2. Watcher registration
3. Model mutation

4. Mutation observation
5. Scope destruction

These life cycle phases are described in the sections that follow.

The Creation Phase
The creation phase occurs when a scope is initialized. Bootstrapping the application
creates a root scope. Linking the template creates child scopes when ng-
controller or ng-repeat directives are encountered.
During the creation phase, a digest loop also is created that interacts with the browser
event loop. The digest loop is responsible for updating DOM elements with changes
made to the model, as well as executing any registered watcher functions. Although you
should never need to execute a digest loop manually, you can do so by executing the
$digest() method on the scope. For example, the following evaluates any
asynchronous changes and then executes the watch functions on the scope:

$scope.$digest()

The Watcher Registration Phase
The watcher registration phase registers watches for values in the scope that are
represented in the template. These watches propagate model changes automatically to
the DOM elements.
You can also register your own watch functions on a scope value by using the
$watch() method. This method accepts a scope property name as the first parameter
and then a callback function as the second parameter. The old and new values are
passed to the callback function when the property is changed in the scope.
For example, the following adds a watch to the property watchedItem in the scope
and increments a counter each time it is changed:
Click here to view code image

$scope.watchedItem = 'myItem';
$scope.counter = 0;
$scope.$watch('watchedItem', function(newValue, oldValue) {
 $scope.watchedItem = $scope.counter + 1;
});

The Model Mutation Phase
The model mutation phase occurs when data in the scope changes. When you make
changes in your AngularJS code, a scope function called $apply() updates the model
and calls the $digest() function to update the DOM and watches. This is how
changes made in your AngularJS controllers or by the $http, $timeout, and
$interval services are automatically updated in the DOM.

You should always try to make changes to scope inside the AngularJS controller or
those services. However, if you must make changes to the scope outside the AngularJS
realm, you need to call scope.$apply() on the scope to force the model and DOM
to be updated correctly. The $apply() method accepts an expression as the only
parameter. The expression is evaluated and returned, and the $digest() method is
called to update the DOM and watches.

The Mutation Observation Phase
The mutation observation phase occurs when the $digest() method is executed by
the digest loop, an $apply() call, or manually. When $digest() executes, it
evaluates all watches for changes. If a value has changed, $digest() calls the
$watch listener and updates the DOM.

The Scope Destruction Phase
The $destroy() method removes scopes from the browser memory. The AngularJS
libraries automatically call this method when child scopes are no longer needed. The
$destroy() method stops $digest() calls and removes watches, allowing the
memory to be reclaimed by the browser garbage collector.

Implementing Scope Hierarchy
A great feature of scopes is that they are organized in a hierarchy. The hierarchy helps
you keep scopes organized and relevant to the context of the view they represent. There
is a root scope at the AngularJS module level and then child scopes can be implemented
in subcomponents, such as controllers or directives. Child scopes can be nested within
each other creating a hierarchy structure.

By the Way
The $digest() method uses the scope hierarchy to propagate scope
changes to the appropriate watchers and the DOM elements.

Scope hierarchies are created automatically based on the location of ng-
controller statements in the AngularJS template. For example, the following
template code defines two <div> elements that create instances of controllers that are
siblings:
Click here to view code image

<div ng-controller="controllerA"> . . . </div>
<div ng-controller="controllerB"> . . . </div>

However, the following template code defines controllers in which controllerA is

the parent of controllerB:
Click here to view code image

<div ng-controller="controllerA">
 <div ng-controller="controllerB"> . . . </div>
</div>

The scope hierarchy works similar to the way object inheritance works in OO
languages. You can access the values of parent scopes from a controller, but you can’t
access the values of sibling or children scopes. If you add a property name in a child
scope, it does not overwrite the parent but creates a property of the same name in the
child scope that has a different value from the parent.

Try it Yourself: Implementing Nested Controllers and Scopes
In this example, you look at the behavior of scopes within nested controllers.
Listings 22.5 and 22.6 implement a basic nested scope hierarchy to demonstrate
how scopes work in a hierarchy. Listing 22.5 creates an application with three
controllers, each with two scope items defined. They all share the common scope
property title and the scope properties valueA, valueB, and valueC.
Listing 22.6 creates the three controllers in an AngularJS template.
Use the following steps to build the application with nested controllers and
scopes:
1. Add the lesson22/scope_hierarchy.html and lesson22/js/scope_ hierarchy.js

files.
2. Add the code shown in Listing 22.5 and Listing 22.6 to the HTML and

JavaScript files.
3. The code in Listing 22.5 implements three controllers: LevelA, LevelB,

and LevelC. Three controllers are defined, each with a title, value, and
inc() function to increment the value. The following code shows the
definition for LevelA:

Click here to view code image

02 controller('LevelA', function($scope) {
03 $scope.title = "Level A"
04 $scope.valueA = 1;
05 $scope.inc = function() {
06 $scope.valueA++;
07 };
08 }).

4. In Listing 22.6, the following three <div> elements are nested, which also
nests the controllers assigned to each:

Click here to view code image

07 <div ng-controller="LevelA">
. . .
10 <div ng-controller="LevelB"><hr>
. . .
15 <div ng-controller="LevelC"><hr>
. . .
21 </div>
22 </div>
23 </div>

5. The following template code in the LevelA <div> displays the title
and valueA values from LevelA and calls the inc() function for LevelA
when the button is clicked:

Click here to view code image

08 <h3>{{title}}</h3>
09 ValueA = {{valueA}} <input type="button" ng-click="inc()"
value="+" />

6. The following template code in the LevelB <div> displays the title
and valueB values from LevelB, but also the valueA value from the
LevelA scope. Also, when the button defined here is clicked, it is the inc()
function for LevelB that is called:

Click here to view code image

11 <h3>{{title}}</h3>
12 ValueA = {{valueA}}

13 ValueB = {{valueB}}
14 <input type="button" ng-click="inc()" value="+" />

7. The following template code in the LevelC <div> displays the title
and valueC values from LevelB, but also the valueA value from the
LevelA scope and the valueB value from the LevelB scope. Also, when
the button defined here is clicked, the inc() function for LevelC is called:

Click here to view code image

16 <h3>{{title}}</h3>
17 ValueA = {{valueA}}

18 ValueB = {{valueB}}

19 ValueC = {{valueC}}
20 <input type="button" ng-click="inc()" value="+" />

8. Figure 22.3 shows the rendered AngularJS application. Notice that the value
of the title property in all three scopes is different. That is because a new
title property is created for each level in the hierarchy.

FIGURE 22.3 Implementing a hierarchy of controllers that render results from the
multiple levels of scope.

LISTING 22.5 scope_hierarchy.js Implementing a Basic Scope Hierarchy with
Access to Properties at Each Level

Click here to view code image

01 angular.module('myApp', []).
02 controller('LevelA', function($scope) {
03 $scope.title = "Level A"
04 $scope.valueA = 1;
05 $scope.inc = function() {
06 $scope.valueA++;
07 };
08 }).
09 controller('LevelB', function($scope) {
10 $scope.title = "Level B"
11 $scope.valueB = 1;
12 $scope.inc = function() {
13 $scope.valueB++;
14 };
15 }).
16 controller('LevelC', function($scope) {
17 $scope.title = "Level C"

18 $scope.valueC = 1;
19 $scope.inc = function() {
20 $scope.valueC++;
21 };
22 });

LISTING 22.6 scope_hierarchy.html HTML Template Code That Implements a
Hierarchy of Controllers and Renders Results from the Multiple Levels of Scope

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>
04 <title>AngularJS Scope Hierarchy</title>
05 </head>
06 <body>
07 <div ng-controller="LevelA">
08 <h3>{{title}}</h3>
09 ValueA = {{valueA}} <input type="button" ng-click="inc()" value="+"
/>
10 <div ng-controller="LevelB"><hr>
11 <h3>{{title}}</h3>
12 ValueA = {{valueA}}

13 ValueB = {{valueB}}
14 <input type="button" ng-click="inc()" value="+" />
15 <div ng-controller="LevelC"><hr>
16 <h3>{{title}}</h3>
17 ValueA = {{valueA}}

18 ValueB = {{valueB}}

19 ValueC = {{valueC}}
20 <input type="button" ng-click="inc()" value="+" />
21 </div>
22 </div>
23 </div>
24 <script src="http://code.angularjs.org/1.3.8/angular.min.js">
</script>
25 <script src="js/scope_hierarchy.js"></script>
26 </body>
27 </html>

Summary
A scope is the definitive source for data in AngularJS applications. A scope has direct
relationships with the template views, controllers, modules, and services and acts as the
glue that binds the application together. A scope also acts as a representation of a
database or another server-side data source.
The scope life cycle is linked to the browser event loop so that changes in the browser

can change the scope, and changes in the scope are reflected in the DOM elements that
are bound to the scope. You can also add custom watch functions that are notified when
the scope changes.
Scopes are organized into hierarchies, and the root scope is defined at that application
level. Each instance of a controller also gets an instance of a child scope. From the
child scopes, you can access data that is stored in the parent scope hierarchy.

Q&A
Q. Does the scope have to match the data model exactly—for instance, data

coming from the server?
A. No, the scope for the AngularJS application should match what is necessary for

the application itself. However, keeping it matched as close to the back-end data
as possible can make it easier to maintain the code.

Q. Is it possible to modify the scope from outside the AngularJS application?
A. Yes, you can always access the scope using
anguler.element(<dom_element>).scope(). However, it is usually
best to modify the scope only from inside the application itself.

Workshop
The workshop consists of a set of questions and answers designed to solidify your
understanding of the material covered in this hour. Try to answer the questions before
looking at the answers.

Quiz
1. What are the phases of the scope life cycle?
2. Where should you typically make changes to the scope?
3. Will changing the value in the scope automatically update references in

expressions within the view?
4. In the following example, is controller B a parent, sibling, or child of controllers

A and/or C?
Click here to view code image

<div ng-controller="controllerA">
 <div ng-controller="controllerB">
 <div ng-controller="controllerC">. . . </div>
 </div>
</div>

Quiz Answers

1. Creation, watch registration, model mutation, mutation observation, and scope
destruction.

2. Typically, scope value changes are made either in the controller or directive
code.

3. Yes. The change is detected, which updates the DOM and consequently the
browser view.

4. B is a parent of C and a child of A.

Exercises
1. Modify the example in Listing 22.1 and Listing 22.2 to add a button that resets the

value of current in the scope to the start value when it is clicked.
2. Modify the example in Listings 22.3 and 22.4 to add another function named
multiplyValues() to the scope that multiplies values instead of adding
them. You will also need to add the appropriate expression and button to the
template to expose that functionality.

Lesson 23. Using AngularJS Templates to Create Views

What You’ll Learn in This Lesson:
 How and when to use AngularJS expressions
 How to create AngularJS templates
 Ways to use the built-in AngularJS filters
 How to create your own custom AngularJS filters

AngularJS templates provide a framework to represent the application view to the user.
AngularJS templates contain expressions, filters, and directives that define additional
functionality and behavior to the DOM elements. The templates are built on top of
normal HTML and extend the functionality of HTML by adding additional elements and
attributes.
This lesson focuses on AngularJS templates, as well as expressions and filters.
Expressions enable you to implement JavaScript-like code alongside the HTML code in
a template. Filters enable you to modify data values before you display them—for
example, to format text.

Understanding Templates
AngularJS templates are fairly straightforward yet very powerful and easy to extend.
Templates are based on standard HTML documents but extend the HTML functionality
with three additional components:

 Expressions: Expressions are bits of JavaScript-like code that are evaluated
within the context of a scope. Expressions are denoted by {{}} brackets. The
results of an expression are added to a compiled HTML web page. Expressions
can be placed in normal HTML text or in the values of attributes, as shown here:

Click here to view code image

<p>{{1+2}}</p>
href="/myPage.html/{{hash}}"

 Filters: Filters transform the appearance of data that is placed on a web page. For
example, a filter can convert a number from the scope into a currency string or a
time string.
 Directives: Directives are new HTML element names or attribute names within
HTML elements. They add to and modify the behavior of HTML elements to
provide data binding, event handling, and other support to an AngularJS
application.

The following code snippet shows an example of implementing directives, expressions,

and filters. The ng-model="msg" attribute is a directive that binds the value of the
<input> element to msg in the scope. The code in the {{}} brackets is an
expression that applies the uppercase filter:

<div>
 <input ng-model="msg">
 {{msg | uppercase}}
</div>

When you load an AngularJS web page into a browser, you load it in a raw state,
containing template code along with HTML code. The initial DOM is built from that
web page. When the AngularJS application is bootstrapped, the AngularJS template
compiles into the DOM, dynamically adjusting the values, event bindings, and other
properties of the DOM elements to the directives, expressions, and filters in the
template.
During compilation, HTML tags and attributes are normalized to support the fact that
AngularJS is case sensitive, whereas HTML is not. Normalization does two things:

 Strips the x- and data- prefixes from the front of elements and attributes.
 Converts names with : or - or _ to camelCase.

For example, all of the following normalize to ngModel:
ng-model
data-ng-model
x-ng:model
ng_model

Using Expressions
Using expressions is the simplest way to represent data from the scope in an AngularJS
view. Expressions are encapsulated blocks of code inside brackets:
{{expression}}. The AngularJS compiler compiles an expression into HTML
elements so that the results of the expression are displayed. For example, look at the
following expressions:

{{1+5}}
{{'One' + 'Two'}}

Based on those expressions, the web page displays these values:
6
OneTwo

Expressions are bound to the data model, which provides two huge benefits. First, you
can use the property names and functions that are defined in the scope inside your
expressions. Second, because the expressions are bound to the scope, when data in the
scope changes, so do the expressions. For example, suppose that the scope contains the

following values:
$scope.name='Brad';
$scope.score=95;

You can directly reference the name and score values in the template expressions, as
shown here:

Name: {{name}}
Score: {{score}}
Adjusted: {{score+5}}

AngularJS expressions are similar to JavaScript expressions in several ways, but they
differ in these ways:

 Attribute evaluation: Property names are evaluated against the scope model
instead of against the global JavaScript namespace.
 More forgiving: Expressions do not throw exceptions when they encounter
undefined or null variable types; instead, they treat these as having no value.
 No flow control: Expressions do not allow JavaScript conditionals or loops.
Also, you cannot throw an error inside an expression.

AngularJS evaluates the strings used to define the value of attributes in directive tags as
expressions. This enables you to include expression-type syntax within a definition. For
example, when you set the value of the ng-click directive in the template, you
specify an expression. Inside that expression, you can reference scope variable and use
other expression syntax, as shown here:
Click here to view code image

Because the AngularJS template expressions have access to the scope, you can also
make changes to the scope inside the AngularJS expression. For example, the following
ng-click directive changes the value of msg inside the scope model:
Click here to view code image

The following sections take you through some examples of utilizing the expression
capability in AngularJS.

Try it Yourself: Using Basic Expressions
In this exercise, you see how AngularJS expressions handle rendering of strings
and numbers. The purpose of this exercise is to illustrate how AngularJS

evaluates expressions that contain strings and numbers as well as basic
mathematical operators.
The code in Listing 23.1 is a simple AngularJS application with a controller
named myController. The controller is empty because none of the
expressions access the scope.
The code in Listing 23.2 is an AngularJS template that contains several types of
expressions wrapped in {{}} brackets. Some of the expressions are numbers or
strings, some include the + operation to combine strings and/or numbers, and one
applies a === operator to compare two numbers.
Use the following steps to build the application that uses basic expressions:
1. Add the lesson23/expressions_basic.html and

lesson23/js/expressions_basic.js files.
2. Add the code shown in Listing 23.1 and Listing 23.2 to the HTML and

JavaScript files.
3. The following code in Listing 23.1 implements a basic AngularJS controller:

Click here to view code image

01 angular.module('myApp', [])
02 .controller('myController', function($scope) {
03 });

4. The following line of code from Listing 23.2 uses the expression brackets
{{}} to display a number:

14 {{5}}<hr>

5. The following line of code from Listing 23.2 uses the expression brackets
{{}} to display a string:

Click here to view code image

16 {{'My String'}}<hr>

6. The following line of code from Listing 23.2 uses the expression brackets
{{}} to display a string by adding strings together:

Click here to view code image

18 {{'String1' + ' ' + 'String2'}}<hr>

7. The following line of code from Listing 23.2 uses the expression brackets
{{}} to display a number by adding numbers together:

20 {{5+5}}<hr>

8. The following line of code from Listing 23.2 uses the expression brackets

{{}} to display a string and number by adding them together. Adding
{{5+5}} will display 10, but adding {{ 5 + '+ ' + 5}} will display
5 + 5:

Click here to view code image

22 {{5 + '+' + 5 + '='}}{{5+5}}<hr>

9. The following line of code from Listing 23.2 uses the expression brackets
{{}} to display a Boolean value by comparing 5 to 5:

24 {{5===5}}<hr>

10. Open expressions_basic.html in a browser. Figure 23.1 shows the rendered
webpage. Note that numbers and strings are rendered directly to the final view.
Adding strings and numbers together enables you to build text strings that are
rendered to the view. Also note that using a comparison operator renders the
word true or false to the view.

FIGURE 23.1 Using AngularJS expressions that contain strings, numbers, and basic
math operations.

LISTING 23.1 expressions_basic.js Basic AngularJS Application Code with Empty
Controller

Click here to view code image

01 angular.module('myApp', [])
02 .controller('myController', function($scope) {
03 });

LISTING 23.2 expressions_basic.html Applying Basic Strings and Numbers with
Simple Math Operations to an AngularJS Template

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>
04 <title>AngularJS Expressions</title>
05 <style>
06 p{margin:0px;}
07 p:after{color:red;}
08 </style>
09 </head>
10 <body>
11 <div ng-controller="myController">
12 <h1>Expressions</h1>
13 Number:

14 {{5}}<hr>
15 String:

16 {{'My String'}}<hr>
17 Adding two strings together:

18 {{'String1' + ' ' + 'String2'}}<hr>
19 Adding two numbers together:

20 {{5+5}}<hr>
21 Adding strings and numbers together:

22 {{5 + '+' + 5 + '='}}{{5+5}}<hr>
23 Comparing two numbers with each other:

24 {{5===5}}<hr>
25 <script src="http://code.angularjs.org/1.3.0/angular.min.js">
</script>
26 <script src="js/expressions_basic.js"></script>
27 </body>
28 </html>

Try it Yourself: Interacting with the Scope in Expressions
Now that you have seen some basic AngularJS expressions, let’s take a look at

how to interact with the scope inside AngularJS expressions. In the previous
example, all the input for the expressions came from explicit strings or numbers.
This example illustrates the true power of AngularJS expressions that come from
interacting with data in the scope.
Use the following steps to build the application that uses basic expressions:
1. Add the lesson23/expressions_scope.html and

lesson23/js/expressions_scope.js files.
2. Add the code shown in Listing 23.3 and Listing 23.4 to the HTML and

JavaScript files.
3. The following code in Listing 23.3 initializes the scope with the speed,
vehicle, new-Speed, and newVehicle variables it needs:

Click here to view code image

03 $scope.speed = 'Slow';
04 $scope.vehicle = 'Train';
05 $scope.newSpeed = 'Hypersonic';
06 $scope.newVehicle = 'Plane';

4. The following code implements two functions that accept a string and return
that string in uppercase or lowercase characters:

Click here to view code image

07 $scope.upper = function(aString){
08 return angular.uppercase(aString);
09 };
10 $scope.lower = function(aString){
11 return angular.lowercase(aString);
12 };

5. The following code creates a function that sets the values for
$scope.speed and $scope.vehicle based on parameters passed in:

Click here to view code image

13 $scope.setValues = function(speed, vehicle){
14 $scope.speed = speed;
15 $scope.vehicle = vehicle;
16 };

6. The following code from Listing 23.4 is part of the AngularJS template that
allows you to directly access the variables in the scope.

Click here to view code image

12 {{speed}} {{vehicle}}<hr>

7. This next segment of code adds the variables speed and vehicle from the
scope and displays them:

Click here to view code image

14 {{speed + ' ' + vehicle}}<hr>

8. The following code displays the results of calling the lower() and
upper() functions in the scope. Notice that speed from the scope is passed
into lower() and a string Jeep is passed into upper():

Click here to view code image

16 {{lower(speed)}} {{upper('Jeep')}}<hr>

9. The following lines of code use ng-click to call setValues() in the
controller. The first parameter is a string and the second parameter is the
variable newVehicle from the scope:

Click here to view code image

17 <a ng-click="setValues('Fast', newVehicle)">
18 Click to change to Fast {{newVehicle}}<hr>

10. The following lines of code use ng-click to call setValues() in the
controller. The first parameter is the variable newSpeed from the scope and
the second parameter is the string Rocket:

Click here to view code image

19 <a ng-click="setValues(newSpeed, 'Rocket')">
20 Click to change to {{newSpeed}} Rocket<hr>

11. The following lines of code directly set the variable vehicle in the scope
when they are clicked on:

Click here to view code image

21 <a ng-click="vehicle='Car'">
22 Click to change the vehicle to a Car<hr>
23 <a ng-click="vehicle='Enhanced ' + vehicle">
24 Click to Enhance Vehicle<hr>

12. Open expressions_scope.html in a browser. Figure 23.2 shows the rendered
web page based on the expressions. Note that when the links of the page are
clicked on, the resulting function calls adjust the scope, which changes how the
previously discussed expressions are rendered.

FIGURE 23.2 Using AngularJS expressions to represent and use scope data in the
AngularJS view.

LISTING 23.3 expressions_scope.js Building a Scope That AngularJS Expressions
Can Use

Click here to view code image

01 angular.module('myApp', [])
02 .controller('myController', function($scope) {
03 $scope.speed = 'Slow';
04 $scope.vehicle = 'Train';
05 $scope.newSpeed = 'Hypersonic';
06 $scope.newVehicle = 'Plane';
07 $scope.upper = function(aString){
08 return angular.uppercase(aString);
09 };
10 $scope.lower = function(aString){
11 return angular.lowercase(aString);
12 };
13 $scope.setValues = function(speed, vehicle){
14 $scope.speed = speed;
15 $scope.vehicle = vehicle;
16 };
17 });

LISTING 23.4 expressions_scope.html An AngularJS Template That Uses
Expressions in Various Ways to Interact with Data from the Scope Model

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>
04 <title>AngularJS Expressions</title>
05 <style>
06 a{color: blue; text-decoration: underline; cursor: pointer}
07 </style>
08 </head>
09 <body>
10 <div ng-controller="myController">
11 Directly accessing variables in the scope:

12 {{speed}} {{vehicle}}<hr>
13 Adding variables in the scope:

14 {{speed + ' ' + vehicle}}<hr>
15 Calling function in the scope:

16 {{lower(speed)}} {{upper('Jeep')}}<hr>
17 <a ng-click="setValues('Fast', newVehicle)">
18 Click to change to Fast {{newVehicle}}<hr>
19 <a ng-click="setValues(newSpeed, 'Rocket')">
20 Click to change to {{newSpeed}} Rocket<hr>
21 <a ng-click="vehicle='Car'">
22 Click to change the vehicle to a Car<hr>
23 <a ng-click="vehicle='Enhanced ' + vehicle">
24 Click to Enhance Vehicle<hr>
25 <script src="http://code.angularjs.org/1.3.0/angular.min.js">
</script>

26 <script src="js/expressions_scope.js"></script>
27 </body>
28 </html>

Try it Yourself: Using JavaScript in AngularJS Expressions
In this final example, we take a look at some additional JavaScript interactions
within the scope. As described previously, much of the JavaScript functionality is
supported in AngularJS expression. To illustrate this better, the example shows
some array manipulation as well as utilizing the JavaScript Math object within
expressions.
Use the following steps to build the application that uses JavaScript in basic
expressions:
1. Add the lesson23/expressions_javascript.html and

lesson23/js/expressions_javascript.js files.
2. Add the code shown in Listing 23.5 and Listing 23.6 to the HTML and

JavaScript files.
3. The following code in Listing 23.5 creates a simple AngularJS controller that

contains two arrays in the scope that will be used in the expressions. Notice
that line 3 adds a Math variable to the scope by assigning it to
windows.Math. This is necessary to use the JavaScript Math functionality
because only the scope variables are available when AngularJS expressions
are evaluated:

Click here to view code image

01 angular.module('myApp', [])
02 .controller('myController', function($scope) {
03 $scope.Math = window.Math;
04 $scope.myArr = [1];
05 $scope.removedArr = [];
06 });

4. Listing 23.6 implements an AngularJS template that uses AngularJS
expressions to display the arrays, show the array length, and manipulate the
array elements using push() and shift() directly in the expressions. The
following lines display the myArr and removedArr variables from the
scope:

Click here to view code image

13 {{myArr}}<hr>
. . .
15 {{removedArr}}<hr>

5. The following lines apply JavaScript push and shift functionality on the
myArr and removedArray variables in the scope directly from within the
expression:

Click here to view code image

16 <a ng-click="myArr.push(Math.floor(Math.random()*100 + 1))">
17 Click to append a value to the array<hr>
18 <a ng-click="removedArr.push(myArr.shift())">
19 Click to remove the first value from the array<hr>

6. The following line displays the length of myArry using the JavaScript length
value on the array object:

Click here to view code image

21 {{myArr.length}}<hr>

7. The following line uses the Math variable in the scope that points to the
JavaScript Math object to get the cosine of the length of removedArr:

Click here to view code image

23 {{Math.cos(removedArr.length)}}<hr>

8. Open expressions_javascript.html in a browser and click to add and remove
elements from the array. Figure 23.3 shows the AngularJS web page rendered.
Notice that as the links are clicked, the arrays get adjusted and the expressions
are reevaluated.

FIGURE 23.3 Using AngularJS expressions that apply JavaScript array and Math
operations to interact with scope data.

LISTING 23.5 expressions_javascript.js Building a Scope with Arrays and the

Math Object That AngularJS Expressions Can Use

Click here to view code image

01 angular.module('myApp', [])
02 .controller('myController', function($scope) {
03 $scope.Math = window.Math;
04 $scope.myArr = [1];
05 $scope.removedArr = [];
06 });

LISTING 23.6 expressions_javascript.html An AngularJS Template That Uses
Expressions That Contain Arrays and Math Logic in Various Ways to Interact with
Data from the Scope Model

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>
04 <title>AngularJS Expressions</title>
05 <style>
06 a{color: blue; text-decoration: underline; cursor: pointer}
07 </style>
08 </head>
09 <body>
10 <div ng-controller="myController">
11 <h1>Expressions</h1>
12 Array:

13 {{myArr}}<hr>
14 Elements removed from array:

15 {{removedArr}}<hr>
16 <a ng-click="myArr.push(Math.floor(Math.random()*100 + 1))">
17 Click to append a value to the array<hr>
18 <a ng-click="removedArr.push(myArr.shift())">
19 Click to remove the first value from the array<hr>
20 Size of Array:

21 {{myArr.length}}<hr>
22 Cosine of the length of the removed array:

23 {{Math.cos(removedArr.length)}}<hr>
24 <script src="http://code.angularjs.org/1.3.8/angular.min.js">
</script>
25 <script src="js/expressions_javascript.js"></script>
26 </body>
27 </html>

Using Filters

A great feature of AngularJS is the capability to implement filters. Filters are a type of
provider that hooks into the expression parser and modifies the results of the expression
for display in a view—for example, to format time or currency values.
You implement filters inside expressions, using the following syntax:

{{ expression | filter}}

If you chain multiple filters together, they are executed in the order in which you specify
them:
Click here to view code image

{{ expression | filter | filter }}

Some filters allow you to provide input in the form of function parameters. You add
these parameters by using the following syntax:
Click here to view code image

{{ expression | filter:parameter1:parameter2 }}

Also, you can add filters, which are providers, to controllers and services by using
dependency injection. The filter provider name is the name of the filter plus Filter.
For example, the currency filter provider is named currencyFilter. The filter
provider acts as a function, with the expression as the first parameter and any additional
parameters after that. The following code defines a controller that injects
currencyFilter and uses it to format results. Notice that currencyFilter is
added to the dependency injection for the controller and is called as a function:
Click here to view code image

controller('myController', ['$scope', 'currencyFilter',
 function($scope, myCurrencyFilter){
 $scope.getCurrencyValue = function(value){
 return myCurrencyFilter(value, "$USD");
 };
}]);

Using Built-in Filters
AngularJS provides several types of filters that enable you to easily format strings,
objects, and arrays in AngularJS templates. Table 23.1 lists the built-in filters provided
with AngularJS.

TABLE 23.1 Filters That Modify Expressions in AngularJS Templates

Try it Yourself: Using Filters to Control How Data Is Rendered
In this example, you play around with the built-in AngularJS filters. The code in
Listing 23.7 defines an AngularJS application with various types of data in the
scope. The code in Listing 23.8 implements an AngularJS template that utilizes
some basic filters to display the values.
Use the following steps to create the application and implement the filters in
AngularJS expressions:
1. Add the lesson23/filters.html and lesson23/js/filters.js files.
2. Add the code shown in Listing 23.7 and Listing 23.8 to the HTML and

JavaScript files.
3. The following code implements a controller with scope values that include

date, object, string, and array objects:
Click here to view code image

02 .controller('myController', function($scope) {
03 $scope.currentDate = new Date();
04 $scope.JSONObj = { title: "myTitle" };
05 $scope.word="Supercalifragilisticexpialidocious";
06 $scope.days=['Monday', 'Tuesday', 'Wednesday',

07 'Thursday', 'Friday'];
08 });

4. The following code from Listing 23.8 implements several filters. The
following line implements the number filter and limits the number of decimal
places displayed to 3:

Click here to view code image

09 Number: {{123.45678|number:3}}

5. The following code implements the currency filter, which accepts a
number, places a dollar sign in front, and limits the decimal value to two
places format for U.S. currency:

Click here to view code image

10 Currency: {{123.45678|currency:"$"}}

6. The following code implements the date filter, which formats the date object
currentDate in the scope and displays it:

Click here to view code image

11 Date: {{ currentDate | date:'yyyy-MM-dd HH:mm:ss Z'}}

7. Remember the JSONobj from earlier? The following code utilizes that and
fills in the expression:

Click here to view code image

12 JSON: {{ JSONObj | json }}

8. The following code uses the limit filter to display only 3 elements of the days
array:

Click here to view code image

13 Limit Array: {{ days | limitTo:3 }}

9. The following lines of code us the limit, uppercase, and lowercase
filter to modify how the string variable word from the scope is displayed:

Click here to view code image

14 Limit String: {{ word | limitTo:9 }}

15 Uppercase: {{ word | uppercase | limitTo:9 }}

16 Lowercase: {{ word | lowercase | limitTo:9 }}

10. Load filters.html into a browser. Figure 23.4 shows the output generated by
the filters.

FIGURE 23.4 Using AngularJS filters to modify data before displaying it in the
AngularJS view.

LISTING 23.7 filters.js Building a Scope That AngularJS Filters Can Use

Click here to view code image

01 angular.module('myApp', [])
02 .controller('myController', function($scope) {
03 $scope.currentDate = new Date();
04 $scope.JSONObj = { title: "myTitle" };
05 $scope.word="Supercalifragilisticexpialidocious";
06 $scope.days=['Monday', 'Tuesday', 'Wednesday',
07 'Thursday', 'Friday'];
08 });

LISTING 23.8 filters.html An AngularJS Template That Implements Various
Types of Filters to Modify Data Displayed in the Rendered View

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>
04 <title>AngularJS Filters</title>
05 </head>
06 <body>
07 <div ng-controller="myController">
08 <h2>Basic Filters</h2>
09 Number: {{123.45678|number:3}}

10 Currency: {{123.45678|currency:"$"}}

11 Date: {{ currentDate | date:'yyyy-MM-dd HH:mm:ss Z'}}

12 JSON: {{ JSONObj | json }}

13 Limit Array: {{ days | limitTo:3 }}

14 Limit String: {{ word | limitTo:9 }}

15 Uppercase: {{ word | uppercase | limitTo:9 }}

16 Lowercase: {{ word | lowercase | limitTo:9 }}
17 <script src="http://code.angularjs.org/1.3.0/angular.min.js">
</script>
18 <script src="js/filters.js"></script>
19 </body>
20 </html>

Try it Yourself: Using Filters to Implement Ordering and Filtering
A very common use of filters is to order or filter out dynamic elements built using
the ng-repeat directive from JavaScript arrays. This section provides an
example of implementing orderBy filters to generate a table that can be sorted
by column and filtered by a string from an <input> element.
Use the following steps to create the AngularJS application that utilizes the
ordering and sorting filters on tabular data:
1. Add the lesson23/filter_sort.html and lesson23/js/filter_sort.js files.
2. Add the code shown in Listing 23.9 and Listing 23.10 to the HTML and

JavaScript files.
3. The code in Listing 23.9 implements an AngularJS application with a single

controller. The following lines of code inject the filterFilter provider
into the controller:

Click here to view code image

02 .controller('myController', ['$scope', 'filterFilter',
03 function($scope, filterFilter) {

4. The following lines then define several variables, including planes, which
stores an array of objects that will act as the data source for the application;
filteredPlanes, which will store the filtered version of planes that will
be displayed; reverse, which keeps track of the sort order; and column,
which keeps track of which column you are sorting on:

Click here to view code image

04 $scope.planes = [
05 {make: 'Boeing', model: '777', capacity: 440},
. . .
12 $scope.filteredPlanes = $scope.planes;
13 $scope.reverse = true;

14 $scope.column = 'make';

5. The following lines of code define the setSort() function, which is used to
update the column and reverse values:

Click here to view code image

15 $scope.setSort = function(column){
16 $scope.column = column;
17 $scope.reverse = !$scope.reverse;
18 };

6. The following lines define the filterString value, which filters the
objects to include in filteredPlanes. They also define the
setFilter() function, which calls the filterFilter() provider to
limit the items in filteredPlanes to the ones that loosely match
filterString:

Click here to view code image

19 $scope.filterString = '';
20 $scope.setFilter = function(value){
21 $scope.filteredPlanes =
22 filterFilter($scope.planes, $scope.filterString);
23 };

7. The code in Listing 23.10 implements a template that includes a text input and
button to set a string filter as well as a table that allows the sorting by clicking
a column header. The following lines show the text <input> that binds to the
filterString value and a button <input> that calls setFilter() when
clicked:

Click here to view code image

14 <input type="text" ng-model="filterString">
15 <input type="button" ng-click="setFilter()" value="Filter">

8. The following lines show that the table headers apply ng-click directives
to call setSort() to set the sort column. The sort order is reversed each
time setSort() is called:

Click here to view code image

18 <th ng-click="setSort('make')">Make</th>
19 <th ng-click="setSort('model')">Model</th>
20 <th ng-click="setSort('capacity')">Capacity</th>

9. The following lines implement the rows of the table by using the ng-repeat
directive. Notice that the ng-repeat directive uses the orderBy filter to
specify the column name and reverse values set by the setSort() function:

Click here to view code image

22 <tr ng-repeat=
23 "plane in filteredPlanes | orderBy:column:reverse">
24 <td>{{plane.make}}</td>
25 <td>{{plane.model}}</td>
26 <td>{{plane.capacity}}</td>
27 </tr>

10. Open filter_sort.html in a browser. Figure 23.5 shows the resulting web page.
Clicking a column header sorts the table, and adding text to the filter box filters
the contents of the table.

FIGURE 23.5 Using AngularJS filters to filter and order items in a table in the
AngularJS view.

LISTING 23.9 filter_sort.js AngularJS Module that Builds a List of Planes and
Provides Functionality to Sort and Order the List

Click here to view code image

01 angular.module('myApp', [])
02 .controller('myController', ['$scope', 'filterFilter',
03 function($scope, filterFilter) {
04 $scope.planes = [
05 {make: 'Boeing', model: '777', capacity: 440},
06 {make: 'Boeing', model: '747', capacity: 700},
07 {make: 'Airbus', model: 'A380', capacity: 850},
08 {make: 'Airbus', model: 'A340', capacity: 420},
09 {make: 'McDonnell Douglas', model: 'DC10', capacity: 380},
10 {make: 'McDonnell Douglas', model: 'MD11', capacity: 410},
11 {make: 'Lockheed', model: 'L1011', capacity: 380}];
12 $scope.filteredPlanes = $scope.planes;
13 $scope.reverse = true;
14 $scope.column = 'make';
15 $scope.setSort = function(column){
16 $scope.column = column;
17 $scope.reverse = !$scope.reverse;
18 };

19 $scope.filterString = '';
20 $scope.setFilter = function(value){
21 $scope.filteredPlanes =
22 filterFilter($scope.planes, $scope.filterString);
23 };
24 }]);

LISTING 23.10 filter_sort.html An AngularJS Template That Implements filter
and orderBy Filters to Order and Filter Items in a Table View

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>
04 <title>AngularJS Sorting and Filtering</title>
05 <style>
06 table{text-align:right;}
07 td,th{padding:3px;}
08 th{cursor:pointer;}
09 </style>
10 </head>
11 <body>
12 <div ng-controller="myController">
13 <h2>Sorting and Filtering</h2>
14 <input type="text" ng-model="filterString">
15 <input type="button" ng-click="setFilter()" value="Filter">
16 <table>
17 <tr>
18 <th ng-click="setSort('make')">Make</th>
19 <th ng-click="setSort('model')">Model</th>
20 <th ng-click="setSort('capacity')">Capacity</th>
21 </tr>
22 <tr ng-repeat=
23 "plane in filteredPlanes | orderBy:column:reverse">
24 <td>{{plane.make}}</td>
25 <td>{{plane.model}}</td>
26 <td>{{plane.capacity}}</td>
27 </tr>
28 </table>
29 <script src="http://code.angularjs.org/1.3.0/angular.min.js">
</script>
30 <script src="js/filter_sort.js"></script>
31 </body>
32 </html>

Creating Custom Filters
AngularJS enables you to create your own custom filter provider and then use it in

expressions, controllers, and services as if it were a built-in filter. AngularJS provides
the filter() method to create a filter provider and register it with the dependency
injector server.
The filter() method accepts a name for the filter as the first argument and a function
for the second argument. The filter function should accept the expression input as the
first parameter and any additional parameters following that. For example:
Click here to view code image

filter('myFilter', function(){
 return function(input, param1, param2){
 return <<modified input>>;
 };
});

Inside the filter function, you can change the value of the input in any way you like.
Whatever value is returned from the filter function is returned as the expression results.

Try it Yourself: Creating and Implementing a Custom Filter
In this exercise, you build and use a custom AngularJS filter that applies a censor
to words in text. The purpose of this exercise is to illustrate how to build and use
a custom AngularJS template.
The code in Listings 23.11 and 23.12 create a custom filter function that censors
words from a string and allows for a replacement value as an optional parameter.
Use the following steps to build the application that creates and applies a custom
filter:
1. Add the lesson23/filter_custom.html and lesson23/filter_custom.js files.
2. Add the code shown in Listing 23.11 and Listing 23.12 to the HTML and

JavaScript files.
3. The following code in Listing 23.11 defines the filter named censor. Notice

that the filter returns a function that accepts an input and replacement value and
then iterates through the censored words and replaces the text with the
replacement value:

Click here to view code image

02 .filter('censor', function() {
03 return function(input, replacement) {
04 var cWords = ['bad', 'evil', 'dark'];
05 var out = input;
06 for(var i=0; i<cWords.length; i++){
07 var regex = new RegExp(cWords[i], "gi");
08 out = out.replace(regex, replacement);
09 }
10 return out;

11 };
12 })

4. The following code implements the controller for the application. Notice that
the censorFilter is injected into the controller. Also look at the function
called filterText that applies the censorFilter to a string of text
manually:

Click here to view code image

13 .controller('myController', ['$scope', 'censorFilter',
14 function($scope, myCensorFilter) {
15 $scope.censorText = "***";
16 $scope.phrase="This is a bad phrase.";
17 $scope.txt = "Click to filter out dark and evil.";
18 $scope.filterText = function(){
19 $scope.txt = myCensorFilter($scope.txt, '<<censored>>');
20 };
21 }]);

5. The code in Listing 23.12 implements a template that utilizes the filter in a
couple of ways. The following line implements the filter on the phrase value
in the scope by passing the censorText variable from the scope as the
replacement string value:

Click here to view code image

09 {{phrase | censor:censorText}}

6. The following line of code from Listing 23.12 implements the filter on a string
by passing the string "happy" in as the replacement string:

Click here to view code image

10 {{"This is some bad, dark, evil text." | censor:"happy"}}

7. The following line of code uses ng-click to call the filterText()
function in the controller, which will programmatically call the filter and pass
<<censored>> in as the replacement string:

Click here to view code image

11 <p ng-click="filterText()">{{txt}}</p>

8. Load the filter_custom.HTML file in a browser to see the behavior shown in
Figure 23.6.

FIGURE 23.6 Creating and using custom filters in an AngularJS view.

LISTING 23.11 filter_custom.js Implementing a Custom Filter Provider in
AngularJS

Click here to view code image

01 angular.module('myApp', [])
02 .filter('censor', function() {
03 return function(input, replacement) {
04 var cWords = ['bad', 'evil', 'dark'];
05 var out = input;
06 for(var i=0; i<cWords.length; i++){
07 var regex = new RegExp(cWords[i], "gi");
08 out = out.replace(regex, replacement);
09 }
10 return out;
11 };
12 })
13 .controller('myController', ['$scope', 'censorFilter',
14 function($scope, myCensorFilter) {

15 $scope.censorText = "***";
16 $scope.phrase="This is a bad phrase.";
17 $scope.txt = "Click to filter out dark and evil.";
18 $scope.filterText = function(){
19 $scope.txt = myCensorFilter($scope.txt, '<<censored>>');
20 };
21 }]);

LISTING 23.12 filter_custom.html An AngularJS Template That Uses a Custom
Filter

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>
04 <title>AngularJS Custom Filter</title>
05 </head>
06 <body>
07 <div ng-controller="myController">
08 <h2>Sorting and Filtering</h2>
09 {{phrase | censor:censorText}}

10 {{"This is some bad, dark, evil text." | censor:"happy"}}
11 <p ng-click="filterText()">{{txt}}</p>
12 <script src="http://code.angularjs.org/1.3.0/angular.min.js">
</script>
13 <script src="js/filter_custom.js"></script>
14 </body>
15 </html>

Summary
AngularJS templates are simple to implement yet very powerful and extensive. This
lesson discusses the components of AngularJS templates and how they work together to
extend HTML DOM behavior and functionality. Expressions are bits of JavaScript code
contained in {{}} brackets or within directive definitions in the AngularJS template.
Expressions have access to the scope, so you can render scope values to the view.
Filters act as modifiers to expressions and enable you to format expression results for
specific purposes. AngularJS provides several built-in filters, such as for currency and
date formatting. You can also create your own custom filters that provide any formatting
or modifications you want apply before rendering data to the page. You inject filters as
providers into the injector service and can therefore access them inside controllers and
templates, using dependency injection. This means you have access to filters within your
JavaScript code as well.

Q&A
Q. Why use a custom filter rather than a simple function in the controller?
A. The AngularJS mentality is to allow as much of the intent as possible to be

expressed in the HTML templates. This makes applications easier to design and
follow. It is also much easier to reuse a filter than it is a custom function.

Q. Why doesn’t the HTML standard adopt all of the functionality provided by
AngularJS as part of the HTML spec?

A. HTML will likely add some of the functionality provided by AngularJS as time
goes on. However, it is too difficult to move a massively adopted specification
such as HTML at the rate developers need. AngularJS is the next best thing.

Workshop
The workshop consists of a set of questions and answers designed to solidify your
understanding of the material covered in this hour. Try to answer the questions before
looking at the answers.

Quiz
1. How do you compare scope values, valueA and valueB, in an AngularJS

expression?
2. What is the output of the following AngularJS expression: {{5 + '+' +
5}}?

3. How would you use AngularJS to properly display the U.S. dollar amount stored
in the myMoney variable from the scope?

4. What AngularJS filter would you use to sort rows in an HTML table?

Quiz Answers
1. {{valueA===valueB}
2. 5+5
3. {{myMoney | currency:"$USD" }}
4. orderBy

Exercises
1. Modify the code in Listings 23.1 and 23.2 to store a string variable named
myScopeText in the scope and then display it in the template using the
following expression. Then do the same for a number variable in the scope named
myScopeNumber:

{{myScopeText}}

2. Look at the date filter listed in Table 23.1 and then modify the date filter in
Listing 23.8 to change the format of the date string displayed.

3. Modify the code in Listings 23.11 and 23.12 by adding an additional string to the
scope to be censored. Then add a statement to the template that specifies that
variable name in the scope for the word and a string as the replacement value. For
example:

Click here to view code image

{{myNewPhrase | censor:"XXX" }}

Lesson 24. Implementing Directives in AngularJS Views

What You’ll Learn in This Lesson:
 How AngularJS directives relate to HTML
 Ways to implement AngularJS directives in your web pages
 Using AngularJS directives to interact with mouse and keyboard events
 Which form elements are extended by AngularJS directives
 How to build form interactions into your AngularJS applications

One of the most powerful features of AngularJS is directives. Directives extend the
behavior of HTML, enabling you to create custom HTML elements, attributes, and
classes with functionality specific to an application. AngularJS provides several built-
in directives. In fact, the majority of the AngularJS library is built-in directives. These
directives provide the capability to interact with form elements, bind data in the scope
to the view, and interact with browser events.
This lesson discusses the built-in directives and how to implement them in AngularJS
templates. You learn how to apply these directives in your AngularJS templates and
support them in the back-end controllers to quickly turn the rendered view into an
interactive application.

Understanding Directives
Directives are a combination of AngularJS template markups and supporting JavaScript
code. AngularJS directive markups can be HTML attributes, element names, or CSS
classes. The JavaScript directive code defines the template data and behavior of the
HTML elements.
The AngularJS compiler traverses the template DOM and compiles all directives. Then
it links the directives by combining a directive with a scope to produce a new live
view. The live view contains the DOM elements and functionality defined in the
directive.

Using Built-In Directives
Most of the AngularJS functionality that you need to implement in HTML elements is
provided in the built-in directives. These directives are provided by the library and are
available when the AngularJS JavaScript library is loaded.
Directives provide a variety of support for AngularJS applications. The following
sections describe most of the AngularJS directives, which fall into the following
categories:

 Directives that support AngularJS functionality
 Directives that extend form elements
 Directives that bind the page elements to values in the scope model
 Directives that bind page events to controllers

Each of the following sections includes a table containing the related directives along
with a basic description. You do not need to understand all these directives right now;
the tables are there more for reference. Subsequent sections and lessons provide sample
code for using many of these directives.

Directives That Support AngularJS Functionality
Several directives provide support for AngularJS functionality. These directives do
everything from bootstrapping an application to ensuring that Boolean expressions that
AngularJS requires are preserved in the DOM.
Table 24.1 lists these directives and describes the behavior and usage of each.

TABLE 24.1 Directives That Support AngularJS Template Functionality
The directives in Table 24.1 are used in different ways in various parts of the code.
You have already seen a few of them, such as ngApp and ngController, used in
previous examples. Some are fairly intuitive, such as using ng-src instead of src
when implementing elements in a template. Others will be used in various
examples in subsequent lessons.
I did want to give you an example at this point of using the ngInclude directive. This
little directive is simple to employ and can be used for a variety of purposes, especially
if you are trying to introduce AngularJS into an existing system. In this example, we use
ngInclude to swap the banner bar at the top of a basic web page by loading different
partial HTML files from the server.

Try it Yourself: Using ng-include to Dynamically Change Content
The code in Listing 24.1 implements a basic AngularJS controller that stores an
HTML filename in a variable named titleBar. The code in Listing 24.2
implements an AngularJS template that includes a couple of links at the top to
switch pages and a <div> element on line 24 that uses ng-include to change
the contents of the div to the file specified by titleBar.
Use the following steps to build the application that uses ng-include to
quickly switch between two partial templates:
1. Add the lesson24/directive_angular_include.html, lesson24/large_title.html,

lesson24/small_title.html, and lesson24/js/directive_angular_include.js files.
2. Add the code shown in Listing 24.1, Listing 24.2, Listing 24.3, and Listing

24.4 to the HTML and JavaScript files.

3. The code in Listing 24.1 implements a simple application that sets the scope
value of titleBar to small_tile.html, which is the AngularJS partial
template for the small banner.

4. The code in Listing 24.2 implements the AngularJS template that loads the
application. The following lines in Listing 24.2 create links that set the value
of titleBar in the scope to one of the two template partial files listed in
Listings 24.3 and 24.4:

Click here to view code image

22 [<a ng-click="titleBar='large_title.html'">Make Title
Large]
23 [<a ng-click="titleBar='small_title.html'">Make Title
Small]

5. The following line of code in Listing 24.2 loads uses the ng-include
directive to fill the contents of a <div> element with whichever template
partial titleBar is set to:

Click here to view code image

24 <div ng-include="titleBar"></div>

6. The different versions of the title bar are located in the files shown in Listings
24.3 and 24.4. Basically, these files contain a <p> element that has either the
large or small class assigned to it. The class definitions are located in the
<style> element of Listing 24.2.

7. Open the directive_angular_include.html file in a browser. Figure 24.1 shows
the two title banners. When the links are clicked to switch banners, the contents
of the <div> element in the original are replaced by the new HTML file being
loaded.

FIGURE 24.1 Using the ng-include directive to dynamically change the view
using different HTML partial files.

LISTING 24.1 directive_angular_include.js Implementing a Controller to Store the
HTML Filename for a Title Element in the Scope

Click here to view code image

01 angular.module('myApp', []).
02 controller('myController', function($scope) {
03 $scope.titleBar = "small_title.html";
04 });

LISTING 24.2 directive_angular_include.html An AngularJS Template That Uses
the nd-include Directive to Change the Title Bar of the Page by Swapping
Between Two HTML Files

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>
04 <title>AngularJS Data Include Directive</title>
05 <style>
06 .large{
07 background-color: blue; color: white;
08 text-align: center;
09 font: bold 50px/80px verdana, serif;
10 border: 6px black ridge; }
11 .small{
12 background-color: lightgrey;
13 text-align: center;
14 border: 1px black solid; }
15 a{
16 color: blue; text-decoration: underline;
17 cursor: pointer; }
18 </style>
19 </head>
20 <body>
21 <div ng-controller="myController">
22 [<a ng-click="titleBar='large_title.html'">Make Title Large]
23 [<a ng-click="titleBar='small_title.html'">Make Title Small]
24 <div ng-include="titleBar"></div>
25 </div>
26 <script src="http://code.angularjs.org/1.3.8/angular.min.js">
</script>
27 <script src="js/directive_angular_include.js"></script>
28 </body>
29 </html>

LISTING 24.3 small_title.html A Partial HTML File That Contains the Small
Version of the Title

01 <p class="small">
02 This is a Small Title
03 </p>

LISTING 24.4 large_title.html A Partial HTML File That Contains the Large
Version of the Title

01 <p class="large">
02 This is a Large Title
03 </p>?

Directives That Extend Form Elements
AngularJS is heavily integrated with form elements to provide data binding and event
binding for form elements in applications. To provide AngularJS functionality in the
correct way, form elements are extended when compiled.
Table 24.2 lists the form elements that AngularJS extends.

TABLE 24.2 Directives That Extend Form Elements to Support AngularJS
Template Functionality

Try it Yourself: Using AngularJS Form Directives to Bind Form Elements to
the Scope

Listings 24.5 and 24.6 implement some basic AngularJS form element integration
with the scope. Listing 24.5 initializes the scope. Listing 24.6 implements several
common form components, including a text box, a check box, radio buttons, and a
select element to illustrate how they are defined in the template and interact
with data in the scope.
Use the following steps to build the application using AngularJS form elements to
bind form elements to the controller’s scope:
1. Add the lesson24/directive_form.html and lesson24/js/directive_form.js files.
2. Add the code shown in Listing 24.5 and Listing 24.6 to the HTML and

JavaScript files.
3. The code in Listing 24.5 implements a basic scope that contains an array of

objects named cameras that will be used to dynamically populate a
<select> element in the template. It also provides values named
cameraObj, cameraName, cbValue, and someText that will be bound
to various form elements in the template.

4. The code in Listing 24.6 implements several AngularJS form elements that
interact with the scope to get and set values. The following line of code binds
the value of a text input to the someText variable in the scope and then
displays that value next to the input box in the web page:

Click here to view code image

09 <input type="text" ng-model="someText"> {{someText}}<hr>

5. The following lines of code bind the value of a checkbox element to the
scope value of cbValue and then change the value of cbValue to different
strings based on whether the check box is checked:

Click here to view code image

10 <input type="checkbox" ng-model="cbValue"
11 ng-true-value="'Checked'" ng-false-value="'Not
Checked'">
12 Checkbox: {{cbValue}}<hr>

6. The following lines of code define a radio button group that has a value bound
to cameraName and then displays that value after the radio button group in
the web page:

Click here to view code image

13 <input type="radio"
14 ng-model="cameraName" value="Canon"> Canon

15 <input type="radio"
16 ng-model="cameraName" value="Nikon"> Nikon

17 Selected Camera: {{cameraName}} <hr>

7. The following lines of code use the camera array that is defined in the scope
to build option groups and options in a <select> element and then displays
the object associated with the currently selected camera below:

Click here to view code image

18 <select ng-model="camera"
19 ng-options="c.model group by c.make for c in cameras">
20 </select>
21 {{camera|json}}

8. Open directive_form.html in a browser and try changing the values of the form
elements, as shown in Figure 24.2.

FIGURE 24.2 Implementing form directive elements in AngularJS template views.

LISTING 24.5 directive_form.js Implementing a Controller for Form Directives

Click here to view code image

01 angular.module('myApp', []).
02 controller('myController', function($scope) {
03 $scope.cameras = [
04 {make:'Canon', model:'70D', mp:20.2},
05 {make:'Canon', model:'6D', mp:20},

06 {make:'Nikon', model:'D7100', mp:24.1},
07 {make:'Nikon', model:'D5200', mp:24.1}];
08 $scope.cameraObj=$scope.cameras[0];
09 $scope.cameraName = 'Canon';
10 $scope.cbValue = '';
11 $scope.someText = '';
12 });

LISTING 24.6 directive_form.html An AngularJS Template That Implements
Several Form Element Directives

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>
04 <title>AngularJS Form Directives</title>
05 </head>
06 <body>
07 <div ng-controller="myController">
08 <h2>Forms Directives</h2>
09 <input type="text" ng-model="someText"> {{someText}}<hr>
10 <input type="checkbox" ng-model="cbValue"
11 ng-true-value="'Checked'" ng-false-value="'Not Checked'">
12 Checkbox: {{cbValue}}<hr>
13 <input type="radio"
14 ng-model="cameraName" value="Canon"> Canon

15 <input type="radio"
16 ng-model="cameraName" value="Nikon"> Nikon

17 Selected Camera: {{cameraName}} <hr>
18 <select ng-model="camera"
19 ng-options="c.model group by c.make for c in cameras">
20 </select>
21 {{camera|json}}
22 <script src="http://code.angularjs.org/1.3.8/angular.min.js">
</script>
23 <script src="js/directive_form.js"></script>
24 </body>
25 </html>

Directives That Bind the Model to Page Elements
AngularJS templates enable you to bind data in the scope directly to what is displayed
in HTML elements. You can bind data to the view in several ways, including these:

 Value: You can directly represent the value of a form element in the scope. For
example, a text input can be a String variable in the scope, but a check box
would be represented by a Boolean value.

 HTML: You can represent the value of data in the scope in the HTML output of
an element by using expressions such as this:
<p>{{myTitle}}</p>

 Attributes: The value of HTML element attributes can reflect the data in the
scope by using expressions in the definition such as this:

Click here to view code image

<a ng-href="/{{hash}}/index.html">{{hash}}.

 Visibility: The visibility of an element can reflect the scope in the view. For
example, when an expression based on the scope is true, the element is visible;
otherwise, it is invisible.
 Existence: You can omit elements from the compiled DOM, based on values in
the scope.

Table 24.3 lists the directives that bind the data in the scope directly to elements in the
view.

TABLE 24.3 Directives That Bind Data in the Scope to the Value, Expressions,
Visibility, and Existence of HTML Elements

Try it Yourself: Using AngularJS Directives to Dynamically Interact with
Page Elements

In this example, you use some of the AngularJS directives to dynamically interact
with page elements. Listings 24.7 and 24.8 provide some examples of basic
AngularJS binding directives. Listing 24.7 initializes the scope values. Listing
24.8 provides the actual implementation of the binding directives in the template.
Use the following steps to build the application using AngularJS elements to
interact with page elements:
1. Add the lesson24/directive_bind.html and lesson24/js/directive_bind.js files.
2. Add the code shown in Listing 24.7 and Listing 24.8 to the HTML and

JavaScript files.
3. The code in Listing 24.7 implements a basic scope with values that will be

used by the AngularJS template. The colors array will be used to build a
radio button group, the myStyle value will be used to set the CSS style for a
page element, the days array will be used to create a list of days, and the msg
value will be displayed on the page.

4. The code in Listing 24.8 provides the AngularJS template that uses the values
in the scope to build and interact with page elements. The following lines of
code use ng-repeat on the colors value in the scope to create a radio
button <input>. Notice that the value of the radio button group is bound to
the myStyle['background-color'] property in the scope. This
illustrates how to handle style names that do not allow the dot notation that’s
usually used (for example, myStyle.color). Also note that the value of the
radio buttons is set using ng-value to the color color value that
comes from the ng-repeat loop:

Click here to view code image

13 <label ng-repeat="color in colors">
14 {{color}}
15 <input type="radio" ng-model="myStyle['background-color']"
16 ng-value="color" id="{{color}}" name="mColor">
17 </label>

5. The following line of code uses ng-style to set the CSS style of the
 element to the value of myStyle in the scope. Keep in mind that the
radio button group sets the background-color in myStyle when you
select one of the radio buttons:

Click here to view code image

18 <hr>

6. The following lines of code use ng-repeat to create a list of days. Notice
that when you set the class name using ng-class-even, the class name
even needs to be in single quotes because it is a string:

Click here to view code image

19 <li ng-repeat="day in days">
20 {{day}}
21 <hr>

7. The following lines of code use ng-model to bind the value of the check box
(true/false) to the checked value in the scope. The ng-if directive reads
the value of checked from the scope and determines whether to bind the msg
value in the scope to the paragraph element:

Click here to view code image

22 Show Message: <input type="checkbox" ng-model="checked" />
23 <p ng-if="checked" ng-bind="msg"> </p>

8. Open the directive_bind.html file in a browser and play around with changing
the radio buttons to see the color of the rectangle change, view the style of
even elements in the list, and turn the message on and off with the check box.
Figure 24.3 shows the resulting web page.

FIGURE 24.3 Implementing data binding directives in AngularJS template views.

LISTING 24.7 directive_bind.js Implementing a Controller with a Scope Model to
Support Data Binding Directives

Click here to view code image

01 angular.module('myApp', []).
02 controller('myController', function($scope) {
03 $scope.colors=['red','green','blue'];

04 $scope.myStyle = { "background-color": 'blue' };
05 $scope.days=['Monday', 'Tuesday', 'Wednesday',
06 'Thursday', 'Friday'];
07 $scope.msg="Dynamic Message from the model";
08 });

LISTING 24.8 directive_bind.html An AngularJS Template That Implements
Several Data Binding Directives

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>
04 <title>AngularJS Data Binding Directives</title>
05 <style>
06 .even{background-color:lightgrey;}
07 .rect{display:inline-block; height:40px; width:100px;}
08 </style>
09 </head>
10 <body>
11 <div ng-controller="myController">
12 <h2>Data Binding Directives</h2>
13 <label ng-repeat="color in colors">
14 {{color}}
15 <input type="radio" ng-model="myStyle['background-color']"
16 ng-value="color" id="{{color}}" name="mColor">
17 </label>
18 <hr>
19 <li ng-repeat="day in days">
20 {{day}}
21 <hr>
22 Show Message: <input type="checkbox" ng-model="checked" />
23 <p ng-if="checked" ng-bind="msg"> </p>
24 </div>
25 <script src="http://code.angularjs.org/1.3.8/angular.min.js">
</script>
26 <script src="js/directive_bind.js"></script>
27 </body>
28 </html>

Directives That Bind Page Events to Controllers
AngularJS templates enable you to bind browser events to controller code. This means
you can handle user input from the scope’s perspective. You can then implement
handlers for browser events directly to the appropriate scope. The event directive
works very much like the normal browser event handlers, except that they are directly
linked to the scope context.

Table 24.4 lists the directives that bind page and device events to the AngularJS model.
Each of these directives enables you to specify an expression, which is typically a
function defined in the scope, as discussed in Lesson 23, “Using AngularJS Templates
to Create Views.” For example, the following is a function named setTitle in the
scope:
Click here to view code image

$scope.setTitle = function(title){
 $scope.title = title;
};

TABLE 24.4 Directives That Bind Page/Device Events to AngularJS Model

Functionality
You can bind the setTitle() function in the scope directly to an input button in the
view by using the following ng-click directive:
Click here to view code image

<input type="button" ng-click="setTitle('New Title')">

You can pass the JavaScript Event object into the event expressions by using the
$event keyword. This enables you to access information about the event as well as
stop propagation and everything else you normally can do with a JavaScript Event
object. For example, the following ng-click directive passes the mouse click event
to the myClick() handler function:
Click here to view code image

<input type="button" ng-click="myClick($event)">

The following sections provide some examples of using the AngularJS event directives
to interact with events coming from the browser.

Try it Yourself: Using the Focus and Blur Events
The AngularJS ngBlur and ngFocus directives are useful to track when form
elements go in and out of focus. For example, you might want to execute some
code in the controller when a particular input element goes in and out of focus—
for instance, to manipulate the input before updating the model. The code in
Listings 24.9 and 24.10 illustrate an example of using the ngBlur and
ngFocus directives to set values in the scope based on entering and leaving text
inputs.
Use the following steps to build the application that utilizes ngBlur and
ngFocus on elements to interact with page elements:
1. Add the lesson24/directive_focus_events.html and

lesson24/js/directive_focus_events.js files.
2. Add the code shown in Listing 24.9 and Listing 24.10 to the HTML and

JavaScript files.
3. The code in Listing 24.9 implements a basic controller. The following lines

define an object named inputData in the scope, which will contain
information about the value and focus state of input elements on the page:

Click here to view code image

03 $scope.inputData = { input1: {value: "", state: ""},
04 input2: {value: "", state: ""} };

4. The following lines define the focusGained() function that is called when
an input comes into focus and uses the input parameter to set the value for
that input in inputData to an empty string:

Click here to view code image

05 $scope.focusGained = function(input){
06 $scope.inputData[input]['value'] = '';
07 $scope.inputData[input]['state'] = 'Focus Gained';
08 };

5. The following lines define the focusLost() function, which will accept
the event and the input as inputs and will use the event object to get the
value of the target element and update the corresponding property in
inputData:

Click here to view code image

09 $scope.focusLost = function(event, input){
10 var element = angular.element(event.target);
11 var value = element.val();
12 $scope.inputData[input]['value'] = value.toUpperCase();
13 $scope.inputData[input]['state'] = "Focus Lost";
14 };

6. The following code in Listing 24.10 implements the two <input> elements
and assigns the focusGained() and focusLost() handlers to the ng-
focus and ng-blur attributes:

Click here to view code image

10 <input type="text"
11 ng-blur="focusLost($event, 'input1')"
12 ng-focus="focusGained('input1')">

. . .
14 <input type="text"
15 ng-blur="focusLost($event, 'input2')"
16 ng-focus="focusGained('input2')"><hr>

7. Open the directive_focus_events.html file in a browser. Figure 24.4 shows the
basic example in action. Note that when you click an input element, the value
stored in inputData is set to an empty string, and when you leave the input
element, the value is updated.

FIGURE 24.4 Implementing focus event directives in AngularJS template views.

LISTING 24.9 directive_focus_events.js Implementing a Controller with Scope
Data and Event Handlers to Support Blur and Focus Events from the View

Click here to view code image

01 angular.module('myApp', []).
02 controller('myController', function($scope) {
03 $scope.inputData = { input1: {value: "", state: ""},
04 input2: {value: "", state: ""} };

05 $scope.focusGained = function(input){
06 $scope.inputData[input]['value'] = '';
07 $scope.inputData[input]['state'] = 'Focus Gained';
08 };
09 $scope.focusLost = function(event, input){
10 var element = angular.element(event.target);
11 var value = element.val();
12 $scope.inputData[input]['value'] = value.toUpperCase();
13 $scope.inputData[input]['state'] = "Focus Lost";
14 };
15 });

LISTING 24.10 directive_focus_events.html An AngularJS Template That
Implements the ngFocus and ngBlur Directives

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>
04 <title>AngularJS Focus Event Directives</title>
05 </head>
06 <body>
07 <div ng-controller="myController">
08 <h2>Focus Event Directives</h2>
09 Input 1:

10 <input type="text"
11 ng-blur="focusLost($event, 'input1')"
12 ng-focus="focusGained('input1')">

13 Input 2:

14 <input type="text"
15 ng-blur="focusLost($event, 'input2')"
16 ng-focus="focusGained('input2')"><hr>
17 Input Data: {{inputData|json}}

18 </div>
19 <script src="http://code.angularjs.org/1.3.8/angular.min.js">
</script>
20 <script src="js/directive_focus_events.js"></script>
21 </body>
22 </html>

Try it Yourself: Handling Keyboard Events on AngularJS Elements
The most common keyboard event directives that you will use are the
ngKeydown and ngKeyup events that are triggered when a keyboard key is
pressed and released, respectively. Keyboard events are useful for interacting
more closely with users as they type on the keyboard. Probably the most common

keyboard interaction is to apply some action when a user presses the Enter key on
the keyboard. The code in Listings 24.11 and 24.12 illustrate the usage of the
ngKeydown and ngKeyup directives.
Use the following steps to build the application that utilizes ngKeydown and
ngKeyup directives on elements to interact with page elements:
1. Add the lesson24/directive_keyboard_events.html and

lesson24/js/directive_keyboard_events.js files.
2. Add the code shown in Listing 24.11 and Listing 24.12 to the HTML and

JavaScript files.
3. The code in Listing 24.11 implements a controller that provides the model and

keyboard handler functions for the key-down and key-up events. The
storedString variable is used to store the value of a text input whenever
the user presses Enter while typing in the input. The keyInfo variable stores
the keyCode for the last key pressed, and the keyStrokes array records
the previous keyCodes for keys pressed.

4. The following lines of code in Listing 24.11 implement the keyPressed()
function. This function will be called when the key is pressed in the input field.
Notice that we check to see whether the keyCode is 13, meaning Enter was
pressed, and if so, we record the storedString and reset the other
variables. If the key was not the Enter key, we store the keyCode, add it to
the keyStrokes array, and set the keyState.

5. The following lines of code in Listing 24.12 assign the ng-keydown and
ng-keyup directives to an <input> element. When ng-keydown is
triggered, the keyState variable in the scope is updated, and when ng-
keyup is triggered, the keyPressed() handler is called.

6. Open the directive_keyboard_events.html file in a browser and try typing into
the text box. Figure 24.5 shows the AngularJS web page in action. Note that as
you type each character in the text input, the values of keyPressed in the
model is updated, and when Enter is pressed, the word is stored and the
keystrokes are reset.

FIGURE 24.5 Implementing keyboard event directives in AngularJS template views.

LISTING 24.11 directive_keyboard_events.js Implementing a Controller with
Scope Data and Event Handlers to Support Key-Down and Key-Up Events from
the View

Click here to view code image

01 angular.module('myApp', []).
02 controller('myController', function($scope) {
03 $scope.storedString = '';
04 $scope.keyInfo = {};
05 $scope.keyStrokes = [];
06 $scope.keyState = 'Not Pressed';
07 $scope.keyPressed = function(event){
08 if (event.keyCode == 13){
09 var element = angular.element(event.target);
10 $scope.storedString = element.val();
11 element.val('');
12 $scope.keyInfo.keyCode = event.keyCode;
13 $scope.keyStrokes = [];
14 $scope.keyState = 'Enter Pressed';

15 } else {
16 $scope.keyInfo.keyCode = event.keyCode;
17 $scope.keyStrokes.push(event.keyCode);
18 $scope.keyState = 'Not Pressed';
19 }
20 };
21 });

LISTING 24.12 directive_keyboard_events.html An AngularJS Template That
Implements the ngKeydown and ngKeyup Directives

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>
04 <title>AngularJS Keyboard Event Directives</title>
05 </head>
06 <body>
07 <div ng-controller="myController">
08 <h2>Keyboard Event Directives</h2>
09 <input type="text"
10 ng-keydown="keyState='Pressed'"
11 ng-keyup="keyPressed($event)"><hr>
12 Keyboard State:

13 {{keyState}}<hr>
14 Last Key:

15 {{keyInfo|json}}<hr>
16 Stored String:

17 {{storedString}}<hr>
18 Recorded Key Strokes:

19 {{keyStrokes}}
20 </div>
21 <script src="http://code.angularjs.org/1.3.8/angular.min.js">
</script>
22 <script src="js/directive_keyboard_events.js"></script>
23 </body>
24 </html>

Try it Yourself: Handling Mouse Events in the AngularJS Elements
AngularJS provides several mouse event directives that enable you to easily
enhance your AngularJS applications with mouse interactivity. The most common
mouse event directive that you will use is ngClick when the mouse is clicked.
However, you also have several other mouse events that can come in handy to
create richly interactive components. The code in Listings 24.13 and 24.14
illustrate the usage of the ngClick, ngMouseenter, ngMouseleave,

ngMousedown, ngMouseup, and ngMousemove directives.
Use the following steps to build the application that utilizes ngKeydown and
ngKeyup directives on elements to interact with page elements:
1. Add the lesson24/directive_mouse_events.html and

lesson24/js/directive_mouse_events.js files.
2. Add the code shown in Listing 24.13 and Listing 24.14 to the HTML and

JavaScript files.
3. The code in Listing 24.13 implements a controller that stores the current

mouse position info in mouseInfo and last click position info in
lastClickinfo.

4. The following lines of code in Listing 24.13 define the mouseClick()
event handler. Notice that the event information is passed into the handler and
allows us to set the clientX, clientY, screenX, and screenY
information in lastClickInfo:

Click here to view code image

05 $scope.mouseClick = function(event){
06 $scope.lastClickInfo.clientX = event.clientX;
07 $scope.lastClickInfo.clientY = event.clientY;
08 $scope.lastClickInfo.screenX = event.screenX;
09 $scope.lastClickInfo.screenY = event.screenY;
10 };

5. The following lines of code in Listing 24.13 define the mouseMove() event
handler. Notice that the event information is passed into the handler and allows
us to set the clientX, clientY, screenX, and screenY information in
mouseInfo:

Click here to view code image

11 $scope.mouseMove = function(event){
12 $scope.mouseInfo.clientX = event.clientX;
13 $scope.mouseInfo.clientY = event.clientY;
14 $scope.mouseInfo.screenX = event.screenX;
15 $scope.mouseInfo.screenY = event.screenY;
16 };

6. The following lines of code in Listing 24.14 apply the ng-mouseenter,
ng-mouseleave, ng-mouseclick, ng-mousedown, and ng-
mouseup directives to an element and set the value of mouseState
in the scope when the event is triggered. They also bind the ng-click and
ng-mousemove events to mouseClick($event) and
mouseMove($event) in the scope. Notice that $event is used to pass the
browser’s mouse event to the handlers:

Click here to view code image

16 <img
17 src="/images/img3.jpg"
18 ng-mouseenter="mouseState='Entered'"
19 ng-mouseleave="mouseState='Left'"
20 ng-mouseclick="mouseState='Clicked'"
21 ng-mousedown="mouseState='Down'"
22 ng-mouseup="mouseState='Up'"
23 ng-click="mouseClick($event)"
24 ng-mousemove="mouseMove($event)"><hr>

7. Open the directive_mouse_events.html file in a browser and try moving over
and clicking the image. Figure 24.6 shows the AngularJS application working.
Notice that the mouse state changes as you enter, leave, and click the image.
Also notice that the position information is updated as you move over and click
the image.

FIGURE 24.6 Implementing mouse click and movement event directives in
AngularJS template views.

LISTING 24.13 directive_mouse_events.js Implementing a Controller with Scope
Data and Event Handlers to Support Mouse Click and Movement Events from the
View

Click here to view code image

01 angular.module('myApp', []).
02 controller('myController', function($scope) {
03 $scope.mouseInfo = {};
04 $scope.lastClickInfo = {};
05 $scope.mouseClick = function(event){
06 $scope.lastClickInfo.clientX = event.clientX;
07 $scope.lastClickInfo.clientY = event.clientY;
08 $scope.lastClickInfo.screenX = event.screenX;
09 $scope.lastClickInfo.screenY = event.screenY;
10 };
11 $scope.mouseMove = function(event){
12 $scope.mouseInfo.clientX = event.clientX;
13 $scope.mouseInfo.clientY = event.clientY;
14 $scope.mouseInfo.screenX = event.screenX;
15 $scope.mouseInfo.screenY = event.screenY;
16 };
17 });

LISTING 24.14 directive_mouse_events.html An AngularJS Template That
Implements the ngClick and Other Mouse Click and Move Event Directives

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>
04 <title>AngularJS Event Directives</title>
05 <style>
06 img {
07 border: 3px ridge black;
08 height: 200px; width: 200px;
09 display: inline-block;
10 }
11 </style>
12 </head>
13 <body>
14 <div ng-controller="myController">
15 <h2>Event Directives</h2>
16 <img
17 src="/images/img3.jpg"
18 ng-mouseenter="mouseState='Entered'"
19 ng-mouseleave="mouseState='Left'"
20 ng-mouseclick="mouseState='Clicked'"
21 ng-mousedown="mouseState='Down'"
22 ng-mouseup="mouseState='Up'"
23 ng-click="mouseClick($event)"
24 ng-mousemove="mouseMove($event)"><hr>

25 Mouse State: {{mouseState}}

26 Mouse Position Info: {{mouseInfo|json}}

27 Last Click Info: {{lastClickInfo|json}}

28 </div>
29 <script src="http://code.angularjs.org/1.3.8/angular.min.js">
</script>
30 <script src="js/directive_mouse_events.js"></script>
31 </body>
32 </html>

Summary
AngularJS directives extend the behavior of HTML. You can apply directives to
AngularJS templates as HTML elements, attributes, and classes. You define the
functionality of directives by using JavaScript code. AngularJS provides several built-
in directives that interact with form elements, bind data in the scope to the view, and
interact with browser events. For example, ngModel binds the value of a form element
directly to the scope. When the scope value changes, so does the value displayed by the
element, and vice versa.

Q&A
Q. Is it possible to override the behavior of built-in AngularJS directives?
A. Not directly; however, it is possible to create your own directive with the same

name, and it will also be executed along with the built-in directive. Typically, it
is better to create your own directives with a different name.

Q. Why do the AngularJS directives use the ng prefix?
A. Because it is short and sounds like “angular.”

Workshop
The workshop consists of a set of questions and answers designed to solidify your
understanding of the material covered in this hour. Try to answer the questions before
looking at the answers.

Quiz
1. What does the AngularJS directive ng-required do?
2. What does the AngularJS directive ng-repeat do?
3. Which AngularJS directive would you use to bind an element to the mouse click

event?
4. Which AngularJS directive would you use to bind a form element to the focus

gained event?

Quiz Answers
1. It creates a Boolean value for <input> elements in a form.
2. Allows you to dynamically add multiple HTML elements based on an array of

JavaScript objects in the scope.
3. ng-click
4. ng-focus

Exercises
1. Modify the code in Listing 24.8 so that the odd weekdays are highlighted instead

of the even.
2. Modify the code in Listings 24.9 and 24.10 so that the value for the input in the

InputData object is lowercase when the input is not in focus but in uppercase
when it is.

Lesson 25. Creating Your Own Custom Directives to
Extend HTML

What You’ll Learn in This Lesson:
 How to build a custom directive
 Ways to configure the scopes in the custom directives
 How to modify the DOM within a custom directive
 Using template partials to inject HTML elements into custom directives
 How to implement nested custom directives that interact with each other

As with many other features of AngularJS, you can extend directive functionality by
creating your own custom directives. Custom directives enable you to extend the
functionality of HTML by implementing the behavior of elements yourself. If you have
code that needs to manipulate the DOM, you should make this happen by using a custom
directive. As with the built-in directive, custom directives provide the capability to
interact with form elements, bind data in the scope to the view, and interact with
browser events.
This lesson discusses the design and implementation of custom directives. You will
also see a couple of basic examples of custom directives that extend the capability of
HTML.

Understanding Custom Directive Definitions
You implement custom directives by calling the directive() method on a Module
object. The directive() method accepts the name of a directive as the first
parameter and a provider function that returns an object containing the necessary
instructions to build the directive object. For example, the following is a basic
definition for a directive:
Click here to view code image

angular.module('myApp', []).
 directive('myDirective', function() {
 return {
 template: 'Name: {{name}} Score: {{score}}'
 };
 });

Table 25.1 provides a list of the properties you can apply to the object returned by the
directive definition as template is returned in the preceding code.

TABLE 25.1 Directive Definition Properties That Define AngularJS Directive
Functionality

The following sections discuss the directive options in more detail.

Defining the Directive View Template
You can include AngularJS template code to build view components that will be
displayed in the HTML element that contains the directive. You can add template code
directly by using the template property, as in this example:
Click here to view code image

directive('myDirective', function() {
 return {
 template: 'Name: {{name}} Score: {{score}}'
 };
});

You can specify a root element in the custom template—but only one element. This
element acts as the root element for any child element defined in the AngularJS template
to be placed inside. Also, if you are using the transclude flag, the element should
include ngTransclude. For example:
Click here to view code image

directive('myDirective', function() {
 return {
 transclude: true,
 template: '<div ng-transclude></div>'
 };
});

You can also use the templateUrl property to specify a URL of an AngularJS
template located on the web server, as in this example:
Click here to view code image

directive('myDirective', function() {
 return {
 templateUrl: '/myDirective.html'
 };
});

The template URL can contain any standard AngularJS template code. You can therefore
make your directives as simple or as complex as you need them to be.

Restricting Directive Behavior
You can apply a directive as an HTML element, an attribute, or both. The restrict
property enables you to limit how your custom directive can be applied. The
restrict property can be set to the following:

 A: Applied as an attribute name. For example:
<my-directive></my-directive>

 E: Applied as an element name. For example:
Click here to view code image

<div my-directive="expression"></div>

 C: Applied as a class. For example:
Click here to view code image

<div class="my-directive: expression;"></div>

 M: Applied as a comment. For example:
Click here to view code image

<!-- directive: my-directive expression -->

 AEC: Applied as an attribute, an element, or a class name. You can also use other
combinations, such as AE or AC.

For example, you can apply the following directive as an attribute or an element:
Click here to view code image

directive('myDirective', function() {
 return {
 restrict: 'AE',
 templateUrl: '/myDirective.html'
 };
});

The following shows how to implement the directive as both an element and an
attribute. Notice that the camelCase name is replaced by one with hyphens:

<my-directive></my-directive>
<div my-directive></div>

Adding a Controller to a Directive
You can add a custom controller to a directive by using the controller property of
the directive definition. This enables you to provide controller support for the directive
template. For example, the following code adds a simple controller that sets up a scope
value and function:
Click here to view code image

directive('myDirective', function() {
 return {
 scope: {title: '='},
 controller: function ($scope){
 $scope.title = "new";
 $scope.myFunction = function(){
 });
 }

 };
});

You can also use the require option to ensure that a controller is available to the
directive. The require option uses the require:'^controller' syntax to
instruct the injector service to look in parent contexts until it finds the controller. The
following is an example of requiring the myController controller in a directive:
Click here to view code image

directive('myDirective', function() {
 return {
 require: '^myController'
 };
});

When you add the require option, the specified controller is passed as the fourth
parameter of the link() function. For example:
Click here to view code image

directive('myDirective', function() {
 return {
 require: '^myController',
 link: function(scope, element, attrs, injectedMyController){
 }
 };
});

The link function will be executed after the directive is compiled and the DOM is
build. You can then use the link function to manipulate elements of the DOM within
the directive.
You can also require multiple controllers using the require option, in which case, an
array of controllers is passed to the link() function. For example:
Click here to view code image

 directive('myDirective', function() {
 return {
 require: ['^myControllerA', '^myControllerB'],
 link: function(scope, element, attrs, requiredControllers){
 var controllerA = requiredControllers[0];
 var controller = requiredControllers[1];
 }
 };
});

If you specify the name of another directive in the require option, the controller for
that directive is linked. For example:
Click here to view code image

directive('myDirective', function() {

 return {
 require: '^myOtherDirective',
 link: function(scope, element, attrs, otherDirectiveController){
 }
 };
});

Configuring the Directive Scope
Directives share the scope with the parent by default. This is typically adequate for
most needs. The biggest downside is that you might not want to include all the custom
directive properties in the parent scope, especially if the parent scope is the root scope.
To solve that problem, you can define a separate scope for the directive using the
scope property. The following sections describe how to add an inherited scope and an
isolate scope.

Adding an Inherited Scope
The simplest method to add a scope to a directive is to create one that inherits from the
parent scope. The advantage is that you have a scope separate from the parent to add
additional values to, but the disadvantage is that the custom directives can still modify
values in the parent scope.
To create an inherited scope for the custom directive, set the scope property of the
directive to true. For example:
Click here to view code image

directive('myDirective', function() {
 return {
 scope: true
 };
});

Adding an Isolate Scope
At times, you might want to separate the scope inside a directive from the scope outside
the directive. Doing so prevents the possibility of the directive changing values in the
scope of the parent controller. The directive definition enables you to specify a scope
property that creates an isolate scope. An isolate scope isolates the directive scope
from the outer scope to prevent the directive from accessing the outer scope and the
controller in the outer scope from altering the directive scope. For example, the
following isolates the scope of the directive from the outside scope:
Click here to view code image

directive('myDirective', function() {
 return {
 scope: { },
 templateUrl: '/myDirective.html'

 };
});

Using this code, the directive has a completely empty isolate scope. However, you
might want to still map some items in the outer scope to the directive’s inner scope. You
can use the following prefixes to attribute names to make local scope variables
available in the directive’s scope:

 @: Binds a local scope string to the value of the DOM attribute. The value of the
attribute will be available inside the directive scope.
 =: Creates a bidirectional binding between the local scope property and the
directive scope property.
 &: Binds a function in the local scope to the directive scope.

If no attribute name follows the prefix, the name of the directive property is used. For
example:

title: '@'

is the same as:
title: '@title'

The following code shows how to implement each of the methods to map local values
into a directive’s isolate scope:
Click here to view code image

angular.module('myApp', []).
 controller('myController', function($scope) {
 $scope.title="myApplication";
 $scope.myFunc = function(){
 console.log("out");
 };
 }).
 directive('myDirective', function() {
 return {
 scope: {title: '=', newFunc:"&myFunc", info: '@'},
 template: '<div ng-click="newFunc()">{{title}}: {{info}}</div>'
 };
 });

The following code shows how to define the directive in the AngularJS template to
provide the necessary attributes to map the properties:

<div my-directive
 my-func="myFunc()"
 title="title"
 info="SomeString"></div>

Transcluding Elements

Transcluding can be kind of a difficult concept to pick up on at first. Basically, the idea
is that you can keep the contents of the custom directive defined in an AngularJS
template and bind them to the scope. The way this works is that the linking function for
the directive receives a transclusion function that is prebound to the current scope. Then
elements inside the directive have access to the scope outside the directive.
You can set the transclude option to the following values:

 true: Transcludes the content of the directive.
 ‘element’: Transcludes the whole element, including any directives defined at
lower priorities.

You must also include the ngTransclude directive in elements inside your directive
template. The following is an example of implementing transclude to access the
title variable in the controller scope from the myDirective directive template:
Click here to view code image

angular.module('myApp', []).
 directive('myDirective', function() {
 return {
 transclude: true,
 scope: {},
 template: '<div ng-transclude>{{title}}</div>'
 };
 }).
 controller('myController', function($scope) {
 $scope.title="myApplication";
 });

Manipulating the DOM with a Link Function
When the AngularJS HTML compiler encounters a directive, it runs the directive’s
compile function, which returns the link() function. The link() function is added
to the list of AngularJS directives. After all directives have been compiled, the HTML
compiler calls the link() functions in order, based on priority.
If you want to modify the DOM inside a custom directive, you should use a link()
function. The link() function accepts the scope, element, attributes,
controller, and transclude function associated with the directive, enabling you
to manipulate the DOM directly within the directive. The transclude function is a handle
that is bound to the transclusion scope.
Inside the link() function, you handle the $destroy event on the directive element
and clean up anything necessary. The link() function is also responsible for
registering DOM listeners to handle browser events.
The link() function uses the following syntax:
Click here to view code image

link: function(scope, element, attributes, [controller], [transclude])

The scope parameter is the scope of the directive, element is the element where the
directive will be inserted, attributes lists the attributes declared on the element,
and controller is the controller specified by the require option. The
transclude parameter is a handle to the transclude function.
The transclude function provides access to the element created when the transclusion of
the contents of the original element occurs. To access the transcluded element with the
inherited scope, you can call the transclude function. This allows you to access and
manipulate the transcluded element within the link function. For example:
Click here to view code image

link: function link(scope, elem, attr, controller, transcludeFn){
 var transcludedElement = transcludeFn();
 }

You can also access the clone of the transcluded element by specifying a clone
parameter. For example:
Click here to view code image

link: function link(scope, elem, attr, controller, transcludeFn){
 transcludeFn(function(clone){
 //access clone here . . .
 });
 }

You can also access the clone of the transcluded element with a different scope by
applying a scope parameter as well as the clone parameter. For example:
Click here to view code image

link: function link(scope, elem, attr, controller, transcludeFn){
 transcludeFn(scope, function(clone){
 //access clone here . . .
 });
 }

The following directive shows the implementation of a basic link() function that sets
a scope variable, appends data to the DOM element, implements a $destroy event
handler, and adds a $watch to the scope:
Click here to view code image

directive('myDirective', function() {
 return {
 scope: {title: '='},
 require: '^otherDirective',
 link: function link(scope, elem, attr, controller, transclude){
 scope.title = "new";
 elem.append("Linked");

 elem.on('$destroy', function() {
 //cleanup code
 });
 scope.$watch('title', function(newVal){
 //watch code
 });
 }
 };

The link property can also be set to an object that includes pre and post properties
that specify prelink and postlink functions. In the preceding example, where link is set to
a function, the function is executed as a postlink function, meaning that it is executed
after the child elements are already linked, whereas the prelinked function is executed
before the child elements are linked. Therefore, you should do DOM manipulation only
in the postlink function. In fact, it is quite rare to need to include the prelink function.
The following shows an example of the syntax for including both the prelink and the
postlink functions:
Click here to view code image

directive('myDirective', function() {
 return {
 link: {
 pre: function preLink(scope, elem, attr, controller){
 //prelink code
 },
 post: function postLink(scope, elem, attr, controller){
 //postlink code
 },
 }
};

Manipulating the DOM with a Compile Function
The compile function is very similar to the link function with one major advantage, but
several drawbacks. The advantage and the main reason to use the compile function is
performance. The compile method is executed only once when compiling the template,
whereas the link function is executed each time the element is linked; for example, if you
are applying multiple directives inside an ng-repeat loop or when the model
changes. If you are doing a large number of DOM manipulations, that can be a big deal.
These are the limitations of the compile function:

 Any manipulations are applied before cloning takes place. That means that when
the custom directive is used inside an ng-repeat, any DOM manipulations will
be applied to all the custom directives generated.
 The compile() method cannot handle directives that recursively use
themselves in their own templates or compile() functions because that would
result in an infinite loop.

 The compile() method does not have access to the scope.
 The transclude function has been deprecated and removed from the compile
function so you cannot link to the transcluded elements.

The syntax for the compile() method is very similar to that for the link() method.
You can specify a single postlink function such as this:
Click here to view code image

directive('myDirective', function() {
 return {
 compile: function compile(scope, elem, attr, controller){
 //postlink code
 }
};

You can also specify pre- and postlink functions using an object as shown here:
Click here to view code image

directive('myDirective', function() {
 return {
 compile: {
 pre: function preLink(elem, attr){
 //prelink code
 },
 post: function postLink(elem, attr){
 //postlink code
 },
 }
};

Implementing Custom Directives
The types of custom directives you can define are limitless, and this makes AngularJS
extensible. Custom directives are the most complex portion of AngularJS to explain and
to grasp. The best way to get started is to show you some examples of custom
directives, to give you a feel for how to implement them and have them interact with
each other.

Try it Yourself: Manipulating the DOM in Custom Directives
One of the most common tasks you will be performing in custom directives is
manipulating the DOM. This should be the only place in your AngularJS apps that
you manipulate the DOM. In this exercise, you build a basic custom directive that
applies a box with title and footer around the elements that are contained within.
This example is basic and gives you a chance to see how to use some of the
mechanisms in AngularJS, such as setting values as attributes to the custom
directive.

Use the following steps to build the application with a custom directive that
manipulates the DOM:
1. Add the lesson25/directive_custom_dom.html and

lesson25/js/directive_custom_dom.js files.
2. Add the code shown in Listing 25.1 and Listing 25.2 to the HTML and

JavaScript files.
3. The following lines of code from Listing 25.1 define a simple application with

a controller that contains only the scope variable title and a directive
named mybox:

Click here to view code image

01 angular.module('myApp', [])
02 .controller('myController', function($scope) {
03 $scope.title="myApplication";
04 })
05 .directive('mybox', function() {
06 return {
. . .
18 };
19 });

4. The following line of code in the directive enables transclusion:
07 transclude: true,

5. The following line of code restricts the custom directive to element names
only:

08 restrict: 'E',

6. The following line of code defines an isolate scope accepting the parameters
title and bwidth as strings:

Click here to view code image

09 scope: {title: '@', bwidth: '@bwidth'},

7. The following lines define a template that adds the title bar and a <div
ng-transclude> to store the transcluded content of the custom directive:

Click here to view code image

10 template: '<div>{{title}}' +
11 '<div ng-transclude></div></div>',

8. The following lines show the link() function that uses append to append a
footer element. This could also have been done in the template; however, I
wanted to illustrate that it can also be done in the link() function. Also note
that the text of the footer element is coming from the title value of the parent

scope using scope.$parent.title. The link function also adds a
border and sets the display and width values based on the bwidth
value in the scope:

Click here to view code image

12 link: function (scope, elem, attr, controller, transclude){
13 elem.append('' + scope.$parent.title +
'');
14 elem.css('display', 'inline-block');
15 elem.css('width', scope.bwidth);
16 },

9. The code in Listing 25.2 implements an AngularJS template that sets up some
CSS styles and then adds the <mybox> custom directive that was defined in
Listing 25.1. Notice that the content of the directive varies from a string to an
image to a paragraph.

10. Open directive_custom_dom.html in a browser. The results are shown in
Figure 25.1. Notice that the bwidth attribute size determines the width of the
box, and all the elements are surrounded by the same type of box.

FIGURE 25.1 Implementing custom directives that manipulate DOM elements in
AngularJS template views.

LISTING 25.1 directive_custom_dom.js Implementing Custom Directives That
Manipulate the DOM

Click here to view code image

01 angular.module('myApp', [])
02 .controller('myController', function($scope) {
03 $scope.title="myApplication";
04 })
05 .directive('mybox', function() {

06 return {
07 transclude: true,
08 restrict: 'E',
09 scope: {title: '@', bwidth: '@bwidth'},
10 template: '<div>{{title}}' +
11 '<div ng-transclude></div></div>',
12 link: function (scope, elem, attr, controller, transclude){
13 elem.append('' + scope.$parent.title +
'');
14 elem.css('display', 'inline-block');
15 elem.css('width', scope.bwidth);
16 },
17 };
18 });

LISTING 25.2 directive_custom_dom.html An AngularJS Template That Utilizes a
Custom Directive That Manipulates the DOM

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>
04 <title>AngularJS Custom Directive</title>
05 <style>
06 * { text-align: center; }
07 .titleBar { color: white; background-color: grey;
08 font: bold 14px/18px arial; display: block;
09 border-bottom: 4px ridge grey; }
10 .footer { color: white; background-color: grey;
11 font: italic 10px/14px arial; display: block;
12 border-top: 4px ridge grey; }
13 mybox { border: 4px ridge grey; margin: 10px; }
14 img { display: block; }
15 </style>
16 </head>
17 <body>
18 <div ng-controller="myController">
19 <h2>Custom Directive Manipulating the DOM</h2>
20 <mybox title="Simple Text" bwidth="100px">
21 Using AngularJS to build a box around text.
22 </mybox>
23 <mybox title="Paragraph" bwidth="200px">
24 <p>Using AngularJS to build a box around a paragraph.</p>
25 </mybox>
26 <mybox title="List" bwidth="200px">
27
28 Using AngularJS
29 to build a box
30 around a list.
31

32
33 </mybox>
34 <mybox title="Image" bwidth="400px">
35
36 </mybox>
37 </div>
38 <script src="http://code.angularjs.org/1.3.8/angular.min.js">
</script>
39 <script src="js/directive_custom_dom.js"></script>
40 </body>
41 </html>

Try it Yourself: Implementing Event Handlers in a Custom Directive
Another common use of custom directives is to implement event handlers to
interact with mouse and keyboard events that are occurring in the custom
elements. This enables you to provide enhanced user interactions to the custom
elements.
In this example, you add mouse event handlers that enable you to use drag
operations on images to resize and adjust the opacity. When the mouse is dragged
left, the image shrinks; right, the image enlarges; up, the image fades; and down,
the opacity increases. For this example, I have included the full version of jQuery
by loading it in the AngularJS template. I chose to do so to use some capabilities
like getting the image width() that is not available in jQuery lite.
Use the following steps to build the application with a custom directive that
manipulates the DOM:
1. Add the lesson25/directive_custom_zoom.html and

lesson25/js/directive_custom_zoom.js files.
2. Add the code shown in Listing 25.3 and Listing 25.4 to the HTML and

JavaScript files.
3. The following lines of code from Listing 25.3 define a simple application with

two directives, zoomit and fadit:
Click here to view code image

01 angular.module('myApp', [])
02 .directive('zoomit', function() {
03 return {
04 link: function (scope, elem, attr){
. . .
39 })
40 .directive('fadeit', function() {
41 return {
42 link: function (scope, elem, attr){

. . .
75 }
76 };
77 });

4. The following lines in the link function of the first directive, zoomit,
listen on the mousedown, mouseup, mouseleave, and mousemove
events. When the mouse button is pressed, the dragging variable is set to
true, and when the mouse is released or the mouse leaves the element,
dragging is set to false. Also note that in mousedown, the default event
behavior is suppressed by event.preventDefault(). This is to
eliminate any interaction conflicts with the default browser behavior while
dragging:

Click here to view code image

13 elem.on('mouseup', function(){
14 dragging = false;
15 });
16 elem.on('mouseleave', function(){
17 dragging = false;
18 });

5. In the following lines in zoomit, define a mousemove handler to determine
the position movement of the mouse and increment or decrement the image size
accordingly. Notice that because the full version of jQuery is loaded, you were
able to use the width() and height() functions to get and set the size of
the image:

Click here to view code image

19 elem.on('mousemove', function(event){
20 if(dragging){
21 var adjustment = null;
22 if (event.screenX > lastX+tolerance &&
23 elem.width() < 300){
24 adjustment = 1.1;
25 } else if (event.screenX < lastX-tolerance &&
26 elem.width() > 100){
27 adjustment = .9;
28 }
29 if(adjustment){
30 //requires full jQuery library
31 elem.width(elem.width()*adjustment);
32 elem.height(elem.height()*adjustment);
33 lastX = event.screenX;
34 }
35 }
36 });

6. Look at the fadeit directive, and you can see that it is very similar to the

zoomit directive, with the exception that the opacity value of the image is
changed.

7. The fadeit and zoomit directives are used on the following
element from the AngularJS template shown in Listing 25.4. Notice that on the
first image, the zoomit directive is added, on the second image the fadeit
directive is added, and on the final image both are added. This shows you that
multiple custom directives can be added to the same element:

Click here to view code image

11
12
13

8. Open the directive_custom_zoom.js file in a browser. The results are shown
in Figure 25.2. The first image is shrunk by dragging left, the second image is
faded by dragging up, and the third image is expanded and faded.

FIGURE 25.2 Implementing custom directives that provide interactions with mouse
events to manipulate DOM elements.

LISTING 25.3 directive_custom_zoom.js Implementing Custom Directives That
Register with DOM Events

Click here to view code image

01 angular.module('myApp', [])
02 .directive('zoomit', function() {
03 return {
04 link: function (scope, elem, attr){

05 var dragging = false;
06 var tolerance = 10;
07 var lastX = 0;
08 elem.on('mousedown', function(event){
09 lastX = event.screenX;
10 event.preventDefault();
11 dragging = true;
12 });
13 elem.on('mouseup', function(){
14 dragging = false;
15 });
16 elem.on('mouseleave', function(){
17 dragging = false;
18 });
19 elem.on('mousemove', function(event){
20 if(dragging){
21 var adjustment = null;
22 if (event.screenX > lastX+tolerance &&
23 elem.width() < 300){
24 adjustment = 1.1;
25 } else if (event.screenX < lastX-tolerance &&
26 elem.width() > 100){
27 adjustment = .9;
28 }
29 if(adjustment){
30 //requires full jQuery library
31 elem.width(elem.width()*adjustment);
32 elem.height(elem.height()*adjustment);
33 lastX = event.screenX;
34 }
35 }
36 });
37 }
38 };
39 })
40 .directive('fadeit', function() {
41 return {
42 link: function (scope, elem, attr){
43 var dragging = false;
44 var tolerance = 10;
45 var lastY = 0;
46 elem.on('mousedown', function(event){
47 lastY = event.screenY;
48 event.preventDefault();
49 dragging = true;
50 });
51 elem.on('mouseup', function(){
52 dragging = false;
53 });
54 elem.on('mouseleave', function(){
55 dragging = false;
56 });
57 elem.on('mousemove', function(event){
58 if(dragging){

59 var adjustment = null;
60 var currentOpacity = parseFloat(elem.css("opacity"));
61 if (event.screenY > lastY+tolerance &&
62 currentOpacity < 1){
63 adjustment = 1.1;
64 } else if (event.screenY < lastY-tolerance &&
65 currentOpacity > 0.5){
66 adjustment = .9;
67 }
68 if(adjustment){
69 //requires full jQuery library
70 elem.css("opacity", currentOpacity*adjustment);
71 lastY = event.screenY;
72 }
73 }
74 });
75 }
76 };
77 });

LISTING 25.4 directive_custom_zoom.html An AngularJS Template That Utilizes
a Custom Directive to Provide Interactions with Mouse Events

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>
04 <title>AngularJS Custom Directive</title>
05 <style>
06 img { width: 200px; }
07 </style>
08 </head>
09 <body>
10 <h2>Custom Directive Zoom and Fade</h2>
11
12
13
14 <p>Drag up to fade out and down to fade in.</p>
15 <p>Drag left to zoom out and right to zoom in.</p>
16 <script src="https://code.jquery.com/jquery-2.1.3.min.js"></script>
17 <script src="http://code.angularjs.org/1.3.8/angular.min.js">
</script>
18 <script src="js/directive_custom_zoom.js"></script>
19 </body>
20 </html>

Try it Yourself: Implementing Nested Directives

The final example illustrates how you can nest directives within each other and
have them interact. Nesting directives is a great way to provide a parent context
and container for custom elements that are related to each other. In this example,
the outer directive myPhotos acts as a container that can contain child
directives named myPhoto.
The idea is that you can add an <my-photos></my-photos> element and
then add <my-photo></my-photo> elements within it. Each myPhoto
element is added to the scope of the controller of myPhotos, allowing the photo
title to be displayed and the active property of each myPhoto element to be
easily toggled on and off.
Use the following steps to build the application with a custom directive that
manipulates the DOM:
1. Add the lesson25/directive_custom_photos.html, my_photos.html, and

lesson25/js/directive_custom_photos.js and files.
2. Add the code shown in Listing 25.5, Listing 25.6, and Listing 25.7 to the

HTML and JavaScript files.
3. The following lines of code from Listing 25.5 implement the myPhotos

directive. The myPhotos directive is designed to be a container for the
myPhoto directive that is defined later. Notice that the following lines define
a controller that provides the functionality for the myPhotos directive,
including an addPhoto() function:

Click here to view code image

02 .directive('myPhotos', function() {
03 return {
04 restrict: 'E',
05 transclude: true,
06 scope: {},
07 controller: function($scope) {
08 var photos = $scope.photos = [];
09 $scope.select = function(photo) {
10 angular.forEach(photos, function(photo) {
11 photo.selected = false;
12 });
13 photo.selected = true;
14 };
15 this.addPhoto = function(photo) {
16 photos.push(photo);
17 };
18 },
19 templateUrl: 'my_photos.html'
20 };
21 })

4. The following line from the myPhotos directive specifies that

my_photos.html should be used as the template when rendering the directive:
Click here to view code image

19 templateUrl: 'my_photos.html'

5. The following lines from Listing 25.7 implement a partial template loaded by
the myPhotos directive. It generates a <div> container and then uses the
photos array in the myPhotos scope to build a list of links bound to the
select() function, using ng-click. <div ng-transclude>
</div> provides the container for the myPhoto child elements:

Click here to view code image

01 <div>
02 <div class="imgList" >
03 <li ng-repeat="photo in photos"
04 ng-class="{active:photo.selected}">
05 {{photo.title}}
06
07 </div>
08 <div class="imgView" ng-transclude></div>
09 </div>

6. The following code from Listing 25.5 defines the myPhoto directive. Because
the code uses require:'^myPhotos' in the myPhoto directive, you can
also call the addPhoto() method from the link() function by using the
photosControl handle to the myPhotos controller:

Click here to view code image

22 .directive('myPhoto', function() {
23 return {
24 require: '^myPhotos',
25 restrict: 'E',
26 transclude: true,
27 scope: { title: '@'},
28 link: function(scope, elem, attrs, photosControl) {
29 photosControl.addPhoto(scope);
30 },
31 template: '<div ng-show="selected" ng-transclude></div>'
32 };
33 });

7. Listing 25.6 implements the myPhotos and myPhoto directives in an
AngularJS template. The myPhoto directives are nested inside the
myPhotos directive. Notice that the title attribute is set on each
myPhoto directive. Using this methodology, shown next, you could add any
number of myPhoto elements to the page and have them show up in the list:

Click here to view code image

14 <my-photos>
15 <my-photo title="Leap">
16
17 </my-photo>
. . .

8. Open the directive_custom_photos.html file in a browser. Figure 25.3 shows
how the images are shown and hidden each time a link is clicked.

FIGURE 25.3 Implementing event directives in AngularJS template views.

LISTING 25.5 directive_custom_photos.js Implementing Custom Directives That
Interact with Each Other

Click here to view code image

01 angular.module('myApp', [])
02 .directive('myPhotos', function() {
03 return {
04 restrict: 'E',
05 transclude: true,
06 scope: {},
07 controller: function($scope) {
08 var photos = $scope.photos = [];
09 $scope.select = function(photo) {
10 angular.forEach(photos, function(photo) {
11 photo.selected = false;
12 });
13 photo.selected = true;
14 };
15 this.addPhoto = function(photo) {
16 photos.push(photo);
17 };
18 },
19 templateUrl: 'my_photos.html'
20 };
21 })
22 .directive('myPhoto', function() {
23 return {
24 require: '^myPhotos',
25 restrict: 'E',
26 transclude: true,
27 scope: { title: '@'},
28 link: function(scope, elem, attrs, photosControl) {
29 photosControl.addPhoto(scope);
30 },
31 template: '<div ng-show="selected" ng-transclude></div>'
32 };
33 });

LISTING 25.6 directive_custom_photos.html An AngularJS Template That
Implements Nested Custom Directives

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>

04 <title>AngularJS Custom Directive</title>
05 <style>
06 img {
07 width: 300px }
08 .imgView, .imgList {
09 vertical-align: top; display:inline-block; }
10 </style>
11 </head>
12 <body>
13 <h2>Custom Directive Photo Flip</h2>
14 <my-photos>
15 <my-photo title="Leap">
16
17 </my-photo>
18 <my-photo title="Washington">
19
20 </my-photo>
21 <my-photo title="Bridge">
22
23 </my-photo>
24 <my-photo title="Liberty">
25
26 </my-photo>
27 <my-photo title="Falls">
28
29 </my-photo>
30 </my-photos>
31 <script src="http://code.angularjs.org/1.3.8/angular.min.js">
</script>
32 <script src="js/directive_custom_photos.js"></script>
33 </body>
34 </html>

LISTING 25.7 my_photos.html A Partial AngularJS Template That Provides the
Root Element for the myPhotos Custom Directive

Click here to view code image

01 <div>
02 <div class="imgList" >
03 <li ng-repeat="photo in photos"
04 ng-class="{active:photo.selected}">
05 {{photo.title}}
06
07 </div>
08 <div class="imgView" ng-transclude></div>
09 </div>

Summary

One of the most powerful features of AngularJS is the capability to create your own
custom directives. Implementing a custom directive in code is simple using the
directive() method on a Module object. However, directives can also be very
complex because of the myriad ways they can be implemented. This lesson has given
you a small taste of what can be done with custom directives in AngularJS. Try
spending some time playing around with the examples and writing some of your own to
familiarize yourself as much as possible with how they work.

Q&A
Q. Is there a way to ensure that the name I choose for a custom directive will

not be used by someone else?
A. Currently there is no way to enforce that. The best way is to come up with a

unique acronym to use as the prefix for your custom AngularJS directives.
Q. Is it better to implement custom directives as tag, attribute, class, or

comment names?
A. The best practice is to use tag names or attribute names when it makes sense,

rather than comment and class names.

Workshop
The workshop consists of a set of questions and answers designed to solidify your
understanding of the material covered in this hour. Try to answer the questions before
looking at the answers.

Quiz
1. True or false: When using the scope in a custom directive, the scope has to be

shared with the parent scope.
2. True or false: The property 'type' can be set to a string that is not an HTML

root node.
3. What is the syntax to instruct the injector service to look in parent contexts for a

controller when adding a controller to a directive?
4. Which function(s) should you use to manipulate the DOM in a custom directive?

Quiz Answers
1. False. The scope can share the parent scope, inherit from it, or be its own isolate

scope.
2. True. 'type' can be used not only with HTML, but with svg and math

elements as well.

3. Use the require: '^controllerName' option in the directive.
4. The link and compile functions.

Exercises
1. Modify the example code in Listings 25.1 and 25.2. Add a bheight parameter

similar to the bwidth parameter to set the height of the box as well as the width.
2. Modify the example code in Listings 25.3 and 25.4. Add a new directive named
movit that changes the x and y positions of the element on the page. You will
need to change the elements to be absolute positioned.

3. Modify the example code in Listing 25.6 to create a second <my-photos>
block and include 10 or 15 additional images so that you can see how easy it is to
reuse custom directives.

Lesson 26. Using Events to Interact with Data in the
Model

What You’ll Learn in This Lesson:
 How to use $watch to track scope variables
 How to use $watchCollection to track changes
 How to emit a custom event
 How to handle custom events
 How to implement custom events

Events are one of the most critical components in most AngularJS applications. Events
enable users to interact with elements as well as the application to know when to
perform certain tasks. This lesson discusses different types of events that you have and
will be working with in your AngularJS applications.
Specifically, this lesson discusses four types of events, including browser events, user
interaction events, scope-based events, and custom events. You have already been
introduced to some of this in previous lessons. The reason this is positioned here is that
the previous lessons give perspective to the discussion that follows.

Browser Events
Several events are triggered by the browser itself. In a way, these are also user-
interaction events; however, I want to keep them separate for this discussion. The
browser events include things like the ready event when the document is loaded and the
resize event when the browser is resized.
These are useful to know when the view of the user is changing. You have already seen
how to use the .on() function to add handlers for events; the question is where to put
the handler. The best solutions I’ve seen involve a handler that is registered in the run
block for the entire application. Any information can then be made available to
subsequent components through the scope model or through a cache service.

User Interaction Events
You have already been exposed to user interaction events. These include mouse and
keyboard events, as well as other events such as the focus and blur events. There are
typically two places where you will implement interactions for user events. One is
using the ng event directives, such as ng-click, and simple interactions in the view
and controller code. The second place to add user event interactions is in the link
function of custom directives.

You have already been exposed to both of these methods in previous lessons; in this
lesson, you’ll see that you have a choice of which one to use. The advantage of using the
built-in ng event directives such as ngClick is that you do not have to add the
complexity of creating a custom directive for simple requirements.
There are a couple of downsides to using the ng event directives, though. One is that
you should not be doing DOM manipulation in the controller, which is where you can
define handlers for the ng directives. Another downside is that you will have to
implement the ngClick code in the template every time you want the functionality. For
example, consider the following template code to add mouse event handlers to an
element:
Click here to view code image

<span
 ng-mouseenter="mouseEntered(event)"
 ng-mouseleave="mouseLeft(event)"
 ng-click="clicked(event)">

The code isn’t too bad, but what if there are several locations where you want the same
functionality? If they fall in an ng-repeat block, it’s not too bad, but otherwise it’s a
pain. A good rule to follow is that if you want to use the functionality in more than one
place, and definitely if you will reuse it in multiple applications, you should define a
custom directive that implements the handlers.

Adding $watches to Track Scope Change Events
Another common event that you will be using is triggered not by the browser, but by
changes to the data in the model. This capability enables you to react to model changes
without having to add code at every point where the values might change. This
capability is useful because often the data in the model might be changing in various
ways—user input, service updates, and so on.

Using $watch to Track a Scope Variable
To add the capability to handle changes to scope values, you need to add a $watch to
the variable in the scope using the $watch functionality built in to AngularJS. The
$watch function in the scope uses the following syntax:
Click here to view code image

$watch(watchExpression, listener, [objectEquality])

The watchExpression is the expression in the scope to watch. This expression is
called on every $digest() and returns the value that will be watched. The listener
defines a function that will be called when the value of the watchExpression changes

to a new value. The listener will not be called if the watchExpression is changed to
the value it is already set to. The objectEquality is a Boolean that when true will use
the angular.equals() function to determine equality instead of the more strict
==! operator. You should be careful when using objectEquality because on complex
objects, it can result in increases in memory and performance usage.
The following shows an example of adding $watch on the scope variable score:
Click here to view code image

$scope.score = 0;
$scope.$watch('score', function(newValue, oldValue) {
 if(newValue > 10){
 $scope.status = 'win';
 }
});

Using $watchGroup to Track Multiple Scope Variables
AngularJS also provides the capability to watch an array of expressions using the
$watchGroup method. The $watchGroup method works the same as $watch
except that the first parameter is an array of expressions to watch. The listener will be
passed an array with the new and old values for the watched variables. For example, if
you wanted to watch the variables score and time, you would use this:
Click here to view code image

$scope.score = 0;
$scope.time = 0;
$scope.$watchGroup(['score', 'time'], function(newValues, oldValues) {
 if(newValues[0] > 10){
 $scope.status = 'win';
 } else if (newValues[1] > 5{
 $scope.status = 'times up';
});

Using $watchCollection to Track Changes to Properties of an
Object in the Scope
You can also watch the properties of an object using the $watchCollection
method. The $watchCollection method takes an object as the first parameter and
watches the properties of the object. In the case of an array, the individual values of the
array are watched. For example:
Click here to view code image

$scope.scores = [5, 10, 15, 20];
$scope.$watchGroup('scores', function(newValue, oldValue) {
 $scope.newScores = newValue;
});

Try it Yourself: Implementing Watches in a Controller
In this example, you get a chance to implement a watch, watch group, and watch
collection in a controller to track changes and update the view dynamically. The
code in Listings 26.1 and 26.2 demonstrate a simple example that implements the
$watch, $watchGroup, and $watchCollection methods.
The code in Listing 26.1 implements a controller that stores the values
myColor, hits, and misses, as well as an object named myObj, in the
scope. The code in Listing 26.2 implements an AngularJS template that provides
the interaction to change the values and view the updated watch items.
Use the following steps to build the application that watches values in the scope:
1. Add the lesson26/scope_watch.html and lesson26/js/scope_watch.js files.
2. Add the code shown in Listing 26.1 and Listing 26.2 to the HTML and

JavaScript files.
3. The code in Listing 26.1 first sets several scope values including myColor,
hits, and misses, which will be watched. The controller also defines
setColor(), hit(), and miss() functions that allow those values to be
changed from the browser.

4. The following lines of code from Listing 26.1 implement a $watch on the
myColor value in the scope so that each time myColor changes, the
myObj.color value can also be adjusted.

5. The following lines of code from Listing 26.1 implement a $watchGroup
on the hits and misses values in the scope so that each time they change,
the value of myObj.hits and myObj.misses are also changed.

6. The following lines of code from Listing 26.1 implement a
$watchCollection on the myObj object in the scope so that each time
myObj is changed, the changes value in the scope is incremented to track
the number of time myColor, hits, and misses change.

7. The code in Listing 26.2 implements an AngularJS template that enables the
user to use the mouse to select the color and increment the hits and misses
variables. The object and change values are displayed at the bottom, showing
how the $watch methods detect and update changes to the scope.

8. Open the scope_watch.html file in a browser and change the color and
increment the hits and misses to see the watched values in myObj and
changes change. Figure 26.1 shows the rendered AngularJS web page.

FIGURE 26.1 Using $watch(), $watchGroup(), and
$watchCollection() handlers to watch the value of scope variables.

LISTING 26.1 scope_watch.js Implementing $watch(), $watchGroup(), and
$watchCollection() Handlers to Watch the Value of Scope Variables

Click here to view code image

01 angular.module('myApp', [])
02 .controller('myController', function ($scope) {
03 $scope.mColors = ['red', 'green', 'blue'];
04 $scope.myColor = '';
05 $scope.hits = 0;
06 $scope.misses = 0;
07 $scope.changes = 0;
08 $scope.myObj = {color: '', hits: '', misses: ''};
09 $scope.setColor = function (color){
10 $scope.myColor = color;
11 };
12 $scope.hit = function (){
13 $scope.hits += 1;
14 };

15 $scope.miss = function (){
16 $scope.misses += 1;
17 };
18 $scope.$watch('myColor', function (newValue, oldValue){
19 $scope.myObj.color = newValue;
20 });
21 $scope.$watchGroup(['hits', 'misses'], function (newValue, oldValue){
22 $scope.myObj.hits = newValue[0];
23 $scope.myObj.misses = newValue[1];
24 });
25 $scope.$watchCollection('myObj', function (newValue, oldValue){
26 $scope.changes += 1;
27 });
28 });

LISTING 26.2 scope_watch.html HTML Template Code That Provides the View
and Interactions with the Scope and Controller Defined in Listing 26.1

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>
04 <title>AngularJS Scope Variable Watch</title>
05 <style>
06 span { cursor: pointer; }
07 </style>
08 </head>
09 <body>
10 <h2>Watching Values in the AngularJS Scope</h2>
11 <div ng-controller="myController">
12 Select Color:
13
14 <span ng-style="{color: mColor}"
15 ng-click="setColor(mColor)">
16 {{mColor}}
17 <hr>
18 [+]
19 Hits: {{hits}}

20 [+]
21 misses: {{misses}}<hr>
22 Object: {{myObj|json}}

23 Number of Changes: {{changes}}
24 </div>
25 <script src="http://code.angularjs.org/1.3.8/angular.min.js">
</script>
26 <script src="js/scope_watch.js"></script>
27 </body>
28 </html>

Emitting and Broadcasting Custom Events
A great feature of scopes is the capability to emit and broadcast events within the scope
hierarchy. Events enable you to send notification to different levels in the scope that an
event has occurred. Events can be anything you choose, such as a value changed or
threshold reached. This is extremely useful in many situations, such as letting child
scopes know that a value has changed in a parent scope, or vice versa.

Emitting a Custom Event to the Parent Scope Hierarchy
To emit an event from a scope, you use the $emit() method. This method sends an
event upward through the parent scope hierarchy. Any ancestor scopes that have
registered for the event are notified. The $emit() method uses the following syntax,
where name is the event name and args is zero or more arguments that are passed to
the event handler functions:
Click here to view code image

scope.$emit(name, [args, . . .])

Broadcasting a Custom Event to the Child Scope Hierarchy
You can also broadcast an event downward through the child scope hierarchy by using
the $broadcast() method. Any descendent scopes that have registered for the event
are notified. The $broadcast() method uses the following syntax, where name is
the event name and args is zero or more arguments that are passed to the event handler
functions:
Click here to view code image

scope.$broadcast(name, [args, . . .])

Handling Custom Events with a Listener
To handle an event that is emitted or broadcasted, you use the $on() method. The
$on() method uses the following syntax, where name is the name of the event to listen
for:

scope.$on(name, listener)

The listener parameter is a function that accepts the event as the first parameter and any
arguments passed by the $emit() or $broadcast() method as subsequent
parameters. The event object has the following properties:

 targetScope: The scope from which $emit() or $broadcast() was
called.

 currentScope: The scope that is currently handling the event.
 name: The name of the event.
 stopPropagation(): A function that stops the event from being propagated up
or down the scope hierarchy.
 preventDefault(): A function that prevents default behavior in a browser
event but only executes your own custom code.
 defaultPrevented: A Boolean that is true if
event.preventDefault() has been called.

Try it Yourself: Implementing Custom Events in Nested Controllers
In this example, you use custom events to communicate changes between two
controllers, one nested within another. The code in Listing 26.3 and Listing 26.4
provide an AngularJS application and template that illustrates the use of
$emit(), $broadcast(), and $on() to send and handle events up and
down the scope hierarchy.
In the example, there is a list of characters stored in a parent scope. You can
easily click on characters in the list to display character information contained in
a child scope. You can also delete the character in the child scope, which
removes it from the list in the parent scope.
Use the following steps to build the application with nested controllers and
scopes:
1. Add the lesson26/scope_events.html and lesson26/js/scope_ events.js files.
2. Add the code shown in Listing 26.3 and Listing 26.4 to the HTML and

JavaScript files.
3. The following lines of code in Listing 26.3 implement the parent scope

controller called Characters. An array of character names is defined in the
scope and the currentName value is set to the first element in that array:

Click here to view code image

02 controller('Characters', function($scope) {
03 $scope.names = ['Frodo', 'Aragorn', 'Legolas', 'Gimli'];
04 $scope.currentName = $scope.names[0];
...
15 }).

4. The following changeName() function changes the currentName value
in the scope and then broadcasts a CharacterChanged event. Notice that
changeName() uses the this keyword to access the name property. The
name property comes from a dynamic child scope that was created because

the following directives were used to generate multiple elements in Listing
26.4:

Click here to view code image

05 $scope.changeName = function() {
06 $scope.currentName = this.name;
07 $scope.$broadcast('CharacterChanged', this.name);
08 };

5. The following CharacterDeleted event is handled by the
$scope.$on('CharacterDeleted') event handler and removes the
character from the list, which will be reflected in the web page:

Click here to view code image

05 $scope.changeName = function() {
09 $scope.$on('CharacterDeleted', function(event, removeName){
10 var i = $scope.names.indexOf(removeName);
11 $scope.names.splice(i, 1);
12 $scope.currentName = $scope.names[0];
13 $scope.$broadcast('CharacterChanged', $scope.currentName);
14 });

6. The following lines of code in Listing 26.3 define a child scope controller
named Character. The CharacterChanged event is handled by the
$scope.$on('Character-Changed') event handler and sets the
currentInfo value in the scope, which will update the page elements. The
deleteChar() function removes the character from the Character scope
and uses $emit to send a CharacterDeleted event up to the parent so
that it can be handled in the Characters controller:

Click here to view code image

16 controller('Character', function($scope) {
17 $scope.info = {'Frodo': { weapon: 'Sting',
18 race: 'Hobbit'},
19 'Aragorn': { weapon: 'Sword',
20 race: 'Man'},
21 'Legolas': { weapon: 'Bow',
22 race: 'Elf'},
23 'Gimli': { weapon: 'Axe',
24 race: 'Dwarf'}};
25 $scope.currentInfo = $scope.info['Frodo'];
26 $scope.$on('CharacterChanged', function(event, newCharacter){
27 $scope.currentInfo = $scope.info[newCharacter];
28 });
29 $scope.deleteChar = function() {
30 delete $scope.info[$scope.currentName];
31 $scope.$emit('CharacterDeleted', $scope.currentName);
32 };
33 });

7. The AngularJS template code in Listing 26.4 implements the nested ng-
controller statements, which generate the scope hierarchy and display
scope values for the characters. This code also includes some very basic CSS
styling to make spans look like buttons and to position elements on the page.

8. Load the scope_events.html file in a browser. Figure 26.2 shows the resulting
web page. As you click a character name, information about that character is
displayed, and when you click the Delete button, the character is deleted from
the buttons and the Info section.

FIGURE 26.2 Using $broadcast() and $emit() to send change and delete
events through a scope hierarchy.

LISTING 26.3 scope_events.js Implementing $emit() and $broadcast() Events
Within the Scope Hierarchy

Click here to view code image

01 angular.module('myApp', []).
02 controller('Characters', function($scope) {
03 $scope.names = ['Frodo', 'Aragorn', 'Legolas', 'Gimli'];
04 $scope.currentName = $scope.names[0];
05 $scope.changeName = function() {
06 $scope.currentName = this.name;
07 $scope.$broadcast('CharacterChanged', this.name);
08 };
09 $scope.$on('CharacterDeleted', function(event, removeName){
10 var i = $scope.names.indexOf(removeName);
11 $scope.names.splice(i, 1);
12 $scope.currentName = $scope.names[0];
13 $scope.$broadcast('CharacterChanged', $scope.currentName);
14 });
15 }).
16 controller('Character', function($scope) {
17 $scope.info = {'Frodo': { weapon: 'Sting',
18 race: 'Hobbit'},
19 'Aragorn': { weapon: 'Sword',
20 race: 'Man'},
21 'Legolas': { weapon: 'Bow',
22 race: 'Elf'},
23 'Gimli': { weapon: 'Axe',
24 race: 'Dwarf'}};
25 $scope.currentInfo = $scope.info['Frodo'];
26 $scope.$on('CharacterChanged', function(event, newCharacter){
27 $scope.currentInfo = $scope.info[newCharacter];
28 });
29 $scope.deleteChar = function() {
30 delete $scope.info[$scope.currentName];
31 $scope.$emit('CharacterDeleted', $scope.currentName);
32 };
33 });

LISTING 26.4 scope_events.html HTML Template Code That Renders the Scope
Hierarchy for Listing 26.3 Controllers

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>
04 <title>AngularJS Scope Events</title>
05 <style>
06 span{
07 padding: 3px; border: 3px ridge;
08 cursor: pointer; width: 100px; display: inline-block;
09 font: bold 18px/22px Georgia; text-align: center;
10 color: white; background-color: blue }
11 label{
12 padding: 2px; margin: 5px 10px; font: 15px bold;

13 display: inline-block; width: 50px; text-align: right; }
14 .lList {
15 vertical-align: top;
16 display: inline-block; width: 130px; }
17 .cInfo {
18 display: inline-block; width: 175px;
19 border: 3px blue ridge; padding: 3px; }
20 </style>
21 </head>
22 <body>
23 <h2>Custom Events in Nested Controllers</h2>
24 <div ng-controller="Characters">
25 <div class="lList">
26 <span ng-repeat="name in names"
27 ng-click="changeName()">{{name}}
28
29 </div>
30 <div class="cInfo">
31 <div ng-controller="Character">
32 <label>Name: </label>{{currentName}}

33 <label>Race: </label>{{currentInfo.race}}

34 <label>Weapon: </label>{{currentInfo.weapon}}

35 Delete
36 </div>
37 </div>
38 </div>
39 <script src="http://code.angularjs.org/1.3.8/angular.min.js">
</script>
40 <script src="js/scope_events.js"></script>
41 </body>
42 </html>

Summary
The capability to manage events is one of the most critical components in most
AngularJS applications. You can use events in AngularJS applications to provide user
interaction with elements as well as components of the application communicating with
each other to know when to perform certain tasks. This lesson started off with a brief
discussion about browser and user interaction events and how they relate to the overall
application architecture.
Next, the lesson covered using the $watch, $watchGroup, and
$watchCollection methods to watch values in the scope. Using watches allows
you to act on changes to the scope values without having to place code in every location
where those values might change.
Scopes are organized into hierarchies, and the root scope is defined at that application
level. Each instance of a controller also gets an instance of a child scope. In this lesson,
you learned how to emit or broadcast events from within a scope and then implement

handlers that listen for those events and get executed when they are triggered.

Q&A
Q. When do watches get processed by AngularJS?
A. AngularJS uses a digest cycle that is basically a loop that checks for changes to

variables being watched by the scope.
Q. Does that mean that all my scope values are being watched?
A. No, that could be a terrible performance drain. Only the variables you have

specified by the watch functions will be checked.

Workshop
The workshop consists of a set of questions and answers designed to solidify your
understanding of the material covered in this hour. Try to answer the questions before
looking at the answers.

Quiz
1. What is the best way to watch multiple values in the scope at the same time?
2. Do events triggered by $emit go upward or downward through the scope

hierarchy?
3. Do events triggered by $broadcast go upward or downward through the

scope hierarchy?
4. What is the function called that stops the default behavior in a browser event?

Quiz Answers
1. Use $watchGroup
2. Upward
3. Downward
4. preventDefault()

Exercises
1. Modify the code in Listings 26.1 and 26.2 and add a ratio value that represents

the number of hits divided by the number of hits plus the number of misses.
Modify the current watches to update the ratio each time hit or miss is pressed.

2. Modify the code in Listings 26.3 and 26.4. Add a Duplicate button to the web
page next to the Delete button. When the user clicks the Duplicate button, create a
second copy of that character in the characters list. You will also need to add an

event and handler to notify the parent controller that another character has been
added and should show up in the character names list.

Lesson 27. Implementing AngularJS Services in Web
Applications

What You’ll Learn in This Lesson:
 How to send HTTP GET and PUT requests to the web server from AngularJS
 How to implement browser alerts
 How to implement timers in your AngularJS code
 How to manipulate cookies from AngularJS
 How to use the $animate service

One of the most fundamental components of AngularJS functionality is its built-in
services. Services provide task-based functionality to your applications. Think about a
service as a chunk of reusable code that performs one or more related tasks. AngularJS
provides several built-in services and also enables you to create your own customized
services.
This lesson introduces the AngularJS services. You will see and implement some of the
built-in services, such as $http for web server communication, $cookieStore for
storing and retrieving browser cookies, and $animate to provide animation
capabilities.

Understanding AngularJS Services
AngularJS services are singleton objects, which means only one instance is ever
created. The intent of a service is to provide a concise bit of code that performs specific
tasks. A service can be as simple as providing a value definition or as complex as
providing full HTTP communication to a web server.
A service provides a container for reusable functionality that is readily available to
AngularJS applications. Services are defined and registered with the dependency
injection mechanism in AngularJS. This enables you to inject services into modules,
controllers, and other services.

By the Way
Lesson 21, “Understanding AngularJS Application Dynamics,” discusses
dependency injection. You should read that lesson, if you haven’t already,
before continuing with this one.

Using the Built-In Services

AngularJS provides several built-in services. These are automatically registered with
the dependency injector; therefore, you can easily incorporate them into your AngularJS
applications by using dependency injection.
Table 27.1 describes some of the most common built-in services to give you an idea of
what is available. The following sections cover some of these services in more detail.

TABLE 27.1 Common Services That Are Built In to AngularJS

Sending HTTP GET and PUT Requests with the $http Service
The $http service enables you to directly interact with the web server from your
AngularJS code. The $http service uses the browser’s XMLHttpRequest object
underneath, but from the context of the AngularJS framework.

There are two ways to use the $http service. The simplest is to use one of the
following built-in shortcut methods that correspond to standard HTTP requests:

 delete(url, [config])
 get(url, [config])
 head(url, [config])
 jsonp(url, [config])
 post(url, data, [config])
 put(url, data, [config])
 patch(url, data, [config])

Configuring the $http Request
In these methods, the url parameter is the URL of the web request. The optional
config parameter is a JavaScript object that specifies the options to use when
implementing the request. Table 27.2 lists the properties you can set in the config
parameter.

TABLE 27.2 Properties That Can Be Defined in the config Parameter for
$http Service Requests

You can also specify the request, URL, and data by sending the config parameter
directly to the $http(config) method. For example, the following two lines are the
same:
Click here to view code image

$http.get('/myUrl');
$http({method: 'GET', url:'/myUrl'});

Implementing the $http Response Callback Functions
When you call a request method by using the $http object, you get back an object with
the promise methods success() and error(). You can pass to these methods a
callback function that is called if the request is successful or if it fails. These methods
accept the following parameters:

 data: Response data.
 status: Response status.
 header: Response header.
 config: Request configuration.

The following is a simple example of implementing the success() and error()
methods on a get() request:
Click here to view code image

$http({method: 'GET', url: '/myUrl'}).
 success(function(data, status, headers, config) {

 // handle success
 }).
 error(function(data, status, headers, config) {
 // handle failure
 });

Try it Yourself: Implementing a Simple HTTP Server and Using the $http
Service to Access It

In this example, you implement an AngularJS application that uses the $http
service to access and update data on a web server. The purpose of this exercise
is to familiarize you with using the $http.get() and $http.post()
requests.
The code in Listings 27.1 through 27.3 implements a simple Node.js web service
and AngularJS application that accesses it. The web server contains a simple
JavaScript object with items and count to mimic the stock of a store. The web
application enables a user to tell the server to restock the store, and buy and use
items. The example is very rudimentary so that the code is easy to follow, but it
incorporates GET and POST requests as well as error-handling examples.
Use the following steps to build the custom webserver with POST and GET
request handlers and build an AngularJS application that accesses the server:
1. Add the lesson27/service_http.html and lesson28/js/service_http.js files.
2. Add the code shown in Listing 27.2 and Listing 27.3 to the HTML and

JavaScript files.
3. For this example, we need to have the web server provide a simulated

database access service. Listing 27.5 implements the Node.js web server that
handles the following GET and POST routes to get and set a data on the server:

 /reset/data: A GET route that reinitializes the items available in the
store.
 /buy/item: A POST route that decrements the item count and returns the
store data (typically it would not need to return the full data, but for this
simple example it makes the code cleaner). If the item is out of stock, a 400
error is returned.
 /set/user: A POST route that accepts a user object in the body of the
request and updates the object on the server to simulate storing a user
object.
 /set/data: A POST route that accepts an array of objects in the body of
the request and updates the data variable to simulate storing database data.
Typically, you would never store all the table data at once, but for

simplicity of this example, this is how it is.
You don’t necessarily need to pay a lot of attention to the code in Listing 27.1
other than understanding the routes that it provides so that you can follow the
interactions in the AngularJS application defined in Listing 27.2. The server is
very rudimentary and doesn’t handle errors but is enough to illustrate using
$http in AngularJS.

By the Way
You will need to stop the normal server.js HTTP server if it is running
before starting service_db_server.js from Listing 27.1 (don’t
forget to stop service_server.js and reload server.js when you
are done with this exercise). Also, you will want to place the
service_server.js file from Listing 27.1 in the parent folder to the
service_http.html in Listing 27.3 for the paths to match up properly
in the Node.js static routes. The structure should look similar to this:

Click here to view code image

./service_server.js

./lesson28/service_http.html

./lesson28/js/service_http.js

LISTING 27.1 service_server.js Implementing an Express Server That Supports
GET and POST Routes for an AngularJS Controller

Click here to view code image

01 var express = require('express');
02 var bodyParser = require('body-parser');
03 var app = express();
04 app.use('/', express.static('./'));
05 app.use(bodyParser.urlencoded({ extended: true }));
06 app.use(bodyParser.json());
07 function initStore(){
08 var items = ['eggs', 'toast', 'bacon', 'juice'];
09 var storeObj = {};
10 for (var itemIDX in items){
11 storeObj[items[itemIDX]] =
12 Math.floor(Math.random() * 5 + 1);
13 }
14 return storeObj;
15 }
16 var storeItems = initStore();
17 app.get('/reset/data', function(req, res){
18 storeItems = initStore();
19 res.json(storeItems);

20 });
21 app.post('/buy/item', function(req, res){
22 if (storeItems[req.body.item] > 0){
23 storeItems[req.body.item] =
24 storeItems[req.body.item] - 1;
25 res.json(storeItems);
26 }else {
27 res.json(400, { msg: 'Sorry ' + req.body.item +
28 ' is out of stock.' });
29 }
30 });
31 app.listen(80);

4. Add the code in Listing 27.2 that implements the AngularJS application and
controller. Notice that the buyItem() method calls the /buy/item POST
route on the server and places the results in the scope variable
$scope.storeItems. If an error occurs, the $scope.status variable
is set to the msg value in the error response object. The resetStore()
method calls the /reset/data GET route on the server and updates
$scope.storeItems with the successful response.

LISTING 27.2 service_http.js Implementing an AngularJS Controller That
Interacts with the Web Server Using the $http Service

Click here to view code image

01 angular.module('myApp', []).
02 controller('myController', ['$scope', '$http',
03 function($scope, $http) {
04 $scope.storeItems = {};
05 $scope.kitchenItems = {};
06 $scope.status = "";
07 $scope.resetStore = function(){
08 $scope.status = "";
09 $http.get('/reset/data')
10 .success(function(data, status, headers, config) {
11 $scope.storeItems = data;
12 })
13 .error(function(data, status, headers, config) {
14 $scope.status = data;
15 });
16 };
17 $scope.buyItem = function(buyItem){
18 $http.post('/buy/item', {item:buyItem})
19 .success(function(data, status, headers, config) {
20 $scope.storeItems = data;
21 if($scope.kitchenItems.hasOwnProperty(buyItem)){
22 $scope.kitchenItems[buyItem] += 1;
23 } else {

24 $scope.kitchenItems[buyItem] = 1;
25 }
26 $scope.status = "Purchased " + buyItem;
27 })
28 .error(function(data, status, headers, config) {
29 $scope.status = data.msg;
30 });
31 };
32 $scope.useItem = function(useItem){
33 if($scope.kitchenItems[useItem] > 0){
34 $scope.kitchenItems[useItem] -= 1;
35 }
36 };
37 }]);

5. Add the code in Listing 27.3 that implements an AngularJS template that
includes the Restock Store button, status message on error, and a list
of store items.

LISTING 27.3 service_http.html An AngularJS Template That Implements
Directives That Are Linked to Web Server Data

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>
04 <title>AngularJS $http Service</title>
05 <style>
06 span {
07 color:red; cursor: pointer; }
08 .myList {
09 display: inline-block; width: 200px;
10 vertical-align: top; }
11 </style>
12 </head>
13 <body>
14 <div ng-controller="myController">
15 <h2>GET and POST Using $http Service</h2>
16 <input type="button" ng-click="resetStore()"
17 value="Restock Store"/>
18 {{status}}
19 <hr>
20 <div class="myList">
21 <h3>The Store</h3>
22 <div ng-repeat="(item, count) in storeItems">
23 {{item}} ({{count}})
24 [buy]
25 </div>
26 </div>
27 <div class="myList">

28 <h3>My Kitchen</h3>
29 <div ng-repeat="(item, count) in kitchenItems">
30 {{item}} ({{count}})
31 [use]
32 </div>
33 </div>
34 </div>
35 <script src="http://code.angularjs.org/1.3.0/angular.min.js">
</script>
36 <script src="js/service_http.js"></script>
37 </body>
38 </html>

6. Open the service_http.html from Listing 27.3 in a browser. You should be able
to restock the store, buy and use items, and see the count change accordingly.
Figure 27.1 shows how the item counts get adjusted when items are bought and
used, and the out-of-stock error message is shown when the user tries to buy an
out-of-stock item.

FIGURE 27.1 Implementing the $http service to allow AngularJS controllers to
interact with the web server.

Using the $cacheFactory Service
The $cacheFactory service provides a very handy repository for temporarily
storing data as key/value pairs. Because $cacheFactory is a service, it is available
to multiple controllers and other AngularJS components.
When creating the $cacheFactory service, you can specify an options object that
contains the capacity property—for example, {capacity: 5}. By adding this
capacity setting, you limit the maximum number of elements in the cache to five.
When a new item is added, the oldest item is removed. If no capacity is specified, the
cache continues to grow.

Listing 27.4 illustrates a basic example of implementing $cacheFactory in a
Module object and then accessing it from two different controllers. The factory()
method creates and injectable $cacheFactory service object that is instantiated and
used in the myController and myController2 controllers.

LISTING 27.4 service_cache.js Implementing a $cacheFactory Service in an
AngularJS Application

Click here to view code image

01 var app = angular.module('myApp', []);
02 app.factory('MyCache', function($cacheFactory) {
03 return $cacheFactory('myCache', {capacity:5});
04 });
05 app.controller('myController', ['$scope', 'MyCache',
06 function($scope, cache) {
07 cache.put('myValue', 55);
08 }]);
09 app.controller('myController2', ['$scope', 'MyCache',
10 function($scope, cache) {
11 $scope.value = cache.get('myValue');
12 }]);

Implementing Browser Alerts Using the $window Service
The $window service provides a jQuery wrapper for a browser’s window object,
allowing you to access the window object as you normally would from JavaScript. To
illustrate this, the following code pops up a browser alert, using the alert() method
on the window object. The message of the alert gets data from the
$window.screen.availWidth and $window.screen.availHeight
properties of the browser’s window object:
Click here to view code image

var app = angular.module('myApp', []);
app.controller('myController', ['$scope', '$window',
 function($scope, window) {
 window.alert("Your Screen is: \n" +
 window.screen.availWidth + "X" + window.screen.availHeight);
 }]);

Interacting with Browser Cookies Using the $cookieStore Service
AngularJS provides a couple of services for getting and setting cookies: $cookie and
$cookieStore. Cookies provide temporary storage in a browser and persist even
when the user leaves the web page or closes the browser.

The $cookie service enables you to get and change string cookie values by using dot
notation. For example, the following code retrieves the value of a cookie with the name
appCookie and then changes it:
Click here to view code image

var cookie = $cookies.appCookie;
$cookies.appCookie = 'New Value';

The $cookieStore service provides get(), put(), and remove() functions to
get, set, and remove cookies. A nice feature of the $cookieStore service is that it
serializes JavaScript object values to a JSON string before setting them, and then it
deserializes them back to objects when getting them.
To use the $cookie and $cookieStore services, you need to do three things. First,
you load the angular-cookies.js library in the template after angular.js but
before application.js. For example:
Click here to view code image

<script src="http://code.angularjs.org/1.3.0/angular.min.js"></script>
<script src="http://code.angularjs.org/1.3.0/angular-cookies.min.js">
</script>

By the Way
You can also download the angular-cookies.js file from the
AngularJS website at http://code.angularjs.org/<version>/, where
<version> is the version of AngularJS that you are using. You might need
to download the angular-cookies.min.js.map file as well,
depending on which version of AngularJS you are using.

Second, you add ngCookies to the required list in your application Module
definition. For example:
Click here to view code image

var app = angular.module('myApp', ['ngCookies']);

Third, you inject the $cookies or $cookieStore service into your controller. For
example:
Click here to view code image

app.controller('myController', ['$scope', '$cookieStore',
 function($scope, cookieStore) {
}]);

Try it Yourself: Using the $cookieStore Service

http://code.angularjs.org/

In this example, you use the $cookie service to set and clear cookies in the
browser from your AngularJS application. Listing 27.5 loads ngCookies in the
application, injects $cookieStore into the controller, and then uses the
get(), put(), and remove() methods to interact with a cookie named
myAppCookie.
Listing 27.6 implements a set of radio buttons that tie to the favCookie value
in the model and use ng-change to call setCookie() when the values of
the buttons change.
Use the following steps to build the AngularJS application that implements
cookies:
1. Add the lesson27/service_cookie.html and lesson27/js/service_cookie.js

files.
2. Add the code shown in Listing 27.5 and Listing 27.6 to the HTML and

JavaScript files.
3. The following lines of code from Listing 27.5 implement the controller that is

injected with the $cookieStore service:
Click here to view code image

02 app.controller('myController', ['$scope', '$cookieStore',
03 function($scope, cookieStore) {

4. The following lines of code implement the setCookie() function that calls
cookieStore.remove() to remove the cookie from the browser and
cookieStore.put() to set the cookie in the browser. Notice that the
name of the cookie is myAppCookie and the value for flavor comes from
the favCookie value in the scope:

Click here to view code image

04 $scope.setCookie = function(){
05 if ($scope.favCookie === 'None'){
06 cookieStore.remove('myAppCookie');
07 }else{
08 cookieStore.put('myAppCookie', {flavor:$scope.favCookie});
09 }
10 $scope.myFavCookie = cookieStore.get('myAppCookie');
11 };

5. The following lines of code implement the initCookieValue() function
that uses cookieStore.get() to retrieve the value of the cookie if it is
already stored in the browser and then sets the favCookie and
myFavCookie value accordingly:

Click here to view code image

12 $scope.initCookieValue = function(){
13 var cookie = cookieStore.get('myAppCookie');
14 if (cookie){
15 $scope.favCookie = cookie.flavor;
16 } else {
17 $scope.favCookie = 'None';
18 }
19 $scope.myFavCookie = $scope.favCookie;
20 };
21 $scope.initCookieValue();

6. The code in Listing 27.6 implements the AngularJS template with a radio
button set that has its value bound to the favCookie using the ng-
model="favCookie" directive.

7. Open the server_cookie.html file in a web browser to set and clear the
cookies. In Chrome, you can use the developer tools Resources, Cookies,
localhost to view the value of myAppCookie, as shown in Figure 27.2. To
refresh the value of the cookies in developer tools, click the Cookies menu and
then click the localhost menu again.

FIGURE 27.2 Implementing the $cookieStore service to allow AngularJS
controllers to interact with the browser cookies.

LISTING 27.5 service_cookie.js Implementing an AngularJS Controller That

Interacts with Browser Cookies by Using the $cookieStore Service

Click here to view code image

01 var app = angular.module('myApp', ['ngCookies']);
02 app.controller('myController', ['$scope', '$cookieStore',
03 function($scope, cookieStore) {
04 $scope.setCookie = function(){
05 if ($scope.favCookie === 'None'){
06 cookieStore.remove('myAppCookie');
07 }else{
08 cookieStore.put('myAppCookie', {flavor:$scope.favCookie});
09 }
10 $scope.myFavCookie = cookieStore.get('myAppCookie');
11 };
12 $scope.initCookieValue = function(){
13 var cookie = cookieStore.get('myAppCookie');
14 if (cookie){
15 $scope.favCookie = cookie.flavor;
16 } else {
17 $scope.favCookie = 'None';
18 }
19 $scope.myFavCookie = $scope.favCookie;
20 };
21 $scope.initCookieValue();
22 }]);

LISTING 27.6 service_cookie.html An AngularJS Template That Implements
Radio Buttons to Set a Cookie Value

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>
04 <title>AngularJS $cookie Service</title>
05 </head>
06 <body>
07 <div ng-controller="myController">
08 <h3>Favorite Cookie:</h3>
09 <input type="radio" value="Chocolate Chip" ng-model="favCookie"
10 ng-change="setCookie()">Chocolate Chip</input>

11 <input type="radio" value="Oatmeal" ng-model="favCookie"
12 ng-change="setCookie()">Oatmeal</input>

13 <input type="radio" value="Frosted" ng-model="favCookie"
14 ng-change="setCookie()">Frosted</input>

15 <input type="radio" value="None" ng-model="favCookie"
16 ng-change="setCookie()">None</input>
17 <hr>Cookies: {{myFavCookie}}
18 </div>

19 <script src="http://code.angularjs.org/1.3.0/angular.min.js">
</script>
20 <script src="http://code.angularjs.org/1.3.0/angular-cookies.min.js">
</script>
21 <script src="js/service_cookie.js"></script>
22 </body>
23 </html>

Implementing Timers with $interval and $timeout Services
The AngularJS $interval and $timeout services enable you to delay execution of
code for an amount of time. These services interact with the JavaScript setInterval
and setTimeout functionality, but within the AngularJS framework.
The $interval and $timeout services use the following syntax:
Click here to view code image

$interval(callback, delay, [count], [invokeApply]);
$timeout(callback, delay, [invokeApply]);

The parameters are described here:
 callback: Is executed when the delay has expired.
 delay: Specifies the number of milliseconds to wait before the callback function
is executed.
 count: Indicates the number of times to repeat the interval.
 invokeApply: Is a Boolean that, if true, causes the function to execute only in
the $apply() block of the AngularJS event cycle. The default is true.

When you call the $interval() and $timeout() methods, they return a promise
object that you can use to cancel the timeout or interval. To cancel an existing
$timeout or $interval, call the cancel() method. For example:
Click here to view code image

var myInterval = $interval(function(){$scope.seconds++;}, 1000, 10, true);
. . .
$interval.cancel(myInterval);

If you create timeouts or intervals by using $timeout or $interval, you must
explicitly destroy them by using cancel() when the scope or elements
directives are destroyed. The easiest way to do this is by adding a listener to the
$destroy event. For example:
Click here to view code image

$scope.$on('$destroy', function(){
 $scope.cancel(myInterval);

});

Using the $animate Service
The $animate service provides animation detection hooks you can use when
performing enter, leave, and move DOM operations, as well as addClass and
removeClass operations. You can use these hooks either through CSS class names or
through the $animate service in AngularJS.
To implement animation, you need to add a directive that supports animation to the
element that you want to animate. Table 27.3 lists the directives that support animation
and the types of animation events that they support.

TABLE 27.3 AngularJS Directives That Support Animation

Implementing Animation in CSS
To implement animation in CSS, you need to include the ngClass directive in the
element that you want to animate. AngularJS uses the ngClass value as a root name
for additional CSS classes that will be added to and removed from the element during
animation.
An animation event is called on an element with an ngClass directive defined. Table
27.4 lists the additional classes that are added and removed during the animation
process.

TABLE 27.4 AngularJS Directives That Are Automatically Added and Removed
During Animation

To implement CSS-based animations, you need to add the appropriate CSS transition
code for the additional classes listed in Table 27.4. To illustrate this, the following
snippet implements add class and remove class transitions for a user-defined class
named .img-fade that animates changing the opacity of the image to .1 for a 2-
second duration:
Click here to view code image

.img-fade-add, .img-fade-remove {
 -webkit-transition:all ease 2s;
 -moz-transition:all ease 2s;
 -o-transition:all ease 2s;
 transition:all ease 2s;
}
.img-fade, .img-fade-add.img-fade-add-active {
 opacity:.1;
}

Notice that the transitions are added to the .img-fade-add and .img-fade-
remove classes, but the actual class definition is applied to .img-fade. You also

need the class definition .img-fade-add.img-fade-add-active to set the
ending state for the transition.

Implementing Animation in JavaScript
Implementing AngularJS CSS animation is very simple, but you can also implement
animation in JavaScript using jQuery. JavaScript animations provide more direct
control over your animations. Also, JavaScript animations do not require a browser to
support CSS3.
To implement animation in JavaScript, you need to include the jQuery library in your
template before the angular.js library is loaded. For example:
Click here to view code image

<script src="http://code.jquery.com/jquery-1.11.0.min.js"></script>

By the Way
Including the full jQuery library is necessary if you want to be able to
utilize the full features of jQuery animation. If you decide to include the
jQuery library, make certain that it is loaded before the AngularJS library
in your HTML code.

You also need to include the ngAnimate dependency in your application Module
object definition. For example:
Click here to view code image

var app = angular.module('myApp', ['ngAnimate']);

You can then use the animate() method on your Module object to implement
animations. The animate() method returns an object that provides functions for the
enter, leave, move, addClass, and removeClass events that you want to
handle. These functions are passed the element to be animated as the first parameter.
You can then use the jQuery animate() method to animate an element.
The jQuery animate() method uses the following syntax, in which cssProperties is
an object of CSS attribute changes, duration is specified in milliseconds, easing is the
easing method, and callback is the function to execute when the animation completes:
Click here to view code image

animate(cssProperties, [duration], [easing], [callback])

For example, the following code animates adding the fadeClass class to an element
by setting opacity to 0:
Click here to view code image

app.animation('.fadeClass', function() {
 return {
 addClass : function(element, className, done) {
 jQuery(element).animate({ opacity: 0}, 3000);
 },
 };
});

Try it Yourself: Animating Elements Using AngularJS
In this exercise, you get a chance to implement animation using AngularJS with
CSS as well as jQuery. The purpose of this exercise is to show you how each
method works.
Listings 27.7, 27.8, and 27.9 implement a basic animation example that applies a
fade-in/out animation to an image, using the JavaScript method, and uses CSS
transition animation to animate resizing the image.
Use the following steps to build the AngularJS application that applies the
animations:
1. Add the lesson27/service_animation.html, lesson27/js/service_animation.js,

and lesson27/js/service_animation.css files.
2. Add the code shown in Listing 27.7, Listing 27.8, and Listing 27.9 to the

HTML, JavaScript, and CSS files.
3. The following line of code in Listing 27.7 injects the AngularJS animation

service into the application so that it can be used:
Click here to view code image

01 var app = angular.module('myApp', ['ngAnimate']);

4. The following lines of code from Listing 27.7 implement the fade-in and fade-
out animations using the animation() method on the application. Notice
that the same class .fadeOut is used to apply both the fade-in and the fade-
out animations by hooking into the addClass and removeClass events
and then using a jQuery.animate() method on the opacity of the element:

Click here to view code image

05 app.animation('.fadeOut', function() {
06 return {
07 enter : function(element, parentElement, afterElement,
doneCallback) {},
08 leave : function(element, doneCallback) {},
09 move : function(element, parentElement, afterElement,
doneCallback) {},
10 addClass : function(element, className, done) {
11 jQuery(element).animate({ opacity: 0}, 3000);
12 },

13 removeClass : function(element, className, done) {
14 jQuery(element).animate({ opacity: 1}, 3000);
15 }
16 };

5. The following lines of CSS code from Listing 27.9 implement the animation of
shrinking and growing the image by applying CSS animation to the AngularJS
class transitions of –add and –add-active when the shrink and grow
classes are assigned to the element:

Click here to view code image

01 .shrink-add, .grow-add {
02 -webkit-transition:all ease 2.5s;
03 -moz-transition:all ease 2.5s;
04 -o-transition:all ease 2.5s;
05 transition:all ease 2.5s;
06 }
07 .shrink,
08 .shrink-add.shrink-add-active {
09 width:100px;
10 }
11 .start-class,
12 .grow,
13 .grow-add.grow-add-active {
14 width:400px;
15 }

6. Listing 27.8 implements the AngularJS template that supports the animation.
Notice that line 5 loads the jQuery library to support the JavaScript animation
code. Also, line 6 loads the animate.css script that contains the transition
animations shown in Listing 27.9. The buttons add and remove the appropriate
classes to initiate the animations.

7. Load the service_animate.html file in a browser and use the buttons to see the
animations, as shown in Figure 27.3.

FIGURE 27.3 Implementing the $animation service in both CSS and JavaScript
to animate fading and resizing an image.

LISTING 27.7 service_animate.js Implementing an AngularJS Controller That
Implements jQuery Animation Using the $animation Service

Click here to view code image

01 var app = angular.module('myApp', ['ngAnimate']);
02 app.controller('myController', function($scope) {
03 $scope.myImgClass = 'start-class';
04 });
05 app.animation('.fadeOut', function() {

06 return {
07 enter : function(element, parentElement, afterElement,
doneCallback) {},
08 leave : function(element, doneCallback) {},
09 move : function(element, parentElement, afterElement, doneCallback)
{},
10 addClass : function(element, className, done) {
11 jQuery(element).animate({ opacity: 0}, 3000);
12 },
13 removeClass : function(element, className, done) {
14 jQuery(element).animate({ opacity: 1}, 3000);
15 }
16 };
17 });

LISTING 27.8 service_animate.html An AngularJS Template That Implements
Buttons That Change the Class on an Image to Animate Fading and Resizing

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>
04 <title>AngularJS $animate Service</title>
05 <link rel="stylesheet" href="css/animate.css">
06 </head>
07 <body>
08 <div ng-controller="myController">
09 <h3>AngularJS Image Animation:</h3>
10 <input type="button"
11 ng-click="myImgClass='fadeOut'" value="Fade Out"/>
12 <input type="button"
13 ng-click="myImgClass=''" value="Fade In"/>
14 <input type="button"
15 ng-click="myImgClass='shrink'" value="Small"/>
16 <input type="button"
17 ng-click="myImgClass='grow'" value="Big"/>
18 <hr>
19
20 </div>
21 <script src="http://code.jquery.com/jquery-1.11.0.min.js"></script>
22 <script src="http://code.angularjs.org/1.3.0/angular.min.js">
</script>
23 <script src="http://code.angularjs.org/1.3.0/angular-animate.min.js">
</script>
24 <script src="js/service_animate.js"></script>
25 </body>
26 </html>

By the Way

If you are loading AngularJS from your own web server, you can also
download the angular-animate.js file from the AngularJS website
at http://code.angularjs.org/<version>/, where <version> is the version of
AngularJS that you are using. You might need to download the angular-
animate.min.js.map file as well, depending on which version of
AngularJS you are using.

LISTING 27.9 animate.css CSS Code That Provides Transition Effects for the
Various Class Stages of the AngularJS Animation Code

Click here to view code image

01 .shrink-add, .grow-add {
02 -webkit-transition:all ease 2.5s;
03 -moz-transition:all ease 2.5s;
04 -o-transition:all ease 2.5s;
05 transition:all ease 2.5s;
06 }
07 .shrink,
08 .shrink-add.shrink-add-active {
09 width:100px;
10 }
11 .start-class,
12 .grow,
13 .grow-add.grow-add-active {
14 width:400px;
15 }
16 img{
17 width:100px;
18 }

Using the $location Service
The $location service provides a wrapper to the JavaScript window.location
object. This makes the URL accessible in your AngularJS application. Not only can you
get information about the URL, but you also can modify it, changing the location with a
new URL or navigating to a specific hash tag.
To add the $location service to a controller or service, you need to inject it using
the standard dependency injection methods. For example:
Click here to view code image

app.controller('myController', ['$scope', '$location',
 function($scope, location) {
 . . .
 }]);

http://code.angularjs.org/<version>/

Table 27.5 lists the methods that can be called on the $location service and
describes their implementation.

TABLE 27.5 Methods Available on the AngularJS $location Service Object

Try it Yourself: Implementing the $location Service in an AngularJS
Application

In this example, you get a chance to implement the $location service in an
AngularJS application. The code in Listings 27.10 and 27.11 implement a simple
example of using the $location service to access and change the path, hash,
and search elements in the URL passed to the browser.
Use the following steps to build the AngularJS application that dynamically
manipulates the URL elements:
1. Add the lesson27/service_location.html and lesson27/js/service_location.js

files.
2. Add the code shown in Listing 27.10 and Listing 27.11 to the HTML and

JavaScript files.
3. The following code from Listing 27.10 injects the $location service into

the controller:
Click here to view code image

02 app.controller('myController', ['$scope', '$location',
03 function($scope, location) {

4. The updateLocationInfo() function in the controller sets values in the
scope for elements of the current URL location. These values are represented
in the browser by the template defined in Listing 27.11.

5. The following function changePath changes the path value in the URL to
/new/path and updates the location information:

Click here to view code image

14 $scope.changePath = function(){
15 location.path("/new/path");
16 $scope.updateLocationInfo();
17 };

6. The following function changeHash changes the hash value in the URL to
newHash and updates the location information:

Click here to view code image

18 $scope.changeHash = function(){
19 location.hash("newHash");
20 $scope.updateLocationInfo();
21 };

7. The following function changeSearch changes the path value in the URL to
?p1=newA and updates the location information:

Click here to view code image

22 $scope.changeSearch = function(){
23 location.search("p1", "newA");

24 $scope.updateLocationInfo();
25 };

8. The code in Listing 27.11 implements an AngularJS template that displays the
captured $location service information and provides links to change the
path, hash, and search properties.

9. Load the service_location.html file in a browser and click the Change Path,
Change Hash, and Change Search links. Figure 27.4 shows the web page in
action. Notice that when the links are clicked, the path, hash, and search
values in the URL displayed in the browser change.

FIGURE 27.4 Implementing the $location service in an AngularJS application to
interact with the browser location.

LISTING 27.10 service_location.js An AngularJS Application That Implements a
Controller to Gather Information from the $location Service and Provides
Functions to Change the path, search, and hash Values

Click here to view code image

01 var app = angular.module('myApp', []);
02 app.controller('myController', ['$scope', '$location',
03 function($scope, location) {
04 $scope.updateLocationInfo = function() {
05 $scope.url = location.url();
06 $scope.absUrl = location.absUrl();
07 $scope.host = location.host();
08 $scope.port = location.port();
09 $scope.protocol = location.protocol();
10 $scope.path = location.path();
11 $scope.search = location.search();
12 $scope.hash = location.hash();
13 };
14 $scope.changePath = function(){
15 location.path("/new/path");
16 $scope.updateLocationInfo();
17 };
18 $scope.changeHash = function(){
19 location.hash("newHash");
20 $scope.updateLocationInfo();
21 };
22 $scope.changeSearch = function(){
23 location.search("p1", "newA");
24 $scope.updateLocationInfo();
25 };
26 $scope.updateLocationInfo();
27 }]);

LISTING 27.11 service_location.html An AngularJS Template That Displays
Information Gathered from the $location Service and Provides Links to Change
the path, search, and hash Values

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>
04 <title>AngularJS $location Service</title>
05 <style>

06 span {
07 color: red; text-decoration: underline;
08 cursor: pointer; }
09 </style>
10 </head>
11 <body>
12 <div ng-controller="myController">
13 <h3>Location Service:</h3>
14 [Change Path]
15 [Change Hash]
16 [Change Search]
17 <hr>
18 <h4>URL Info</h4>
19 url: {{url}}

20 absUrl: {{absUrl}}

21 host: {{host}}

22 port: {{port}}

23 protocol: {{protocol}}

24 path: {{path}}

25 search: {{search}}

26 hash: {{hash}}

27 </div>
28 <script src="http://code.angularjs.org/1.3.0/angular.min.js">
</script>
29 <script src="js/service_location.js"></script>
30 </body>
31 </html>

Using the $q Service to Provide Deferred Responses
An extremely useful service provided by AngularJS is the $q service. The $q service
is a promise/deferred response implementation. Because not all services can respond
immediately to a request, there is a need to defer the response until the service is ready
to respond. That is where the $q service comes in. The idea is that you can make a
request, and rather than getting the response directly, you will get a promise that the
service will respond. The requesting application can then assign a callback function that
should be executed when the deferred request completes successfully or fails.
To utilize the $q service for deferred responses, you first need to create a deferred
object using the following syntax:

var deferred = $q.defer();

After you have a deferred object, you can pass the promise around by accessing the
promise attribute. For example, the following line returns the promise to the calling
application:
Click here to view code image

function makeDeferredRequest(){

 var deferred = $q.defer();
 return deferred.promise;
}

The requesting application can then call the then() method on the promise object to
register successCallback, errorCallback, and notifyCallback
functions using the following syntax:
Click here to view code image

promise.then(successCallback, [errorCallback], [notifyCallback])

The following shows a sample implementation of the then() function:
Click here to view code image

var promise = makeDeferredRequest();
promise.then(
 function successCallback(value){
 //handle success
 },
 function errorCallback(value){
 //handle error
 },
 function notifyCallback(value){
 //handle notify
 },

From the deferred service side, you can use the methods described in Table 27.6 to
handle notifying the requesting application of the status of the request.

TABLE 27.6 Methods Available on a Deferred Object of the $q Service
The “Implementing a Database Access Service” section of Lesson 28, “Creating Your
Own Custom AngularJS Services,” shows a good example of using the $q service to
handle the deferred responses to remote database requests.

Summary
AngularJS services are singleton objects that you can register with the dependency
injector. Controllers and other AngularJS components, including other services, can
consume them. AngularJS provides much of the back-end functionality in the way of

services, such as $http, which enables you to easily integrate web server
communication into your AngularJS applications.
In this lesson, you also learned about several of the built-in services, such as
$cookieStore, $q, $window, $location, $animate, and
$cacheFactory. These and other AngularJS services can be used to easily inject
functionality into your controllers, directives, and custom services.

Q&A
Q. Are the built-in services provided by AngularJS run as singletons?
A. Yes, but they are lazy singletons, meaning that they get instantiated only if a

component depends on it.

Workshop
The workshop consists of a set of questions and answers designed to solidify your
understanding of the material covered in this hour. Try to answer the questions before
looking at the answers.

Quiz
1. What does the $rootElement AngularJS service do?
2. Which AngularJS service should I use to send and receive requests from the

server?
3. Which AngularJS service should you use to get the query string from URL?
4. Which AngularJS server allows you to handle deferred actions for asynchronous

requests?

Quiz Answers
1. $rootElement provides access to the root element of the AngularJS

application.
2. $http
3. $location
4. $q

Exercises
1. Modify the code in Listings 27.5 and 27.6 to add and manage a second cookie for

favorite cakes. You should implement the same style of radio button group as for
cookie.

2. Modify the code in Listings 27.7, 27.8, and 27.9 to animate moving the image.
You will need to change the position of the image to absolute and add a new class
called .slideRight. Then implement an animation similar to the one for
.fadeOut that uses jQuery to animate the position instead of the opacity.

Lesson 28. Creating Your Own Custom AngularJS
Services

What You’ll Learn in This Lesson:
 What methods are available to create AngularJS custom services
 How to use the factory provider to define a custom service
 How to use the service provider to define a custom service
 How to build an application using all four types of custom services
 How to implement an asynchronous database access service

AngularJS provides a lot of functionality in built-in services; however, you will also
need to be able to implement your own custom services that provide your own specific
functionality. You should implement a custom service anytime you need to provide task-
based functionality to your applications.
When implementing custom services, you need to think about the service as a chunk of
reusable code that performs one or more related tasks. Then you can design and group
them together into custom modules that can easily be consumed by several AngularJS
applications.
This lesson introduces the AngularJS custom services. Then the lesson provides several
examples of custom AngularJS service implementation to provide you with a clearer
understanding of how to design and build your own.

Understanding Custom AngularJS Services
AngularJS enables you to create your own custom services to provide functionality in
AngularJS components that require it. As you saw in the previous lesson, the built-in
AngularJS services provide a variety of functionality for AngularJS applications. Using
custom services, you can customize, enhance, and extend that functionality in many
ways.
There are four main types of services that you will likely be implementing in your code:
value, constant, factory, and service. The following sections cover these
services.

Defining a value Service
You use the very simple value service to define a single value that you can inject as a
service provider. The value method uses the following syntax, where name is the
service name and object is any JavaScript object you want to provide:

value(name, object)

For example:
Click here to view code image

var app = angular.module('myApp', []);
app.value('myValue', {color:'blue', value:'17'});

Defining a constant Service
The constant service is basically the same as the value service, except that
constant services are available in the configuration phase of building the Module
object, whereas value services are not. The constant method uses the following
syntax, where name is the service name and object is any JavaScript object you want
to provide:

constant(name, object)

For example:
Click here to view code image

var app = angular.module('myApp', []);
app.constant('myConst', "Constant String");

Using a Factory Provider to Build a factory Service
The factory method provides the capability to implement functionality into a service.
It can also be dependent on other service providers, enabling you to build up
compartmentalized code. The factory method uses the following syntax, where
name is the service name and factoryProvider is a provider function that builds the
factory service:
Click here to view code image

factory(name, factoryProvider)

Unlike the value or constant service, you can inject the factory method with
other services, and it returns the service object with the appropriate functionality. The
functionality can be a complex JavaScript service, a value, or a simple function. For
example, the following code implements a factory service that returns a function that
adds two numbers:
Click here to view code image

var app = angular.module('myApp', []);
app.constant('myConst', 10);
app.factory('multiplier', ['myConst', function (myConst) {
 return function(value) { return value + myConst; };
}]);

Using an Object to Define a service Service
The service method provides the capability to implement functionality into a server.
The service method has the same functionality as the factory method; however,
the service method is implemented differently than the factory method. Choosing
one over the other is a matter of semantics.
The service method accepts a constructor function as the second argument and uses it
to create a new instance of an object. The service method uses the following syntax,
where name is the service name and constructor is a constructor function:

service(name, constructor)

The service method can also accept dependency injection. The following code
implements a basic service method that provides an add() function and a
multiply() function:
Click here to view code image

var app = angular.module('myApp', []);
app.constant('myConst', 10);
function ConstMathObj(myConst) {
 this.add = function(value){ return value + myConst; };
 this.multiply = function(value){ return value * myConst; };
}
app.service('constMath', ['myConst', ConstMathObj]);

Notice that the ConstMathObj constructor is created first, and then the service()
method calls it and uses dependency injection to insert the myConst service.

Integrating Custom Services into Your AngularJS Applications
As you begin implementing AngularJS services for your applications, you will find that
some will be very simplistic and others will become very complex. The complexity of
the service typically reflects the complexity of the underlying data and functionality that
it provides. The purpose of this section is to provide you with some basic examples of
different types of custom services to illustrate how they can be implemented and
utilized.
Each of the following sections contains an example to illustrate different aspects of
custom services. The first is designed to show you how to implement the different types
of services. The second shows you the reusability of services, and the third shows you a
different look into service interactions.

Try it Yourself: Implementing a Simple Application That Uses All Four Types
of Services

In this example, you build constant, value, factory, and service

services. The purpose is to learn how each can be implemented, as well as how
to use multiple types of services in your applications.
The code in Listing 28.1 shows an example of integrating value, constant,
factory, and service services into a single module. The code in Listing
28.2 implements the AngularJS template that loads and runs the application.
Use the following steps to build the application that uses all four types of
services:
1. Add the lesson28/service_custom_censor.html and

lesson28/js/service_custom_censor.js files.
2. Add the code shown in Listing 28.1 and Listing 28.2 to the HTML and

JavaScript files.
3. The following line in Listing 28.1 creates a simple value service named
censorWords that contains the array of words to be censored:

Click here to view code image

02 app.value('censorWords', ["can't", "quit", "fail"]);

4. The following line creates a constant service named repString that
contains the replacement string for censored words:

Click here to view code image

03 app.constant('repString', "****");

5. The following lines of code implement a factory service named censorF
that is injected with censorWords and repString. This service returns a
function that accepts an input string and uses replace to replace any words in
the censorWords list with the value of repString:

Click here to view code image

04 app.factory('censorF', ['censorWords', 'repString',
05 function (cWords, repString) {
06 return function(inString) {
07 var outString = inString;
08 for(i in cWords){
09 var regex = new RegExp(cWords[i], "ig");
10 outString = outString.replace(regex, repString);
11 }
12 return outString;
13 };
14 }]);

6. The following lines of code implement a service service named censorS
by first defining a function named CensorObj and then injecting it, along
with censorWords and repString, into the app.service() method.

Similar to the factory service, this service also accepts a string and returns
the censored result:

Click here to view code image

15 function CensorObj(cWords, repString) {
16 this.censor = function(inString){
17 var outString = inString;
18 for(i in cWords){
19 var regex = new RegExp(cWords[i], "ig");
20 outString = outString.replace(regex, repString);
21 }
22 return outString;
23 };
24 this.censoredWords = function(){
25 return cWords;
26 };
27 }
28 app.service('censorS', ['censorWords', 'repString', CensorObj]);

7. The controller is defined in lines 27–37 and is injected with censorF and
censorS. Notice that in the following lines, censorF and censorS can
be called directly from within the controller:

Click here to view code image

36 $scope.censoredByFactory = censorF(newValue);
37 $scope.censoredByService = censorS.censor(newValue);

8. Open the service_custom_censor.html file from Listing 28.2 in a browser to
load the AngularJS template that displays the censored words and provides a
text input to type in a phrase. The phrase is displayed twice, once censored by
censorF and once by censorS. Figure 28.1 shows the AngularJS
application in action.

FIGURE 28.1 Using multiple custom services in an AngularJS controller to censor
words in a phrase.

LISTING 28.1 service_custom_censor.js Implementing and Consuming Multiple
Custom Services in an AngularJS Controller

Click here to view code image

01 var app = angular.module('myApp', []);
02 app.value('censorWords', ["can't", "quit", "fail"]);
03 app.constant('repString', "****");
04 app.factory('censorF', ['censorWords', 'repString',
05 function (cWords, repString) {
06 return function(inString) {
07 var outString = inString;
08 for(i in cWords){
09 var regex = new RegExp(cWords[i], "ig");
10 outString = outString.replace(regex, repString);
11 }

12 return outString;
13 };
14 }]);
15 function CensorObj(cWords, repString) {
16 this.censor = function(inString){
17 var outString = inString;
18 for(i in cWords){
19 var regex = new RegExp(cWords[i], "ig");
20 outString = outString.replace(regex, repString);
21 }
22 return outString;
23 };
24 this.censoredWords = function(){
25 return cWords;
26 };
27 }
28 app.service('censorS', ['censorWords', 'repString', CensorObj]);
29 app.controller('myController', ['$scope', 'censorF', 'censorS',
30 function($scope, censorF, censorS) {
31 $scope.censoredWords = censorS.censoredWords();
32 $scope.inPhrase = "";
33 $scope.censoredByFactory = censorF("");
34 $scope.censoredByService = censorS.censor("");;
35 $scope.$watch('inPhrase', function(newValue, oldValue){
36 $scope.censoredByFactory = censorF(newValue);
37 $scope.censoredByService = censorS.censor(newValue);
38 });
39 }]);

LISTING 28.2 service_custom_censor.html AngularJS Template That Illustrates
the Interaction of Multiple Custom Services in an AngularJS Controller

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>
04 <title>AngularJS Custom Censor Service</title>
05 <style>
06 p { color: red; margin-left: 15px; }
07 input { width: 250px; }
08 </style>
09 </head>
10 <body>
11 <div ng-controller="myController">
12 <h3>Custom Censor Service:</h3>
13 Censored Words:

14 <p>{{censoredWords|json}}</p>
15 <hr>
16 Enter Phrase:

17 <input type="text" ng-model="inPhrase" /><hr>

18 Filtered by Factory:
19 <p>{{censoredByFactory}}</p>
20 Filtered by Service:
21 <p>{{censoredByService}}</p>
22 </div>
23 <script src="http://code.angularjs.org/1.3.8/angular.min.js">
</script>
24 <script src="js/service_custom_censor.js"></script>
25 </body>
26 </html>

Try it Yourself: Implementing Simple Time Service
In this example, you will build a simple time service that generates a local time
object for different cities. Then, in the AngularJS template, you will use the time
service in multiple controllers. The purpose is to give you a chance to see how
easy it is to reuse an AngularJS service.
The code in Listing 28.3 implements a custom service named TimeService
using the function TimeService() to generate the service that is used in
multiple controllers to display different times. The code in Listing 28.4
implements the AngularJS template that loads and runs the application.
Use the following steps to build the application that implements the custom time
service and controllers:
1. Add the lesson28/service_custom_time.html and

lesson28/js/service_custom_time.js files.
2. Add the code shown in Listing 28.3 and Listing 28.4 to the HTML and

JavaScript files.
3. The following lines of code in Listing 28.3 implement a basic time service

named TimeService that uses a cities object that defines the UTC offset
to get the time. Notice that the getTZDate() method accepts a city name and
then calculates the data based off of the UTC time and offset. The
getCitIes() function returns a list of the cities supported by the service.

4. The rest of the application in Listing 28.3 implements several controllers,
including LAController, NYController, LondonController, and
TimeController. These controllers are injected with the TimeService
service and use it to set the current time for a city or, in the case of
TimeController, all cities.

5. Open the service_custom_time.html file from Listing 28.4 in a browser. This
implements an AngularJS template that displays the time for the
LAController, NYController, LondonController, and

TimeController controllers. In the case of TimeController, all times
are displayed in a table using ng-repeat. Figure 28.2 shows the resulting
AngularJS application web page. Notice the different times represented.

FIGURE 28.2 Using a custom AngularJS service in multiple controllers to display
the time for different cities.

LISTING 28.3 service_custom_time.js Implementing and Consuming a Custom
AngularJS Service in Multiple Controllers

Click here to view code image

01 var app = angular.module('myApp', []);
02 function TimeService() {
03 var cities = { 'Los Angeles': -8,
04 'New York': -5,
05 'London': 0,
06 'Paris': 1,
07 'Tokyo': 9 };
08 this.getTZDate = function(city){
09 var localDate = new Date();
10 var utcTime = localDate.getTime() +
11 localDate.getTimezoneOffset() *
12 60*1000;
13 return new Date(utcTime +
14 (60*60*1000 *
15 cities[city]));
16 };
17 this.getCities = function(){

18 var cList = [];
19 for (var key in cities){
20 cList.push(key);
21 }
22 return cList;
23 };
24 }
25 app.service('TimeService', [TimeService]);
26 app.controller('LAController', ['$scope', 'TimeService',
27 function($scope, timeS) {
28 $scope.myTime = timeS.getTZDate("Los Angeles").toLocaleTimeString();
29 }]);
30 app.controller('NYController', ['$scope', 'TimeService',
31 function($scope, timeS) {
32 $scope.myTime = timeS.getTZDate("New York").toLocaleTimeString();
33 }]);
34 app.controller('LondonController', ['$scope', 'TimeService',
35 function($scope, timeS) {
36 $scope.myTime = timeS.getTZDate("London").toLocaleTimeString();
37 }]);
38 app.controller('TimeController', ['$scope', 'TimeService',
39 function($scope, timeS) {
40 $scope.cities = timeS.getCities();
41 $scope.getTime = function(cityName){
42 return timeS.getTZDate(cityName).toLocaleTimeString();
43 };
44 }]);

LISTING 28.4 service_custom_time.html AngularJS Template That Illustrates
Injecting a Custom AngularJS Service into Multiple Controllers

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>
04 <title>AngularJS Custom Time Service</title>
05 <style>
06 span {
07 color: lightgreen; background-color: black;
08 border: 3px ridge; padding: 2px;
09 font: 14px/18px arial, serif; }
10 </style>
11 </head>
12 <body>
13 <h2>Custom Time Service:</h2><hr>
14 <div ng-controller="LAController">
15 Los Angeles Time:
16 {{myTime}}
17 </div><hr>
18 <div ng-controller="NYController">

19 New York Time:
20 {{myTime}}
21 </div><hr>
22 <div ng-controller="LondonController">
23 London Time:
24 {{myTime}}
25 </div><hr>
26 <div ng-controller="TimeController">
27 All Times:
28 <table>
29 <tr>
30 <th ng-repeat="city in cities">
31 {{city}}
32 </th>
33 </tr>
34 <tr>
35 <td ng-repeat="city in cities">
36 {{getTime(city)}}
37 </td>
38 </tr>
39 </table>
40 </div><hr>
41 <script src="http://code.angularjs.org/1.3.8/angular.min.js">
</script>
42 <script src="js/service_custom_time.js"></script>
43 </body>
44 </html>

Try it Yourself: Implementing a Database Access Service
In this example, you build an intermediate database access service that uses the
$http service to connect to a simulated server-side database service. The
purpose of this exercise is to illustrate the use of built-in services alongside
custom services. This also gives a good example of utilizing the $q service.
Use the following steps to build the custom web server with database simulation,
implement the database access server, and build an AngularJS application that
uses the service:
1. Add the lesson28/service_custom_db.html, lesson28/js/service_custom_db.js,

and lesson28/js/service_custom_db_access.js files.
2. Add the code shown in Listings 28.6, 28.7, and 28.8 to the HTML and

JavaScript files.
3. For this example, we need to have the web server provide a simulated

database access service. Listing 28.5 implements the Node.js web server that
handles the following GET and POST routes to get and set a user object and an
array of table data to simulate making requests to a remote database service:

 /get/user: A GET route that returns the JSON version of a user object.
 /get/data: A GET route that returns the JSON version of an array of
table data.
 /set/user: A POST route that accepts a user object in the body of the
request and updates the object on the server to simulate storing a user
object.
 /set/data: A POST route that accepts an array of objects in the body of
the request and updates the data variable to simulate storing database data.
Typically, you would never store all the table data at once, but for
simplicity in this example, this is how it is.

You don’t necessarily need to pay a lot of attention to the code in Listing 28.5
other than understanding the routes that it provides so that you can follow the
interactions in the AngularJS application defined in Listings 28.6, 28.7, and
28.8. The server is very rudimentary, doesn’t handle errors, and dynamically
generates data to simulate the database.

By the Way
You will need to stop the normal server.js HTTP server if it is running
before starting service_db_server.js from Listing 28.5 (don’t
forget to stop service_db_server.js and reload server.js
when you are done with this exercise). Also, you should place the
service_db_server.js file from Listing 28.5 in the parent folder to
the service_db_access.html in Listing 28.6 for the paths to match
up properly in the Node.js static routes. The structure should look similar
to this:

Click here to view code image

./service_db_server.js

./lesson28/service_custom_db.html

./lesson28/js/service_custom_db_access.js

./lesson28/js/service_custom_db.js

LISTING 28.5 service_db_server.js Implementing a Node.js Express Server That
Supports GET and POST Routes to Simulate a Database Service for the
AngularJS Controller

Click here to view code image

01 var express = require('express');
02 var bodyParser = require('body-parser');

03 var app = express();
04 app.use('/', express.static('./'));
05 app.use(bodyParser.urlencoded({ extended: true }));
06 app.use(bodyParser.json());
07 var user = {
08 first: 'Christopher',
09 last: 'Columbus',
10 username: 'cc1492',
11 title: 'Admiral',
12 home: 'Genoa'
13 };
14 var data = [];
15 function r(min, max){
16 var n = Math.floor(Math.random() * (max - min + 1)) + min;
17 if (n<10){ return '0' + n; }
18 else { return n; }
19 }
20 function p(start, end, total, current){
21 return Math.floor((end-start)*(current/total)) + start;
22 }
23 function d(plusDays){
24 var start = new Date(1492, 7, 3);
25 var current = new Date(1492, 7, 3);
26 current.setDate(start.getDate()+plusDays);
27 return current.toDateString();
28 }
29 function makeData(){
30 var t = 70;
31 for (var x=0; x < t; x++){
32 var entry = {
33 day: d(x),
34 time: r(0, 23) + ':' + r(0, 59),
35 longitude: p(37, 25, t, x) + '\u00B0 '+ r(0,59) + ' N',
36 latitude: p(6, 77, t, x) + '\u00B0 '+ r(0,59) + ' W'
37 };
38 data.push(entry);
39 }
40 }
41 makeData();
42 app.get('/get/user', function(req, res){
43 res.json(user);
44 });
45 app.get('/get/data', function(req, res){
46 res.json(data);
47 });
48 app.post('/set/user', function(req, res){
49 console.log(req.body.userData);
50 user = req.body.userData;
51 res.json({ data: user, status: "User Updated." });
52 });
53 app.post('/set/data', function(req, res){
54 data = req.body.data;
55 res.json({ data: data, status: "Data Updated." });
56 });

57 app.listen(80);

4. Add the code in Listing 28.6 that implements a module named dbAccess and
a custom service named DBService. The DBAccessObj() function that
creates the service object provides the getUserData() and
updateUser() methods to retrieve and update the user object from the
server using $http requests. The getData and updateData() methods
provide similar functionality for the table data. Notice how the $q service is
used to defer the response to the $http requests since the request will not
return immediately.

LISTING 28.6 service_custom_db_access.js Implementing a Custom AngularJS
Service That Utilizes the $http and $q Services to Provide Interaction with Data
Stored on the Server

Click here to view code image

01 var app = angular.module('dbAccess', []);
02 function DBAccessObj($http, $q) {
03 this.getUserData = function(){
04 var deferred = $q.defer();
05 $http.get('/get/user')
06 .success(function(response, status, headers, config) {
07 deferred.resolve(response);
08 });
09 return deferred.promise;
10 };
11 this.updateUser = function(userInfo){
12 var deferred = $q.defer();
13 $http.post('/set/user', { userData: userInfo}).
14 success(function(response, status, headers, config) {
15 deferred.resolve(response);
16 });
17 return deferred.promise;
18 };
19 this.getData = function(){
20 var deferred = $q.defer();
21 $http.get('/get/data')
22 .success(function(response, status, headers, config) {
23 deferred.resolve(response);
24 });
25 return deferred.promise;
26 };
27 this.updateData = function(data){
28 var deferred = $q.defer();
29 $http.post('/set/data', { data: data}).
30 success(function(response, status, headers, config) {
31 deferred.resolve(response);

32 });
33 return deferred.promise;
34 };
35 }
36 app.service('DBService', ['$http', '$q', DBAccessObj]);

5. Add the code in Listing 28.7 that implements the application module. Notice
that on line 1, the dbAccess module is injected into the myApp module to
provide access to the DBService service. DBService is injected into the
controller on line 2 and then used on lines 6, 12, 18, and 23 to make calls to
get and set data from the server and assign it to the $scope.userInfo and
$scope.data values in the scope. Notice how the $q service then()
function is used to handle the deferred responses. For simplicity, only the
successCallback function is implemented. Normally you would also
want to implement an errorCallback function.

LISTING 28.7 service_custom_db.js Implementing an AngularJS Application That
Injects the Module and Service from Listing 28.6 to Utilize the Database Access
Service

Click here to view code image

01 var app = angular.module('myApp', ['dbAccess']);
02 app.controller('myController', ['$scope', 'DBService',
03 function($scope, db) {
04 $scope.status = "";
05 $scope.getUser = function(){
06 db.getUserData().then(function(response){
07 $scope.userInfo = response;
08 $scope.status = "User Data Retrieve.";
09 });
10 };
11 $scope.getData = function(){
12 db.getData().then(function(response){
13 $scope.data = response;
14 $scope.status = "User Data Retrieve.";
15 });
16 };
17 $scope.updateUser = function(){
18 db.updateUser($scope.userInfo).then(function(response){
19 $scope.status = response.status;
20 });
21 };
22 $scope.updateData = function(){
23 db.updateData($scope.data).then(function(response){
24 $scope.status = response.status;
25 });
26 };

27 $scope.getUser();
28 $scope.getData();
29 }]);

6. Add the code in Listing 28.8 that implements an AngularJS template that
displays the user info in text inputs and binds the values directly to the scope.
There are also two input buttons that call updateUser() to update the user
info on the server and getUser() to refresh the scope data from the server.
Similarly, two input buttons call updateData() and getData() to
provide the same functionality for updating and refreshing the table data from
the model.

LISTING 28.8 service_custom_db.html AngularJS Template That Uses a Series of
<input> Elements to Display and Update Data Retrieved from the Server

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>
04 <title>AngularJS Custom Database Service</title>
05 <style>
06 label {
07 display: inline-block; width: 75px; text-align: right; }
08 td, tr {
09 width: 125px; text-align: right; }
10 p {
11 color: red; font: italic 12px/14px; margin: 0px;}
12 h3 {
13 margin: 5px; }
14 </style>
15 </head>
16 <body>
17 <h2>Custom Database Service:</h2>
18 <div ng-controller="myController">
19 <h3>User Info:</h3>
20 <label>First:</label>
21 <input type="text" ng-model="userInfo.first" />

22 <label>Last:</label>
23 <input type="text" ng-model="userInfo.last" />

24 <label>Username:</label>
25 <input type="text" ng-model="userInfo.username" />

26 <label>Title:</label>
27 <input type="text" ng-model="userInfo.title" />

28 <label>Home:</label>
29 <input type="text" ng-model="userInfo.home" />

30 <input type= button ng-click="updateUser()" value="Update User" />
31 <input type= button ng-click="getUser()" value="Refresh User Info"
/>

32 <hr>
33 <p>{{status}}</p>
34 <hr>
35 <h3>Data:</h3>
36 <input type= button ng-click="updateData()" value="Update Data" />
37 <input type= button ng-click="getData()" value="Refresh Data Table"
/>

38 <table>
39 <tr><th>Day</th><th>Time</th><th>Latitude</th><th>Longitude</th>
</tr>
40 <tr ng-repeat="datum in data">
41 <th>{{datum.day}}</th>
42 <td><input type="text" ng-model="datum.time" /></td>
43 <td><input type="text" ng-model="datum.latitude" /></td>
44 <td><input type="text" ng-model="datum.longitude" /></td>
45 </tr>
46 </table>
47 <hr>
48 </div>
49 <script src="http://code.angularjs.org/1.3.8/angular.min.js">
</script>
50 <script src="js/service_custom_db_access.js"></script>
51 <script src="js/service_custom_db.js"></script>
52 </body>
53 </html>

7. Load service_custom_db.html from Listing 28.8 in a browser. Figure 28.3
shows the rendered AngularJS web application working. When you click the
Update User or Update Data buttons, the values are changed on the server. That
means that you can reload the web page and even exit the browser and come
back, and the values will still be the updated versions. If you change values in
the data or user area without clicking the Update User or Update Data buttons,
you can click Refresh User Info or Refresh Data Table to retrieve the old
values from the server.

FIGURE 28.3 Using custom AngularJS services that implement $http to provide
access to retrieve and update data on the server.

Summary
AngularJS custom services are singleton objects that you can register with the
dependency injector. After they’re registered with the dependency injector, controllers,
directives, and other AngularJS components, including other services, can consume
them. AngularJS provides several methods for creating custom services, with varying
levels of complexity. The value and constant methods create simple services. On
the other hand, the factory and service methods enable you to create much more
complex services.
This lesson focused on the tools that enable you to implement your own custom

AngularJS services when you need to provide task-based functionality to your
applications. You learned about the four methods or types of custom AngularJS
services, including value, constant, factory, and service.
This lesson showed examples of implementing each of the types of custom AngularJS
services. You also saw an example of implementing a custom AngularJS service in
multiple controllers. The final example in this lesson showed you how to implement a
standalone custom AngularJS service that interacts with the server using $http and
how to inject and use it in another module.

Q&A
Q. Is it possible to mock AngularJS services in my unit tests?
A. Yes. You can mock the service providers using something like the Jasmine test-

driven development framework.
Q. What is the difference between a value service and a constant service?
A. They are almost identical in behavior. The only real difference is that value

services cannot be injected into the configuration block of a module.

Workshop
The workshop consists of a set of questions and answers designed to solidify your
understanding of the material covered in this hour. Try to answer the questions before
looking at the answers.

Quiz
1. Which AngularJS service provider would you use if you wanted to define the

initial value for a single variable?
2. How many types of service providers are there?
3. True or false: Services can be used only once within your module.

Quiz Answers
1. The value service provider.
2. Value, constant, factory, and service.
3. False. Services can be injected into multiple components of your module.

Exercises
1. Modify the code in Listings 28.1 and 28.2 to add the capability for the user to add

a new word to the censored words list. Add a function to the CensorObj object

that allows the user to add words to the cWords list. Add a function to the
controller that will call that method to add a new word to censor on. Finally, add
a text input and button to the template that hooks into the scope.

2. Modify the code in Listings 28.3 and 28.4 to add local time to the time service
and display it on the page. You will need to add a function to TimeObj that gets
the local time and returns it. Then add a controller for the local time and
implement the controller in the template like any other city.

Lesson 29. Creating Rich Web Application Components
the AngularJS Way

What You’ll Learn in This Lesson:
 Ways to implement dragging and dropping using custom AngularJS directives
 How to use nested AngularJS directives to build a tabbed panel application
 Using custom AngularJS directives to implement expandable and collapsible
containers
 How to use simple AngularJS code to implement a star ratings view

The previous AngularJS lessons of this book have been directed toward teaching you
the mechanics and basic implementation of the different components of AngularJS
applications. You’ve learned about scope/model, views, controllers, directives, and
services. This lesson switches gears a bit and provides some examples to help solidify
how things are done in AngularJS.
AngularJS expects a lot more structure than normal JavaScript or even jQuery requires.
However, it still provides a lot of flexibility within the framework. Consequently, it is a
good idea to look at as many different angles of doing things in AngularJS as possible.
That is why this entire lesson is devoted to a series of examples of implementing
AngularJS in various ways. The examples in this lesson are not polished—some more
than others—however, they do provide different looks at implementing custom
directives and utilizing the built-in directives. The purpose is not to provide you with
instantly reusable code, but to give you some different views and a basic framework that
you can build on as you design your own implementations.

Try it Yourself: Building a Tabbed View
In this example, you build two custom AngularJS directives, one that acts as a tab
group and the other that acts as the individual panes in the tabbed group. The
objective of this example is to give you a look at nesting custom directives inside
each other, as well as some communication between the two.
Use the following steps to build the tabbed view AngularJS application:
1. Create the following folder and file structure in your code location. The

server.js file and images folders were created in Lesson 1, “Introduction to
Dynamic Web Programming.” You will need to get the images from the book’s
website or supply your own:

 ./server.js: Node.js web server that serves the static project files.
 ./images: Folder that contains the images used in the examples.

 ./lesson29: Project folder.
 ./lesson29/tabbable.html: AngularJS template for the project.
 ./lesson29/tabs.html: AngularJS partial template for the tabbed
group.
 ./lesson29/panel.html: AngularJS partial template for each
individual panel in the tabbed group.
 ./lesson29/js/tabbable.js: AngularJS application supporting the
custom tabs directives.

2. Add the code in Listing 29.1 to the tabbable.js file. This is an AngularJS
application that defines the two directives, myTabs and myPane. Note that
the directive functions simply return an object that defines the directive.
This object is used by AngularJS to create an instance of the directive when
one is encountered in the HTML.
Also note that the HTML used inside the templates comes from the partial files
using the templateUrl option in the directive definition. Also note that the
transclude option is used, which enables us to keep the contents for the
myPane elements in the AngularJS template.
Communication between the two directives is made possible by requiring the
myTabs directive in the definition for myPane. This causes the controller
defined in myTabs to be passed in to the link function of myPane. Note that
on line 30, we are able to call addPane() to add the scope for the myPane
directive to a list in the myTabs directive. The visible tab is changed using
the select() method in the myTabs controller function.

LISTING 29.1 tabbable.js AngularJS Application That Defines Two Custom
Directives That Can Be Nested to Provide a Tabbed Panel View

Click here to view code image

01 var app = angular.module('myApp', []);
02 app.directive('myTabs', function() {
03 return {
04 restrict: 'E',
05 transclude: true,
06 scope: {},
07 controller: function($scope) {
08 var panes = $scope.panes = [];
09 $scope.select = function(pane) {
10 angular.forEach(panes, function(pane) {
11 pane.selected = false;
12 });

13 pane.selected = true;
14 };
15 this.addPane = function(pane) {
16 if (panes.length == 0) {
17 $scope.select(pane);
18 }
19 panes.push(pane);
20 };
21 },
22 templateUrl: 'tabs.html'
23 };
24 });
25 app.directive('myPane', function() {
26 return { require: '^myTabs', restrict: 'E',
27 templateUrl: 'pane.html',
28 transclude: true, scope: { title: '@' },
29 link: function(scope, element, attrs, tabsCtrl) {
30 tabsCtrl.addPane(scope);
31 }
32 };
33 });

3. Add the code in Listing 29.2 to the table.html file. This is an AngularJS partial
template that acts as the replacement for the myTabs directive. Notice that the
panes value in the scope is used to add the tabs as elements to the
top of the view. The panes array is built as each myPane element is
compiled and linked into the template.

LISTING 29.2 tabs.html AngularJS Partial Template That Contains the Template
Code to Build the Tabs Container

Click here to view code image

01 <div class="tabbable">
02 <div class="tabs">
03 <span class="tab" ng-repeat="pane in panes"
04 ng-class="{activeTab:pane.selected}"
05 ng-click="select(pane)">{{pane.title}}
06
07 </div>
08 <div class="tabcontent" ng-transclude></div>
09 </div>?

4. Add the code in Listing 29.3 to the pane.html file. This contains the AngularJS
partial template that acts as the replacement for the myPane directive. Notice
that we use ng-show to show and hide the panes as they are clicked. The
ng-transclude attribute ensures that the contents defined in the myPane
element are included in the rendered view.

LISTING 29.3 pane.html AngularJS Partial Template That Contains the Template
Code to Build the Individual Panes of the Tabbed Container

01 <div class="pane"
02 ng-show="selected"
03 ng-transclude>
04 </div>

5. Add the code in Listing 29.4 to the tabbable.html file. This is the AngularJS
template that supports the myTabs and myPane directives. Note the naming
structure of my-tabs and my-pane for the elements needed in the template.
For this example, only images are placed inside the myPane element. This
could just as easily be a complex series of elements, such as a form or table.

LISTING 29.4 tabbable.html AngularJS Template That Implements the myTabs
and myPane Custom Directives to Create a Tabbed View

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>
04 <title>Tab and Tab Pane Directives</title>
05 <style>
06 .tab{
07 display:inline-block; width:100px;
08 border-radius: .5em .5em 0 0; border:1px solid black;
09 text-align:center; font: 15px/28px Helvetica, sans-serif;
10 background-image: linear-gradient(#CCCCCC, #EEEEEE);
11 cursor: pointer; }
12 .activeTab{
13 border-bottom: none;
14 background-image: linear-gradient(#66CCFF, #CCFFFF); }
15 .pane{
16 border:1px solid black; background-color: #CCFFFF;
17 height:300px; width:400px;
18 padding:10px; margin-top:-2px;
19 overflow: scroll; }
20 </style>
21 </head>
22 <body>
23 <h2>AngularJS Custom Tabs</h2>
24 <my-tabs>
25 <my-pane title="Canyon">
26
27 </my-pane>
28 <my-pane title="Lake">
29

30 </my-pane>
31 <my-pane title="Sunset">
32
33 </my-pane>
34 </my-tabs>
35 <script src="http://code.angularjs.org/1.3.0/angular.min.js">
</script>
36 <script src="js/tabbable.js"></script>
37 </body>
38 </html>

6. Load the tabbable.html file in a browser. Figure 29.1 shows the working web
page. Notice that as the tab for each pane is clicked, the content changes.

FIGURE 29.1 Implementing nested custom AngularJS directives to build a tabbed
pane view.

Try it Yourself: Implementing Draggable and Droppable Elements
In this example, you use custom AngularJS directives to implement a set of
draggable elements containing words that can be dragged onto a set of droppable
image elements. When the word is dropped on an image, it is appended to a list

of words that appear below the image.
The purpose of this exercise is to show you an example of using the HTML5 drag
and drop events. The example uses only the events, and the actual drag and drop
functionality is built using the AngularJS mechanisms. The reason is to illustrate
using AngularJS (plus, the HTML5 drag and drop is not well implemented and
needs to be revised). Another thing illustrated in this example is appending new
elements to existing ones in an AngularJS directive.
Use the following steps to build the drag/drop AngularJS application:
1. Create the following folder and file structure in your code:

 ./lesson29: Project folder.
 ./lesson29/dragdrop.html: AngularJS template for the project.
 ./lesson29/js/dragdrop.js: AngularJS application supporting the
custom drag and drop directives.

2. Add the code in Listing 29.5 to the dragdrop.js file. This is an AngularJS
application that defines two new custom AngularJS directives, dragit and
dropit. Notice that in the parent scope, the dragStatus and
dropStatus variables are defined; these are updated in the custom
directives. This is possible because no isolate scope is defined in the
directives, so they share the parent controller scope.
Notice that inside the dragit directive, the HTML5 draggable attribute is
added to the dragit element using the attr() method. Also in the
dragit directive, the dragstart, drag, and dragend event handlers
are implemented. For dragstart and drag, the default behavior is to
allow the drag to start and dragenter/dragleave events to fire.
However, dragend prevents the default behavior so that our custom
AngularJS code can handle the drop.
Inside the dropit directive, the dragover, dragleave, dragenter,
and drop are implemented. Notice that in drop, we use the append method to
append a <p> element to the dropit element. The value inside the paragraph
comes from the scope and was set during dragstart in the dragit
directive. Again, this is possible because no isolate scopes are defined in the
directives.

LISTING 29.5 dragdrop.js AngularJS Application That Implements dragit and
dropit Custom AngularJS Directives to Provide Drag and Drop Functionality

Click here to view code image

01 var app = angular.module('myApp', []);
02 app.controller('myController', function($scope) {
03 $scope.dragStatus = "none";
04 $scope.dropStatus = "none";
05 $scope.dropValue = "";
06 })
07 .directive('dragit', function($document, $window) {
08 function makeDraggable(scope, element, attr) {
09 angular.element(element).attr("draggable", "true");
10 element.on('dragstart', function(event) {
11 element.addClass('dragItem');
12 scope.$apply(function(){
13 scope.dragStatus = "Dragging " + element.html();
14 scope.dropValue = element.html();
15 });
16 event.dataTransfer.setData('Text', element.html());
17 });
18 element.on('drag', function(event) {
19 scope.$apply(function(){
20 scope.dragStatus = "X: " + event.pageX +
21 " Y: " + event.pageY;
22 });
23 });
24 element.on('dragend', function(event) {
25 event.preventDefault();
26 element.removeClass('dragItem');
27 });
28 }
29 return {
30 link: makeDraggable
31 };
32 })
33 .directive('dropit', function($document, $window) {
34 return {
35 restrict: 'E',
36 link: function makeDroppable(scope, element, attr){
37 element.on('dragover', function(event) {
38 event.preventDefault();
39 scope.$apply(function(){
40 scope.dropStatus = "Drag Over";
41 });
42 });
43 element.on('dragleave', function(event) {
44 event.preventDefault();
45 element.removeClass('dropItem');
46 scope.$apply(function(){
47 scope.dropStatus = "Drag Leave";
48 });
49 });
50 element.on('dragenter', function(event) {
51 event.preventDefault();
52 element.addClass('dropItem');
53 scope.$apply(function(){
54 scope.dropStatus = "Drag Enter";

55 });
56 });
57 element.on('drop', function(event) {
58 event.preventDefault();
59 element.removeClass('dropItem');
60 scope.$apply(function(){
61 element.append('<p>' +
62 event.dataTransfer.getData('Text') + '</p>');
63 scope.dropStatus = "Dropped " + scope.dropValue;
64 });
65 });
66 }
67 };
68 });

3. Add the code in Listing 29.6 to the dragdrop.html file. This implements the
AngularJS template that displays the dragStatus and dropStatus
values. Notice that the draggable elements are declared using the <dragit>
syntax, and the droppable elements are declared using the <dropit> syntax.

LISTING 29.6 dragdrop.html AngularJS Template That Uses the dragit and
dropit Directives to Add Draggable and Droppable Elements to the Web Page

Click here to view code image

01 <!doctype html>
02 <html ng-app="myApp">
03 <head>
04 <title>HTML5 Draggable and Droppable Directives</title>
05 <style>
06 dropit, img, p{
07 vertical-align: top; text-align: center;
08 width: 100px;
09 display: inline-block;
10 }
11 p {
12 color: white; background-color: black;
13 font: bold 14px/16px arial;
14 margin: 0px; width: 96px;
15 border: 2px ridge grey;
16 background: linear-gradient(#888888, #000000);
17 }
18 span{
19 display:inline-block; width: 100px;
20 font: 16px/18px Georgia, serif; text-align: center;
21 padding: 2px;
22 background: linear-gradient(#FFFFFF, #888888);
23 }
24 .dragItem {
25 color: red;

26 opacity: .5;
27 }
28 .dropItem {
29 border: 3px solid red;
30 opacity: .5;
31 }
32 #dragItems {
33 width: 400px;
34 }
35 </style>
36 </head>
37 <body>
38 <h2>HTML5 Drag and Drop Components</h2>
39 <div ng-controller="myController">
40 Drag Status: {{dragStatus}}

41 Drop Status: {{dropStatus}}
42 <hr>
43 <div id="dragItems">
44 Nature
45 Landscape
46 Flora
47 Sunset
48 Arch
49 Beauty
50 Inspiring
51 Summer
52 Fun
53 </div>
54 <hr>
55 <dropit></dropit>
56 <dropit></dropit>
57 <dropit></dropit>
58 <dropit></dropit>
59 </div>
60 <script src="http://code.angularjs.org/1.3.0/angular.min.js">
</script>
61 <script src="js/dragdrop.js"></script>
62 </body>
63 </html>

4. Load dragdrop.html in a browser. Figure 29.2 shows the working AngularJS
application in action. As words are dragged and dropped onto the images, they
are appended below the image. Also notice that the drag coordinates and drop
status are displayed as well.

FIGURE 29.2 Using custom AngularJS directives to provide drag-and-drop
functionality in a web page.

Try it Yourself: Adding a Zoom View Field to Images
In this example, you use a custom AngularJS directive to replace the
element and provide an automatic zoom view field that is displayed next to the
image on the page. When you click the image, the zoom view field will be
updated with a zoomed-in portion of the image.
The purpose of this exercise is to show you how AngularJS custom directives can
extend HTML with new elements that have a rich set of features. This example
also illustrates another time when you will want to use the full version of jQuery
rather than jQuery lite to get the size of the image and position of the mouse
within the image.
Use the following steps to build the zoom view AngularJS application:
1. Create the following folder and file structure in your code:

 ./lesson29/zooming.html: AngularJS template for the project.
 ./lesson29/zoomit.html: AngularJS partial template that contains the
image and zoom view field element definitions.
 ./lesson29/js/zooming.js: AngularJS application supporting the
custom tabs directives.

2. Add the code in Listing 29.7 to the zooming.js file. This is an AngularJS

application that defines the custom AngularJS directive called zoomit. The
zoomit directive is restricted to elements using only restrict: 'E'.
Also note that the src attribute from the template definition is injected into the
scope.
The functionality for the zoomit directive is in the controller function.
Notice that an object is created called zInfo that contains the
background-image and background-position properties. The
zInfo scope value will be used to set the ng-style attribute for the zoom
view field in the zoomit.html partial template in Listing 29.8. Setting the
background-image and background-position attributes adds the
image to the background and positions the zoom.
The imageClick() function suppresses the default click behavior and then
gets the event.target element as a jQuery object. This is where we need
the full version of jQuery to the height, width, and current offset of the
image on the page. We can then calculate the percentage from the left as posX
and from the top as posY of the mouse click and set the background-
position style appropriately.

LISTING 29.7 zooming.js AngularJS Application That Defines a Custom
AngularJS Directive Called zoomit That Implements an Element with a
Zoom View Field

Click here to view code image

01 angular.module('myApp', [])
02 .controller('myController', ['$scope', function($scope) {
03 }])
04 .directive('zoomit', function() {
05 return {
06 restrict: 'E',
07 scope: { src: '@'},
08 controller: function($scope) {
09 $scope.zInfo = {
10 "background-image": "url(" + $scope.src + ")",
11 "background-position": "top right"
12 };
13 $scope.imageClick= function(event){
14 event.preventDefault();
15 //Using full jQuery to get offset, width and height
16 var elem = angular.element(event.target);
17 var posX = Math.ceil((event.pageX - elem.offset().left) /
18 elem.width() * 100);
19 var posY = Math.ceil((event.pageY - elem.offset().top) /
20 elem.height() * 100);
21 $scope.pos = posX + "% " + posY + "%";

22 $scope.zInfo["background-position"] = posX + "% " +
23 posY + "%";
24 };
25 },
26 link: function(scope, element, attrs) {
27 },
28 templateUrl: 'zoomit.html'
29 };
30 });

3. Add the code in Listing 29.8 to the zoomit.html file. This code implements the
zoomit.html partial template that adds the element and a <div>
element, which will have the zoomed image as a background. Notice that the
ng-click method is set to the imageClick() function in the scope and
passes the $event. Also notice that ng-style is set to zInfo in the
scope.

LISTING 29.8 zoomit.html AngularJS Partial Template That Implements the
 and <div> Elements for the Image and Zoom View Field

Click here to view code image

01 <div>
02 <img src="{{src}}"
03 ng-click="imageClick($event)"/>
04 <div class="zoombox"
05 ng-style="zInfo"></div>
06 </div>

4. Add the code in in Listing 29.9 to the zooming.html file. This code contains the
AngularJS template code that provides the styles for the zoom view field and
image. Notice that the <zoomit> element is added just like any other and that
the src attribute is set as with an element. Also note that the full
jQuery library is loaded before the AngularJS library.

LISTING 29.9 zooming.html AngularJS Template That Styles and Implements the
<zoomit> Custom AngularJS Directive

Click here to view code image

01 <!DOCTYPE html>
02 <html ng-app="myApp">
03 <head>
04 <title>Magnify</title>
05 <style>

06 .zoombox {
07 display: inline-block;
08 border: 3px ridge black;
09 width: 100px; height: 100px; }
10 img {
11 height: 200px;
12 vertical-align: top; }
13 </style>
14 </head>
15 <body>
16 <h2>Image Zoom Window</h2>
17 <div ng-controller="myController">
18 <zoomit src="/images/flower.jpg"></zoomit>
19 <hr>
20 <zoomit src="/images/tiger.jpg"></zoomit>
21 </div>
22 </body>
23 <script
src="http://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js">
</script>
24 <script src="http://code.angularjs.org/1.3.0/angular.min.js">
</script>
25 <script src="js/zooming.js"></script>
26 </html>

5. Load the zooming.html file in a browser. Figure 29.3 shows the images with
their view fields on a web page. As you click a particular point in the image,
the zoom view field is updated.

FIGURE 29.3 Implementing a custom AngularJS directive that provides an image
with a zoom view finder.

Try it Yourself: Implementing Expandable and Collapsible Elements
In this example, you use custom AngularJS directives to build elements on the
web page that can expand and contract. Each element will have a title and an
expand/collapse button on top. When the collapse button is clicked, the contents
of the element will be hidden. When the expand button is clicked, the contents
will be shown again.
The purpose of this exercise is to solidify implementing custom AngularJS
directives that nest inside each other and communicate with each other. In this
example, you also get to see how a scope gets isolated from the controller but
shared between the expand container and the items in the container.
Use the following steps to build the expandable/collapsible AngularJS
application:
1. Create the following folder and file structure in your code:

 ./server.js: Node.js web server that serves the static project files.
 ./images: Folder that contains the images used in the examples.
 ./lesson29: Project folder.
 ./lesson29/expand.html: AngularJS template for the project that
implements the custom expandable directives.
 ./lesson29/expand_list.html: AngularJS partial template for the
expandable element directive.
 ./lesson29/expand_item.html: AngularJS partial template for each
individual item in the expandable element.
 lesson29/js/expand.js: AngularJS application supporting the
expandable element directives.

2. Add the code in Listing 29.10 to the expand.js file. This is an AngularJS
application that defines the expandList and expandItem custom
AngularJS directives. The transclude option is used to keep the contents that
get defined in the template.
Note that in the expandList directive, the scope is an isolate but accepts
the attributes title and exwidth, which are set to title and
listWidth in the scope. Note that in line 27, the listWidth value is used
to set the width of the style for items added to the expand list. Also,

listWidth is used in line 34 to set the css attribute width for the
expandable list.
The expandItem directive requires the expandList directive to provide
access to the addItem() function in the expandList directive’s scope.
Note that the myStyle attribute is used to build a style object that will be set
to the ng-style for the item in the expanded list.
The way that expanding and collapsing works is that the myHide value is
bound to each item in the expanded list using ng-hide in the template shown
in Listing 29.11. The items property in the scope of expandList provides
a list of scopes for each of the expandItem elements that get added. Then
when the expand/collapse button is clicked, it is a simple matter of setting the
myHide value to true or false in the scope for each item in the
collapse() function to show or hide the items in the expanded element.

LISTING 29.10 expand.js AngularJS Application That Implements the
expandList and expandItem Custom Directive to Provide Expandable and
Collapsible Elements

Click here to view code image

01 angular.module('myApp', [])
02 .controller('myController', ['$scope', function($scope) {
03 $scope.items = [1,2,3,4,5];
04 }])
05 .directive('expandList', function() {
06 return {
07 restrict: 'E',
08 transclude: true,
09 scope: {title: '@', listWidth: '@exwidth'},
10 controller: function($scope) {
11 $scope.collapsed = false;
12 $scope.expandHandle = "-";
13 items = $scope.items = [];
14 $scope.collapse = function() {
15 if ($scope.collapsed){
16 $scope.collapsed = false;
17 $scope.expandHandle = "-";
18 } else {
19 $scope.collapsed = true;
20 $scope.expandHandle = "+";
21 }
22 angular.forEach($scope.items, function(item) {
23 item.myHide = $scope.collapsed;
24 });
25 };
26 this.addItem = function(item) {
27 item.myStyle.width = $scope.listWidth;

28 items.push(item);
29 item.myHide=false;
30 };
31 },
32 link: function(scope, element, attrs, expandCtrl) {
33 element.css("display", "inline-block");
34 element.css("width", scope.listWidth);
35 },
36 templateUrl: 'expand_list.html',
37 };
38 })
39 .directive('expandItem', function() {
40 return {
41 require: '^expandList',
42 restrict: 'E',
43 transclude: true,
44 scope: {},
45 controller: function($scope){
46 $scope.myHide = false;
47 $scope.myStyle = { width: "100px", "display": "inline-block" };
48 },
49 link: function(scope, element, attrs, expandCtrl) {
50 expandCtrl.addItem(scope);
51 },
52 templateUrl: 'expand_item.html',
53 };
54 });

3. Add the code in Listing 29.11 to the expand_list.html file. This contains the
AngularJS partial template expand_list.html that provides the
definition for the expandList element. The elements for the expand list
header, including the expand/collapse button and the title, are added. The
<div ng-transclude> element is where the expandItem elements
will be placed.

LISTING 29.11 expand_list.html AngularJS Partial Template That Defines the
expandList Element

Click here to view code image

01 <div>
02 <div class="expand-header">
03 <span class="expand-button"
04 ng-click="collapse()">{{expandHandle}}
05 {{title}}
06 </div>
07 <div ng-transclude></div>
08 </div>

4. Add the code in Listing 29.12 to the expand_item.html file. This contains the
AngularJS partial template expand_item.html that provides the
definition for the expandable items. Notice that ng-hide is set to myHide in
the scope to expand/collapse the element. ng-style is set to myStyle so
that we can set the width to the expand list width. The expand-item class
enables us to easily change the item appearance using CSS. The ng-
transclude is used to place the contents from the AngularJS template
definition inside the list item.

LISTING 29.12 expand_item.html AngularJS Partial Template That Defines the
expandItem Element

01 <div ng-hide="myHide"
02 ng-style="myStyle"
03 class="expand-item"
04 ng-transclude>
05 </div>

5. Add the code in Listing 29.13 to the expand.html file. This implements the
AngularJS template that provides the styles for the page as well as definitions
for the <expand-list> elements. Notice that four <expand-list>
elements are defined. The first is a simple list where the <expand-item>
element contains just text. The second provides a single <expand-item>
element with form elements. The third contains a mixture of different HTML
elements in each <expand-item> element. The fourth one contains just an
 element.
Note that each <expand-list> element contains a different value for the
attributes title and exwidth, which results in lists with different titles and
widths on the page.

LISTING 29.13 expand.html AngularJS Code That Styles and Implements
Expandable/Collapsible Elements Using the expandList and expandItem
Custom Directives

Click here to view code image

01 <!DOCTYPE html>
02 <html ng-app="myApp">
03 <head>
04 <title>Expandable and Collapsible Lists</title>
05 <style>
06 * { vertical-align: top; }

07 expand-list{
08 border: 2px ridge black; }
09 .expand-header{
10 text-align: center;
11 font: bold 16px/24px arial;
12 background-image: linear-gradient(#CCCCCC, #EEEEEE);
13 }
14 .expand-button{
15 float: left; padding: 2px 4px;
16 font: bold 22px/16px courier;
17 color: white; background-color: black;
18 cursor: pointer;
19 border: 3px groove grey; }
20 .expand-item {
21 border: 1px ridge black;}
22 p { margin: 0px; padding: 2px;}
23 label { display: inline-block; width: 80px; padding: 2px; }
24 .small { width: 100px; padding: 2px; }
25 .large { width: 300px; }
26 </style>
27 </head>
28 <body>
29 <h2>Expandable and Collapsible Lists</h2>
30 <hr>
31 <div ng-controller="myController">
32 <expand-list title="Companion" exwidth="120px">
33 <expand-item>Rose</expand-item>
34 <expand-item>Donna</expand-item>
35 <expand-item>Martha</expand-item>
36 <expand-item>Amy</expand-item>
37 <expand-item>Rory</expand-item>
38 </expand-list>
39 <expand-list title="Form" exwidth="280px">
40 <expand-item>
41 <label>Name</label>
42 <input type="text" />

43 <label>Phone</label>
44 <input type="text" />

45 <label>Address</label>
46 <input type="text" />

47 <label>Comment</label>
48 <textarea type="text"></textarea>
49 </expand-item>
50 </expand-list>
51 <hr>
52 <expand-list title="Mixed List" exwidth="300px">
53 <expand-item>Text Item</expand-item>
54 <expand-item><p>I think therefore I am.</p></expand-item>
55 <expand-item>
56 Sunset
57 </expand-item>
58 <expand-item>
59
60 AngularJS

61 jQuery
62 JavaScript
63
64 </expand-item>
65 </expand-list>
66 <expand-list title="Image" exwidth="300px">
67 <expand-item>
68
69 </expand-item>
70 </expand-list>
71 </div>
72 </body>
73 <script src="http://code.angularjs.org/1.3.0/angular.min.js">
</script>
74 <script src="js/expand.js"></script>
75 </html>

6. Load the expand.html file in a browser. The results of the AngularJS
application are shown in Figure 29.4. Notice the expanded and collapsed
version of the elements.

FIGURE 29.4 Using custom AngularJS directives to build and implement
expandable/collapsible web page elements.

Try it Yourself: Adding Star Ratings to Elements
In this example, you use just the AngularJS scope, controller, and view to
implement elements that implement the star ratings for images. When you click a
star, the rating changes in the scope and the number of stars changes.
The purpose of this exercise is to remind you that much of the data binding and
view interactions can be accomplished in basic AngularJS templates without the
need for custom directives.
Use the following steps to build the expandable/collapsible AngularJS

application:
1. Create the following folder and file structure in your code:

 ./lesson29: Project folder.
 ./lesson29/rating.html: AngularJS template for the project that
implements a simple star rating to elements.
 ./lesson29/js/rating.js: AngularJS application that defines the
supporting star rating elements.

2. Add the code in Listing 29.14 to the rating.js file. This implements the
AngularJS application we use to change the star ratings. Notice that the data
used comes from $scope.items. This data could have come from a
service, a database, or another source. The array $scope.stars is used in
the template to display the stars on the web page. The only function required in
the controller code is adjustRating, which is called when the user
changes the rating by clicking a star.

LISTING 29.14 rating.js AngularJS Application That Provides the Data and
Functionality to Support Star Ratings in the View

Click here to view code image

01 angular.module('myApp', [])
02 .controller('myController', ['$scope', function($scope) {
03 $scope.stars = [1,2,3,4,5];
04 $scope.items = [
05 {
06 description: "Mysty Mountains",
07 img: "/images/misty_mountains.jpg",
08 rating: 3},
09 {
10 description: "Wheel",
11 img: "/images/wheel.jpg",
12 rating: 4},
13 {
14 description: "Pool",
15 img: "/images/pool.jpg",
16 rating: 4}
17];
18 $scope.adjustRating = function(item, value){
19 item.rating = value;
20 };
21 }]);

3. Add the code in Listing 29.15 to the rating.html file. This implements an
AngularJS template that iterates through the items array from the scope and

builds out the image elements complete with the description and star rating.
Note that to build the star list, ng-repeat is used on the stars array from
the scope. Also note that lines 33 and 34 determine whether a filled star or an
empty star is displayed. To do that, the ng-class attribute is set based on
the item rating being greater than the star index. The ng-click attribute is
used to bind mouse clicks on each star to the adjustRating() function in
the scope to set the rating for this item.

LISTING 29.15 rating.html AngularJS Template That Utilizes Data from the
Scope to Display a List of Images with Descriptions and Ratings

Click here to view code image

01 <!DOCTYPE html>
02 <html ng-app="myApp">
03 <head>
04 <title>Ratings</title>
05 <style>
06 img {
07 width: 200px; }
08 .star {
09 display: inline-block;
10 width: 15px;
11 background-image: url("/images/star.png");
12 background-repeat: no-repeat;
13 background-size: 15px 15px;
14 }
15 .empty {
16 display: inline-block;
17 width: 15px;
18 background-image: url("/images/empty.png");
19 background-repeat: no-repeat;
20 background-size: 15px 15px;
21 }
22 </style>
23 </head>
24 <body>
25 <h2>Images With Ratings</h2>
26 <hr>
27 <div ng-controller="myController">
28 <div ng-repeat="item in items">
29
30 {{item.description}}

31 Rating: {{item.rating}} stars

32 <span ng-repeat="idx in stars"
33 ng-class=
34 "{true: 'star', false: 'empty'}[idx <= item.rating]"
35 ng-click="adjustRating(item, idx)">
36
37 <hr>

38 </div>
39 </div>
40 </body>
41 <script src="http://code.angularjs.org/1.3.8/angular.min.js">
</script>
42 <script src="js/rating.js"></script>
43 </html>

4. Load rating.html in a web browser. The resulting web page is shown in Figure
29.5. Notice that as the stars are clicked, the rating and stars displayed also
change.

FIGURE 29.5 Implementing a simple star rating in elements using AngularJS scope
data, controller code, and a template view.

Summary
AngularJS provides many tools to extend the capability of HTML through the use of
templates with built-in and custom directives. In this lesson, you saw different ways in
which you can implement richly interactive elements into your web pages in an easy yet
structured way.

In this lesson, you also got a look at several custom directives. The tabbed panels and
expandable/collapsible examples showed ways to implement directives that nest inside
each other and interact with each other. The drag and drop showed you one way to
interact with the HTML5 drag and drop events, as well as how to share the scope
between the controller and custom directives. The star rating example showed you how
to build interactivity using only the AngularJS scope, controller, and template. The
zoom view field example showed you how to extend the concept of an HTML
element to an element that includes an additional zoom element that interacts with mouse
clicks in the image.
That’s a wrap for this book. We hope that you have enjoyed learning about AngularJS,
jQuery, and JavaScript as much as we have. We love these technologies because they
allow you to easily create fantastic, dynamic, and highly interactive web pages and web
applications. These technologies are powerful tools because they allow you to create
well-structured, reusable code in a fast and efficient way. After reading this book, you
should have a good understanding of JavaScript, jQuery, and the AngularJS framework
so that you feel confident in jumping in and writing your own web applications. Enjoy
your coding!

Q&A
Q. Where is a good source to learn additional functionality of AngularJS?
A. The best and most up-to-date source is the AngularJS website angularjs.org. For

simple things, you can look at what w3schools.com has to offer.

Workshop
The workshop consists of a set of questions and answers designed to solidify your
understanding of the material covered in this hour. Try to answer the questions before
looking at the answers.

Quiz
1. Which AngularJS directive can you use to hide or show an element?
2. Which AngularJS directive is used to mark the insertion point for transcluded

DOM elements in a directive that uses transclusion?
3. What is the difference between template and templateUrl in a custom

directive definition?

Quiz Answers
1. ng-show
2. ng-transclude

http://angularjs.org
http://w3schools.com

3. The template setting contains an actual HTML snippet, whereas the
templateUrl setting contains the URL path for the template to use in the
directive.

Exercises
1. Modify the code in Listings 29.1, 29.2, 29.3, and 29.4 to include some additional

tabs with different content.
2. Modify the code in Listings 29.7, 29.8, and 29.9 to also display the current page

coordinates of the mouse in the custom zoom area.

Index

Symbols
$anchorScroll service (AngularJS), 700
$animate service (AngularJS), 700, 714-719
$broadcast() method, 691
$cacheFactory service (AngularJS), 700, 704-709
$compile service (AngularJS), 700
$cookies service (AngularJS), 700
$cookieStore service (AngularJS), interacting with browser cookies, 709-711
:data() selector, 464
$destroy event (jQuery Lite objects), 562
$document service (AngularJS), 700
$emit() method, 691
$exceptionHandler service (AngularJS), 700
:focusable selector, 464
$http service (AngularJS), 700

HTTP servers, accessing, 703-708
sending GET and PUT requests, 701-702

configuring requests, 702
implementing callback functions, 703-708

$ingerpolate service (AngularJS), 700
$interval service (AngularJS), 700, 714
$locale service (AngularJS), 700
$location service (AngularJS), 700

providing wrapper for window.location object, 721-724
$log service (AngularJS), 700
$on() method, 691-692
$parse service (AngularJS), 700
$q service (AngularJS), 700

providing deferred responses, 726-728
$resource service (AngularJS), 700
$rootElement service (AngularJS), 700
$rootScope service (AngularJS), 700
$route service (AngularJS), 700

$routeParams service (AngularJS), 700
$sanitize service (AngularJS), 700
$sce service (AngularJS), 700
$swipe service (AngularJS), 700
:tabbable selector, 465
$templateCache service (AngularJS), 700
$timeout service (AngularJS), 700, 714
$watch() method, 689

tracking scope variables, 687
$watchCollection() method, 689

tracking changes to object properties in scope, 688-690
$watchGroup() method, 689

track multiple scope variables, 687
$window service (AngularJS), 700

implementing browser alerts, 704-709

A
a directive (AngularJS templates), 634
abort event, 239
abort() method, 453
absUrl() method, 722
ACCEPT header (HTTP), 15
accept option (jQuery droppable widget), 501
accept rule (validation), 376
active option (tabs widget), 541
activeClass option (jQuery droppable widget), 501
addClass() method, 199, 561
addEventListener() method, 253
after() method, 561
AJAX handlers, 19-20
ajax() method, 450-452
AJAX requests, 423, 453

advanced jQuery, 450-453
global event handlers, 451
global setup, 450

asynchronous communication, 425-426

cross-domain, 426
GET versus POST, 427
handling responses, 433-434

HTML response data, 439-444
JSON response data, 438-441
success and failures, 434-437
XML response data, 439-444

implementing, 428-450
from JavaScript, 428-429
from jQuery, 429-433
low-level, 451-453
versus page requests, 424-425
response data types, 427
server-side services, 425

ajax_post.css listing (15.19), 448-449
ajax_post.html listing (15.17), 447
ajax_post.js listing (15.18), 447-448
ajax_response.css listing (15.7), 437
ajax_response.html listing (15.5), 436
ajax_response.js listing (15.6), 436-437
ajaxComplete() method, 451
ajaxError() method, 451
ajax.html listing (1.3), 19-20
ajaxSend() method, 451
ajaxSetup() method, 450
ajaxStart() method, 451
ajaxStop() method, 451
ajaxSuccess() method, 451
alert() method (window object), 305
alsoResize option (jQuery resizable widget), 507
altKey attribute (event objects), 237
always() method, 453
analysis, network traffic, 63-65
AngularJS, 549, 564

adding to environment, 554-555
animating elements, 717-719

applications, 774
creating basic, 557-560
creating rich web components, 751-773
dynamics, 567
using jQuery and jQuery Lite in, 560-564

benefits, 548-549
bootstrapping in HTML document, 555
compiler, 552
controllers, 551
data binding, 551
data model, 550
debugging, 63
dependency injection, 551, 567, 568-569

implementing, 572-574
injector service, 569

directives, 550, 627
automatically added and removed during animation, 715
built-in, 628-653
creating custom, 657-668
custom, 683

elements
adding star ratings, 770-773
draggable and droppable, 756-761
expandable/collapsible, 764-770

events, 685, 696-697
browser, 685
emitting and broadcasting custom, 691-693
tracking scope change, 686-689

expressions, 550
global APIs, 555-560
images, adding a zoom view field to, 761-764
integrating with JavaScript and jQuery, 553-554
life cycle, 552

bootstrap phase, 552
compilation phase, 552
runtime data binding phase, 552-553

loading jQuery library, 563-564

modules, 549, 567-568
adding configuration blocks, 575-578
adding run blocks, 578
creating providers, 570-572
defining module object, 569-570
injecting into another, 575-577
providers, 569

providers
implementing, 572
injecting into controller, 572

scope, 550, 583, 597
implementing hierarchy, 593-595
life cycle, 591-593
relationship between backend server data, 591
relationship between controllers, 584-586
relationship between root scope and applications, 584
relationship between templates, 587-589
template values, 588-589

separation of responsibilities, 553
services, 551, 699-700, 728

$animate, 714-719
$cacheFactory, 704-709
$cookieStore, 709-711
$http, 701-708
$interval, 714
$location, 721-724
$q, 726-728
$timeout, 714
$window, 704-709
building factory, 732
built-in, 700-701
creating custom, 731-748
database access, 741-747
defining constant, 732
defining service, 733
defining value, 732
time, 737

templates, 550, 599-600, 623
custom filters, 620-621
directives, 599
expressions, 599, 600-609
filters, 599, 611-618

views, 550
building tabbed, 751-755

angular.module() method, 569-570
animate() method, 322
animate.css listing (27.9), 720
animated_resize.css listing (12.12), 339
animated_resize.html listing (12.10), 338-339
animated_resize.js listing (12.11), 339
animation, 321-325

adding effects to, 487-491
applying promise() to, 325
CSS (Cascading Style Sheets)

implementing in, 715-716
settings, 322

delaying, 324-325
elements, adding to web forms, 368-370
hide() method, 325, 326-327, 328-329
interactive, 341-343
JavaScript, implementing in, 716-719
moving elements, 340-344
queues, 323
resize, creating, 337-339
setting effect easing, 478
sliding, 332-337
stopping, 323
toggle() method, 326-327
visibility, 329-332

animation_effects.css listing (17.12), 491
animation_effects.html listing (17.10), 489-491
animation_effects.js listing (17.11), 491
append() method, 561

appendChild() method, 198
appendTo option (jQuery selectable widget), 511
applications (AngularJS), 567

building tabbed views, 751-755
creating basic, 557-560
creating rich web components, 751-773
dependency injection, 568-569

implementing, 572-574
injector service, 569

elements
adding star ratings, 770-773
draggable and droppable, 756-761
expandable/collapsible, 764-770

events, 685, 696-697
browser, 685
emitting and broadcasting custom, 691-693
global APIs, 555-560
tracking scope change, 686-689

images, adding a zoom view field to, 761-764
integrating custom services into, 733-747
modules, 567-568

adding configuration blocks, 575-578
adding run blocks, 578
creating providers, 570-572
defining module object, 569-570
injecting into another, 575-577
providers, 569

providers
implementing, 572
injecting into controller, 572

scope, 583, 597
life cycle, 591-595
relationship between backend server data, 591
relationship between controllers, 584-586
relationship between root scope and applications, 584
relationship between templates, 587-589

services, 699-700

$animate, 714-719
$cacheFactory, 704-709
$cookieStore, 709-711
$http, 701-708
$interval, 714
$location, 721-724
$q, 726-728
$timeout, 714
$window, 704-709
built-in, 700-701

using jQuery and jQuery Lite in, 560-564
arithmetic operators (JavaScript), 154
Array data type (JavaScript), 153
Array object (JavaScript), 181-187
array_manipulation.html listing (6.2), 186-187
arrays

adding/removing items, 184-187
checking for items, 184
combining, 183
converting into strings, 183
creating, 184-186
iterating through, 183
manipulating, 184-187

article1.html listing (15.3), 433
ASP (Active Server Pages), 425
aspectRatio option (jQuery resizable widget), 507
asrfHeaderName property (config parameter), $http service requests, 702
assign() method (window object), 307
assignment operators (JavaScript), 154
Associative Array/Objects data type (JavaScript), 153
asynchronous communication, AJAX requests, 425-426
attr() method, 199, 561
attribute selectors (jQuery), 206
attributes

ajax() method, 450-452
DOM objects, 198

HTML elements, 71-72
web form elements, 348-349
XMLHttpRequest object, 428

<audio> tag, 102
AUTHORIZATION header (HTTP), 15
autoHide option (jQuery resizable widget), 507
availHeight property (screen object), 304
availWidth property (screen object), 304
axis option

draggable widget, 497
sortable widget, 516

B
backend server data, relation between scopes, 591
background-attachment property (CSS), 119
background-color property (CSS), 119
background-image property (CSS), 119
background-position property (CSS), 119
background-repeat property (CSS), 120-121
backgrounds.html listing (4.3), 124-125
background-size property (CSS), 119
behavior, directives, restricting, 660-661
bind() method, 561
bindToController definition property (AngularJS), 658
blind effect (jQuery UI), 476
block elements, 78-79
blur events, 239, 647-648
blur() method (window object), 305
blurring elements, web forms, 361
<body> elements, 77-90
Boolean data type (JavaScript), 153
bootstrap phase, AngularJS life cycle, 552
bootstrapping AngularJS web pages, 555
border property (CSS), 123
border-color property (CSS), 123
border-radius property (CSS), 123

borders (CSS), adding to HTML elements, 123-128
border-style property (CSS), 123
border-width property (CSS), 123
bounce effect (jQuery UI), 476
box model, HTML elements, 132
box-shadow property (CSS), 123

 tag, 79
breakpoints (debugger), 58
broadcasting custom events, 691-693
broken_event.css listing (9.3), 248
broken_event.html listing (9.1), 247
broken_event.js listing (9.2), 248
browser events, AngularJS applications, 685
browser history object, 307-308
browser location object, 306-307
browsers, 10

accessing element values, 270-281
obtaining and setting values, 271
obtaining mouse position, 270

alerts, implementing with $window service, 704-709
color information, 274-281
cookies, interacting with using $cookieStore service, 709-711
development, 21
events, 11
lists

altering appearance, 13-14
rendering in, 12

screen size, 274-281
URLs (uniform resource locators), 11
web server/browser paradigm, 9-20
window, 11

built-in directives (AngularJS), 628-653
binding model to page elements, 639-643
binding page events to controllers, 645-653
extending form elements, 631-637
functionality support, 628-630

built-in filters, AngularJS templates, 612
built-in JavaScript objects, 175-189

Array, 181-187
Date, 187-188
Math, 188
Number, 175-176
RegExp, 189
String, 176-178

built-in services (AngularJS), 700-701
button attribute (event objects), 237
button input elements, web forms, accessing, 352
<button> tag, 89
buttonImage option (datepicker widget), 530
buttonImageOnly option (datepicker widget), 530
buttons option (dialog widget), 532

C
cache property (config parameter), $http service requests, 702
calendar input, web pages, 530-531
Call Stack pane (debugger), 58
callbacks, jQuery, 263-265
cancelable attribute (event objects), 237
<canvas> element, 99-101
<caption> tag, 85
card_suits.css listing (9.12), 261-262
card_suits.html listing (9.10), 261
card_suits.js listing (9.11), 261
CDN (Content Delivery Network), 555
change event, 239
change option (slider widget), 537
charAt() method, 177
charCode attribute (event objects), 237
check box elements, web forms, accessing, 350
children() method, 561
class attributes

body elements, 77

DOM objects, 198
class transitions

adding effects to, 482-485
applying easing to, 483-484

class_transitions.css listing (17.6), 485
class_transitions.html listing (17.4), 484
class_transitions.js listing (17.5), 485
classes

HTML elements, 274
transitions, 484-485

clearInterval() method (window object), 305
clearTimeout() method (window object), 305
click event, 239
click() method, 198-199
client-side scripting, 16-17

AJAX request, 19-20
clientX attribute (event objects), 237, 270
clientY attribute (event objects), 237, 270
clip effect (jQuery UI), 476
clock.cs CSS Code That Styles the Clock listing (11.6), 317
clock.cs listing (11.6), 317
clock.html HTML listing (11.4), 316-317
clock.js listing (11.5), 317
clone() method, 561
close() method, 305
closed property (window object), 304
code. See also listings, delaying, $interval and $timeout services, 714
<col> tag, 85
<colgroup> tag, 85
collapse element, creating, 326-329
collapsible elements, AngularJS applications, 764-770
collapsible option (tabs widget), 541
collapsing branches, dynamic tree view, 404-408
color design properties (CSS), 112-130
color property (CSS), 113
colorDepth property (screen object), 304

combining
arrays, 183
strings, 178

comparison operators (JavaScript), 155-160
compilation phase, AngularJS life cycle, 552
compile definition property (AngularJS), 658
compile() function, 665-667
compiler (AngularJS), 552
complete option (jQuery animation), 322
complex validation, web forms, 377-384

adding messages, 378-380
adding rules, 377-378
placing messages, 380-384

concat() method, 177, 182
config() method, 578
config_run_blocks.js listing, 578-580
configuration

directive scope, 663-664
Node.js, 21-22

configuration blocks, applying to modules, 575-578
confirm() method (window object), 305
connectTo option (sortable widget), 516
container elements, 80-82
containment option (draggable widget), 497
containment option (jQuery resizable widget), 507
content, HTML elements, 71
content selectors (jQuery), 207
CONTENT-LENGTH header (HTTP), 15
contents() method, 561
CONTENT-TYPE header (HTTP), 15
controller definition property (AngularJS), 658
controller() method, 562
controllerAs definition property (AngularJS), 658
controllers

AngularJS, 551
binding page events to, 645-653

directives, adding to, 661-662
implementing basic, 585-586
implementing watches in, 688-689
injecting built-in providers into, 572
nested

custom events, 692-693
relationship between scopes, 584-586
scopes, 593-595

COOKIE header (HTTP), 15
cookies, obtaining and setting, 308-313
Cookies tab (network traffic analyzer), 65
cookies.css listing (11.3), 312-313
cookies.html HTML listing (11.1), 309
cookies.js listing (11.2), 312
copy() method, 556
create event (jQuery UI widgets), 495
createPop() method (window object), 305
creation phase (AngularJS scope), 591-592
creditcard rule (validation), 376
cross-domain AJAX requests, 426
CSS (Cascading Style Sheets), 13, 105, 141. See also CSS3

adding
backgrounds, 119-121
code to headers, 107
styles, 29-30, 105-108

animation, implementing in, 715-716
borders, adding to HTML elements, 123-128
buttons, styling, 312-313
creating

dynamic graphic equalizer, 413-417
sparkline graphics, 417-421

debugging, 48-51
defining styles in HTML elements, 108
design properties, 112-131

color, 112-130
cursor, 130

opacity, 131
visibility, 131

editing properties, 48-49
elements

rearranging, 299
styles, 291-292

images, styling, 312-313
layout properties, applying, 119-140
loading styles from files, 106-107
obtaining and setting properties, 272-273
properties, preparing to directly adjusting, 141
selectors, 110-111
settings, animating, 322
styles

adding to HTML elements, 108-140
applying text, 113-119
preparing for dynamic design, 140-141

syntax, 108-110
using styles in HTML body, 107-108
z-index property, adjusting, 292-295

css() method, 199, 561
CSS Style editor, 48-49
css_errors.html listing (2.3), 50-52
css_styling.html listing (3.4), 82
CSS3, 13, 105. See also CSS (Cascading Style Sheets)
ctrlKey attribute (event objects), 237
currency[:symbol] filter (AngularJS templates), 612
Currently Executing Line option (debugger), 58
currentTarget attribute (event objects), 237
cursor design properties (CSS), 130
cursor option

draggable widget, 497
sortable widget, 516

custom directives (AngularJS), 657, 683
adding a controller to, 661-662
configuring scope, 663-664

defining, directive view template, 659-660
definitions, 657-668
implementing, 668-680
implementing event handlers in, 672-674
manipulating DOM in, 668-670
manipulating DOM with link() function, 665-667
nested, 677-680
restricting behavior, 660-661
transcluding elements, 664-665

custom events, 262
creating, 262

JavaScript, 262-263
jQuery, 262-263

emitting and broadcasting, 691-693
nested controllers, 692-693

custom filters, AngularJS templates, creating, 620-621
custom services (AngularJS), 731, 748

building factory, 732
database access, 741-747
defining

constant service, 732
service, 733
value service, 732

integrating into applications, 733-747
time, 737

custom_objects.html listing (6.3), 194

D
data attribute, event objects, 237
data binding, AngularJS, 551
data() method, 561
data model, AngularJS, 550
data property (config parameter), $http service requests, 702
data rendering, AngularJS template filters, 613-615
data types, JavaScript, 152-153
database access service, AngularJS, implementing, 741-747

data.html listing (1.4), 20
Date object (JavaScript), 187-188
date rule (validation), 376
date[:format] filter, AngularJS templates, 613
date_picker.html listing (16.1), 462
dateFormat option (datepicker widget), 530
dateISO rule (validation), 376
dbclick event, 239
debugger (JavaScript), 51-63
debugging, 35, 65-66

AngularJS, 63
CSS (Cascading Style Sheets), 48-51
HTML elements, 41-48
JavaScript, 51-63
jQuery, 63

deferred responses, $q service, 726-728
defining, JavaScript objects, 190
definitions, AngularJS custom directives, 657-668

directive view template, 659-660
delay timers, adding, 314-315
delaying animation, 324-325
delaying code, $interval and $timeout services, 714
delegateTarget attribute (event objects), 237
dependency injection, AngularJS, 551, 568-569

implementing, 572-574
injector service, 569

design properties (CSS), 112-131
color, 112-130
cursor, 130
opacity, 131
visibility, 131

destroy() method, 495
detatch() method, 561
developer tools console, 35-40
development web servers, 21
dialogs

overlay, 409-413
simple, 315-316
stylized, generating, 532-533

digits rule (validation), 376
directive() method, 657-658, 683
directive_angular_include.html listing (24.2), 632
directive_angular_include.js listing (24.1), 630
directive_bind.html listing (24.8), 644
directive_bind.js listing (24.7), 644
directive_custom_dom.html listing (25.2), 670-671
directive_custom_dom.js listing (25.1), 670
directive_custom_photos.html listing (25.6), 680-681
directive_custom_photos.js listing (25.5), 680
directive_custom_zoom.html listing (25.4), 676
directive_custom_zoom.js listing (25.3), 674-676
directive_focus_events.html listing (24.10), 648-649
directive_focus_events.js listing (24.9), 648
directive_form.html listing (24.6), 638
directive_form.js listing (24.5), 638
directive_keyboard_events.html listing (24.12), 651
directive_keyboard_events.js listing (24.11), 649-651
directive_mouse_events.html listing (24.14), 654-655
directive_mouse_events.js listing (24.13), 654
directives (AngularJS), 550, 627

a, 634
animation, automatically added and removed during, 715
built-in, 628-653

binding model to page elements, 639-643
binding page events to controllers, 645-653
extending form elements, 631-637
functionality support, 628-630

custom, 657, 683
adding a controller to, 661-662
configuring scope, 663-664
definitions, 657-668
directive view template, 659-660

DOM (Document Object Model), 670-671
implementing, 668-680
implementing event handlers in, 672-674
manipulating DOM in, 668-670
manipulating DOM with link() function, 665-667
nested, 677-680
restricting behavior, 660-661
transcluding elements, 664-665
zoom, 674-676

focus events, 648-649
form/ngForm, 634
input, 634
input.checkbox, 634
input.email, 634
input.number, 635
input.radio directive, 634
input.text directive, 634
input.time directive, 578
input.url directive, 634
input.week directive, 634
keyboard events, 649-651
mouse events, 652-655
templates, 599

disable() method, 495
disabling elements, web forms, 362
<div> elements (HTML), 136-139, 279-281
document structure (HTML), 70-72
DOM (Document Object Model), 10-11, 32

accessing, 148-151
determining, 200
element properties, viewing and editing, 46-48
elements, adding and removing event handlers, 242-253
JavaScript objects, 197-198
manipulating in custom directives, 668-670
manipulating with compile() function, 665-667
manipulating with link() function, 665-667
objects

accessing, 201-204, 211-213
adding event handlers, 245-246
changing to jQuery, 201
finding by class name, 201
finding by ID, 201
finding by tag name, 202-203
obtaining and setting attributes and properties, 271-272

traversing methods, jQuery objects, 219-220, 227-230
DOM editor, 47-48
dom_manipulation.css listing (8.1), 228
dom_manipulation.css listing (8.3), 229
dom_manipulation.js listing (8.2), 228-229
dom_objects.css listing (7.3), 204
dom_objects.html listing (7.1), 204
dom_objects.js listing (7.2), 204
done() method, 453
do/while loop (JavaScript), 161
drag_n_drop.html listing (18.4), 503-505
drag_n_drop.js listing (18.5), 506-507
drag_n_drop.js listing (18.6), 506-507
drag-and-drop widgets (jQuery), 497-507

draggable widget, dragging elements, 497-501
droppable widget, creating drop targets, 497-507

dragdrop.html listing (29.6), 759-760
dragdrop.js listing (29.5), 756-759
draggable elements, implementing, 756-761
draggable widget (jQuery), 497-507
draggable_images.css listing (18.2), 501
draggable_images.html listing (18.1), 500
draggable_images.js listing (18.2), 500-501
drop effect (jQuery UI), 476
drop targets, creating with droppable widget, 497-507
droppable elements, implementing, 756-761
droppable widget (jQuery), 497-507
duration option (jQuery animation), 322
dynamic dialogs, adding using overlays, 409-413

dynamic flow control, web forms, 362-364
dynamic scripts, writing, 31-32
dynamic sparkline graphics, creating, 417-421
dynamic tree view, adding with expanding and collapsing branches, 404-408
dynamic web pages, 69

creating with jQuery, 28
HTML

document structure, 70-72
elements, 69-70

dynamic_dialog.css listing (14.12), 412-413
dynamic_dialog.html listing (14.10), 410-411
dynamic_dialog.js listing (14.11), 412
dynamic_positioning.css listing (16.7), 472
dynamic_positioning.html listing (16.5), 471
dynamic_positioning.js listing (16.6), 471-472
dynamic_spark.css listing (14.18), 421
dynamic_spark.html listing (14.16), 418-420
dynamic_spark.js listing (14.17), 420-421
dynamic_tree.css listing (14.9), 408
dynamic_tree.html listing (14.7), 407
dynamic_tree.js listing (14.8), 407-408
dynamically manipulating HTML elements, 282-292
dynamically rearranging elements, 292-299

E
easing

applying to class transitions, 483-484
setting on animation, 478

easing option (jQuery animation), 322
Eclipse, configuring as web development IDE, 22-26
effects

animation, adding to, 487-491
jQuery UI

adding to class transitions, 482-485
adding to element visibility transitions, 485-491
applying, 475-482

Element inspector (JavaScript), 41-46
element() method, 556
elements (DOM), adding and removing event handlers, 242-253
elements (HTML), 103, 303

accessing with jQuery selectors, 149-150
accessing class, 274
adding

classes to dynamically, 140-141
CSS borders to, 123-128
dynamically, 282-283
margins around, 133
padding around, 133

animated, adding, 368-370
animating, AngularJS, 717-719
attributes, 71-72
block, 78-79
<body>, 76-90
box model, 132
changing classes, 286
collapse, creating, 326-329
container, 80-82
content, 71
CSS (Cascading Style Sheets) styles, adding to, 108-140

selectors, 110-111
debugging, 41-48
defining CSS styles in, 108
<div>, 279-281
DOM properties, viewing and editing, 46-48
drag-and-droppable, 502-507
dragging, jQuery draggable widget, 497-507
dynamic web pages, 69-70
dynamically manipulating, 282-292
dynamically rearranging, 292-299
expand, creating, 326-329
expandable accordion, 526-527
form, 88-90

extending with directives, 631-637

implementing autocomplete, 528-530
grouping, 80-81
<head>, 72-77

<link> tag, 76-77
<meta> tag, 73-74
<noscript> tag, 76
<script> tag, 75
<style> tag, 74
<title> tag, 72-73

image, 83-84
inline, 78-79
<input>, 232, 261, 309
inserting, jQuery, 285-286
inspecting, 41-46
<label>, 232
link, 82-83
list, 84
modifying flow, 133-134
moving, implementing, 340-344
obtaining and setting size, 273
obtaining information, 275-277
<p>, 261
page, binding model to elements, 639-643
positioning, 273-274

from CSS, 134-135
jQuery UI, 468-472

removing, 284
replacing, 285
resizable, 511-516
selectable sets, 512-516
sorting, 516-522
, 232, 257-258, 261, 309
syntax, 71
table, 85-88
toggling visibility, 286-287
transcluding, 664-665
value spinner, 538-539

visibility, adding effects to transitions, 485-491
web forms, 348-360

automatically focusing and blurring, 361
button input, 352
check box, 350
disabling, 362
dynamically controlling appearance and behavior, 368-374
file input, 352-353
hiding and showing, 361
obtaining and setting values, 348-353
radio input, 350-351
select input, 351-352
text input, 349-350

elements (HTML5), 93-102
<canvas>, 99-101
graphical, 93-101
media, 102
<path>, 95-99
<svg>, 95-99

email rule (validation), 376
emitting custom events, 691-693
empty() method, 561
enable() method, 495
eq() method, 561
equals() method, 556
equalTo rule (validation), 376
error event, 239
error handling, JavaScript, 168-169
escape codes, JavaScript strings, 176
event handlers

DOM elements, 242-253
implementing in custom directives, 672-674
jQuery, applying, 248-253

event handlers (HTML), accessing, 147-148
event object attributes, mouse position specification, 270
event option (tabs widget), 541

eventPhase attribute (event objects), 237
events, 235-236, 265-266

AngularJS applications, 685, 696-697
browser, 685
emitting and broadcasting custom, 691-693
tracking scope change, 686-689

blur, 647-648
broken, 247-248
browsers, 11
creating custom, 262

JavaScript, 262-263
jQuery, 262-263

draggable widget (jQuery), 498
droppable widget,
focus, 647-648
jQuery Lite objects, 562
jQuery sortable widget, 517
jQuery UI widgets, 495
keyboard, handling on AngularJS elements, 649
mouse, handling on AngularJS elements, 652-653
objects, 237-239

attributes, 237
onload, 240-242
page, binding to contollers, 645-653
page load for initialization, 240-242
process, 236-237
selectable widget events, 511
triggering manually, 253

JavaScript, 254-258
jQuery, 258-262

types, 239
expand element, creating, 326-329
expand_item.html listing (29.12), 768
expand_list.html listing (29.11), 767
expandable accordion element, adding, 526-527
expand.html listing (29.13), 768-770
expandable elements, AngularJS applications, 764-770

expanding branches, dynamic tree view, 404-408
expand.js listing (29.10), 766-767
explode effect (jQuery UI), 476
Express web servers, creating, 26-29
expressions

AngularJS templates, 550, 599-609
basic, 602-603
JavaScript, 608-609
scopes, 604-606

expressions_basic.html listing (23.2), 603-604
expressions_basic.js listing (23.1), 603
expressions_javascript.html listing (23.6), 610
expressions_javascript.js listing (23.5), 610
expressions_scope.html listing (23.4), 607
expressions_scope.js listing (23.3), 606
extend() method, 556
external links, 308

forcing to open in new browser windows, 308-311
stopping, 308

F
factory services (AngularJS), building using factory provider, 732
fade animations, 330
fade effect (jQuery UI), 476
fadeOut() method, 329
fadeTo() method, 330-331
fadeToggle() method, 329-330
fail() method, 453
failure, AJAX requests, handling, 433-444
<fieldset> tag, 89
file input elements, web forms, accessing, 352-353
files, loading CSS styles from, 106-107
filter() method, 620
filter option (jQuery selectable widget), 511
filter_custom.html listing (23.12), 622
filter_custom.js listing, 621-622

filter_sort.html listing, 618-619
filter_sort.js listing (23.9), 618
filtered selector (jQuery), 211
filter:exp:compare filter (AngularJS templates), 612
filtering tables, implementing, 397-404
filtering object results, jQuery, 218-219
filters, AngularJS templates, 599, 611-618

built-in, 612
custom, 620-621
data rendering, 613-615
ordering and sorting, 616-618

filters.html listing (23.8), 615
filters.js listing (23.7), 615
find() method, 561
first.html listing (20.1), 560
first.js listing (20.2), 555-560
flow control, web forms, 361-368
flying saucer app, creating, 340-342
focus event, 239, 647-648
focus() method (window object), 305
focusin event, 239
focusing elements, web forms, 361
focusout event, 239
fold effect (jQuery UI), 476
font property (CSS), 113-114
for loops (JavaScript), 161-162
forEach() method, 556
for/in loops (JavaScript), 162
form elements, 88-90

binding to scope, 636-637
extending with directives, 631-637

form selector (jQuery), 209
form_effects.html listing (13.7), 371-372
form_effects.js listing (13.8), 372-373
form_effects.js listing (13.9), 374
form_flow.css listing (13.6), 367-368

form_flow.html listing (13.4), 365-366
form_flow.js listing (13.5), 366-367
form_manipulation.css listing (13.3), 360
form_manipulation.html listing (13.1), 358-359
form_manipulation.js listing (13.2), 359-360
form_validation.css listing (13.12), 386-387
form_validation.html listing (13.10), 382-386
form_validation.js listing (13.11), 386
<form> tag, 88
form/ngform directive (AngularJS templates), 634
forms (web), 347-348, 387

accessing hidden inputs, 353
controlling submission and reset, 362-364
elements, 348-360

animated, 368-370
automatically focusing and blurring, 361
button input, 352
check box, 350
disabling, 362
dynamically controlling appearance and behavior, 368-374
file input, 352-353
hiding and showing, 361
obtaining and setting values, 348-353
radio input, 350-351
select input, 351-352
text input, 349-350

flow control, 361-368
dynamic, 362-364

serializing data, 354-360
validating, 375-387

adding messages, 378-380
adding rules, 377-378
complex validation, 377-384
jQuery validation plug-in, 376
jQuery validation with HTML, 376-377
manually, 375

placing messages, 380-384
forms.html listing (3.6), 90
fromCharCode() method, 177
fromJson() method, 556
functionality, AngularJS built-in directives, 628-630
functions. See also methods

JavaScript, creating, 163-167
writeIt(), 168

G
GET requests

HTTP (Hypertext Transform Protocol), 15-16, 32
versus POST, 427
sending, $http service, 701-708

getAllResponseHeaders() method, 453
getAttribute() method, 198
getResponseHeader() method, 453
ghost option (jQuery resizable widget), 507
global APIs, AngularJS, 555-560
global event handlers, AJAX, 451
graphic_equalizer.css listing (14.15), 417
graphic_equalizer.html listing (14.13), 415-416
graphic_equalizer.js listing (14.14), 416
graphical elements (HTML5), 93-101
graphical equalizer displays, implementing, 413-417
graphics, adding sparkline, 417-421
greedy option (jQuery droppable widget), 501
grouping elements, 80-81

H
handlers, AJAX, 19-20
handles option (jQuery resizable widget), 507
handling, AJAX responses, 433-444
hasClass() method, 561
hash() method, 722
hash property (window object), 307

head> elements, 72-77
link> tag, 76-77
meta> tag, 73-74
noscript> tag, 76
script> tag, 75
style> tag, 74
title> tag, 72-73

headers
adding CSS code to, 107
HTTP (Hypertext Transform Protocol), 15

headers property (config parameter), $http service requests, 702
Headers tab (network traffic analyzer), 65
height() method, 199, 273
height property (screen object), 304
helper functions (jQuery), assigning event handlers, 253
helper option (draggable widget), 497
helper option (jQuery resizable widget), 507
helper option (sortable widget), 516
hide() method, 199, 325

animating, 325-329
hiding elements, web forms, 361
hierarchy selector (jQuery), 208-209
highlight effect (jQuery UI), 476
history.back() method (browser history object), 308
history.forward() method (browser history object), 307
host() method, 722
host property (window object), 307
hostname property (window object), 307
hoverClass option (jQuery droppable widget), 501
<hr> tag, 79
href property (window object), 307
HTML (HyperText Markup Language), 11-12, 103. See also elements (HTML);
HTML5

adding to web pages, 29
assigning event handlers, 243-244
creating tables, 86

documents
bootstrapping AngularJS in, 555
structure, 70-72

elements, 303
accessing class, 274
adding classes to dynamically, 140-141
adding dynamically, 282-283
adding margins around, 133
adding padding around, 133
attributes, 71-72
block, 78-79
body, 77-90
box model, 132
changing classes, 286
container, 80-82
content, 71
debugging, 41-48
defining CSS styles in, 108
dynamic web pages, 69-70
dynamically manipulating, 282-292
dynamically rearranging, 292-299
end tag, 72
form, 88-90
head, 72-77
image, 83-84
inline, 78-79
inspecting, 41-46
link, 82-83
list, 84
modifying flow, 133-134
obtaining and setting size, 273
obtaining information, 275-277
positioning, 273-274
positioning from CSS, 134-135
removing, 284
replacing, 285
syntax, 71

table, 85-88
tags, 71
toggling visibility, 286-287

event handlers, accessing, 147-148
response data, AJAX requests, 439-444

HTML 4.01 Strict, 70
HTML 4.01 Transitional, 70
html() method, 199, 561
html_errors.html listing (2.2), 42
HTML5, 12, 70, 103. See also HTML (HyperText Markup Language)

elements, 93-102
dynamic web pages, 69-70
graphical, 93-101

HTTP (Hypertext Transform Protocol)
GET requests, 15-16
headers, 15
POST requests, 16
protocols, 14-15

HTTPS (Hypertext Transfer Protocol Secure), protocols, 14-15

I
id attribute

body elements,
DOM objects, 198

IDEs (integrated development environments), 21
configuring Eclipse as, 22-26

if conditional logic, JavaScript, 157-160
if_logic.html listing (5.3), 158-160
image elements, 83-84
image gallery

adding, 391-397
views, 337-338

image_fade.html listing (12.4), 331
image_fade.js listing (12.5), 332
image_fade.js listing (12.6), 332
image_hide.css listing (12.3), 328-329

image_hide.html listing (12.1), 328
image_hide.js listing (12.2), 328
image_slider.css listing (14.3), 397
image_slider.html listing (14.1), 395
image_slider.js listing (14.2), 395-396
images

adding a zoom view field to, 761-764
adding draggable to web pages, 498-501
fade, 331-332
hiding, 328
slider, 392-397

images.json listing (15.11), 440
 tag, 83-84
indexOf() method, 177, 182
ineractive_table.css listing (14.6), 403-404
ineractive_table.html listing (14.4), 400-401
ineractive_table.js listing (14.5), 402-403
inherited scope, 663
inheritedData() method, 562
initialization, page load events, 240-242
Initiator item (network traffic analyzer), 64
inject_builtin.html listing (21.2), 574
inject_builtin.js listing (21.1), 572
inject_custom.html listing (21.4), 576
inject_custom.js listing (21.3), 576
injector() method, 562
injector service (AngularJS), 569
inline elements, 78-79
innerHeight() method, 273
innerHeight property (window object), 304
innerHTML attribute (DOM objects), 198
innerWidth property (window object), 304
input directive (AngularJS templates), 634
<input> element, 232, 261, 309
<input> tag, 89
input.checkbox directive (AngularJS templates), 634

input.date directive (AngularJS templates), 578
input.dateTimeLocal directive (AngularJS templates), 578
input.email directive (AngularJS templates), 634
input.month directive (AngularJS templates), 578
input.number directive (AngularJS templates), 634
input.radio directive (AngularJS templates), 634
input.text directive (AngularJS templates), 634
input.time directive (AngularJS templates), 578
input.url directive (AngularJS templates), 634
input.week directive (AngularJS templates), 634
inspecting HTML elements, 41-46
instances, JavaScript objects, creating new, 174
interactions, jQuery UI

jQuery.widget factory, 495-496
mouse interaction widget, 496

interactive animation, 341-344
interactive tables, creating with sorting and filtering, 398-404
interactive_animation.html listing (12.13), 341-343
interactive_animation.js listing (12.14), 343-344
interactive_animation.js listing (12.15), 344
interrupting loops, JavaScript, 163
isArray() method, 556
isDate() method, 556
isDefaultPrevented() method, 239
isDefined() method, 556
isElement() method, 556
isFunction() method, 556
isImmediatePropagationStopped() method, 239
isNumber() method, 556
isObject() method, 556
isolate scope, 663-664
isolateScope() method, 562
isPropagationStopped() Method, 239
isString() method, 556
isUndefined() method, 556

items option (sortable widget), 516
iterating through arrays, 183

J
JavaScript, 9, 169, 215

adding elements dynamically, 282-283
AJAX requests from, 428-429
AngularJS expressions, 608-609
animation, implementing in, 716-719
cookies, obtaining and setting, 312
creating sparkline graphics, 417-421
data types, 152-153
debugger, 51-63
developer tools console, 35-40
DOM (Document Object Model), 148-151, 201-204

adding event handlers, 245-246
error handling, 168-169, 244-248
events, 235, 265-266

creating custom, 262-263
objects, 237-239
page load for initialization, 240-242
process, 236-237
types, 239

functions, creating, 163-167
if conditional logic, 157-160
implementing, 146-148
integrating with AngularJS, 553-554
looping, 160-163
objects, 173, 195, 197

accessing methods, 174
accessing properties, 174
adding methods to, 190-191
assigning new values and methods, 174-175
built-in, 175-189
creating custom-definied, 189-194
creating new instance, 174
defining, 190

prototyping patterns, 191-194
syntax, 173-175

operators, 154
arithmetic, 154
assignment, 154
comparison, 155-160

overlay dialogs, 409-413
pop-up boxes, 313-314
strings, escape codes, 176
syntax, 145, 151-169

objects, 173-175
timers, 314-317
variables

creating, 151-152
scope, 167-168

JavaScript view (debugger), 57
join() method, 182
jQuery, 169, 215, 217, 232-233, 391

adding
elements dynamically, 283
image gallery, 391-397
sparkline graphics, 417-421

advanced AJAX, 450-453
global event handlers, 451
global setup, 450

AJAX requests from, 429-433
AngularJS applications, using in, 560-564
animation, 321-325

applying promise() to, 325
CSS settings, 322
delaying, 324-325
moving elements, 340-344
queues, 323
resize, 337-339
sliding elements, 332-337
stopping, 323
visibility, 329-332

callbacks, 263-265
deferred objects, 265

cookies, obtaining and setting, 312
creating dynamic web pages, 28
creating tree view, 404-408
debugging, 63
DOM (Document Object Model)

accessing, 148-151, 211-213
traversing DOM, 231
obtaining and setting object attributes and properties, 271-272

.each() method, 224-229
event handlers, applying, 248-253
events, 235, 265-266

creating custom, 262-263
objects, 237-239
page load for initialization, 240-242
process, 236-237
types, 239

HTML elements, using selectors to access, 149-150
implementing, 146-148

graphical equalizer displays, 413-417
tables with sorting and filtering, 397-404

inserting elements, 285-286
integrating with AngularJS, 553-554
library, loading, 145-146
loading library, 563-564
.map() method, 225-229
objects, 197, 199

adding effects to, 478-482
chaining operations, 217-218
changing to DOM, 201
determining, 200
filtering results, 218-219
methods, 223
traversing DOM, 219-220

overlay dialogs, 409-413
replacing elements, 285

selectors, 205-215
applying basic, 205
attribute, 206
content, 207
filtered, 211
form, 209
hierarchy, 208-209
visibility, 210

simple interactive web page, 31-32
special effects, 321
syntax, 145
UI (user interface), 457, 472, 475, 492, 522, 525, 545

adding and removing unique IDs, 463
adding effects to class transitions, 482-485
adding to element visibility transitions, 485-491
adding to web pages, 461-462
applying buttons to form controls, 528-530
applying effects, 475-482
applying to scripts, 463-472
autocomplete widget, 527-528
creating custom theme, 459-461
creating custom widgets, 544-545
CSS, 457-458
datepicker widget, 530-531
dialog widget, 532-533
drag-and-drop, 497-507
expandable accordion element, 526-527
functionality, 463-464
implementing stylized menus, 533-535
JavaScript, 457-458
obtaining library, 458-459
positioning elements, 468-472
progress bar widget, 535-536
resizable widget, 507-511
reviewing, 525
selectable widget, 511-516
selectors, 464-466

slider widget, 536-538
sortable widget, 516-522
spinner widget, 538-539
tabs widget, 539-542
tooltips widget, 542-544

UI widgets, 495
events, 495
interactions, 495-496
jQuery.widget factory, 495-496
methods, 495
mouse interaction widget, 496

web forms
adding messages, 378-380
complex validation, 377-384
validation plug-in, 376
validation with HTML, 376-377

jQuery Lite, 561-562
AngularJS applications, using in, 560-564
jQuery methods supported, 561
loading library, 563-564

jquery_effects.html listing (17.1), 481
jquery_effects.js listing (17.2), 481-482
jquery_effects.js listing (17.3), 482
jquery_image_adder.css listing (16.4), 468
jquery_image_adder.html listing (16.2), 467
jquery_image_adder.js listing (16.3), 467
jquery_selectors.css listing (7.6), 215
jquery_selectors.html listing (7.4), 214
jquery_selectors.js listing (7.5), 214-215
jquery_version.html listing (5.1), 148
jQuery.widget factory, 495-496
jqXHR object, 453
js_errors.html listing (2.1), 37
js_functions.html listing (5.4), 166-167
js_reversed_text.html listing (3.3), 75
JSON (JavaScript Object Notation)

dynamic data generation, 20
response data, AJAX requests, 438-441
responses, AJAX requests, 427

json filter (AngularJS templates), 612

K
keyboard events, handling on AngularJS elements, 649
keydown event, 239
keypress event, 239
keyup event, 239

L
<label> element, 232
<label> tag, 89
large_title.html listing (24.4), 633
lastIndexOf() method, 177, 182
Latency item (network traffic analyzer), 64
Layout editor, 50-55
layout properties (CSS)

adding padding around HTML content, 133
applying, 119-140
setting content size, 132-133

<legend> tag, 89
letter-spacing property (CSS), 114
libraries (jQuery)

loading, 145-146
obtaining, 458-459

life cycle, AngularJS applications, 552-553
scopes, 591-595

limitTo:limit filter (AngularJS templates), 612
line-height property (CSS), 115
link definition property (AngularJS), 658
link elements, adding, 82-83
link() function, 665-667
<link> tag, 76-77
links, external, 308

forcing to open in new browser windows, 308-311
stopping, 308

list elements, applying, 84
list.html listing (1.1), 12
listings, 309, 382-386

ajax_post.css CSS Code That Styles the Page Elements (15.19), 448-449
ajax_post.html HTML Document That Loads the jQuery and JavaScript (15.17), 447
ajax_post.js jQuery and JavaScript Code That Implements the AJAX Request That
Populates the Page and Updates the Server Data (15.18), 447-448
ajax_response.css CSS Code That Styles the Page (15.7), 437
ajax_response.html HTML Document That Creates the Form Dialog (15.5), 436

ajax_response.js jQuery and JavaScript That Sends the Form Request to the Server
via an AJAX GET Request and Handles Success and Failure Conditions (15.6),
436-437
ajax.html (1.3), 19-20
animate.css CSS Code That Provides Transition Effects for the Various Class Stages
of the AngularJS Animation Code (27.9), 720
animated_resize.css CSS Code That Styles the Images (12.12), 339
animated_resize.html HTML File Basic Web Used to Display the Images (12.10),
338-339
animated_resize.js jQuery and JavaScript Code That Implements the Resize Effect
(12.11), 339
animation_effects.css CSS Code That Styles the Page (17.12), 491
animation_effects.html HTML Document That Adds the Web Page (17.10), 489-491
animation_effects.js jQuery and jQuery UI That Implements the Reposition Effects
(17.11), 491
array_manipulation.html Example of Creating and Manipulating Array Objects in
JavaScript (6.2), 186-187
article1.html Article HTML Code That Is Dynamically Loaded (15.4), 433
backgrounds.html HTML and CSS Code That Add Different Types of Background
Styles to Elements (4.3), 124-125
broken_event.html HTML File That Loads jQuery and JavaScript, Attaches Event
Handlers Elements to Provide User Interaction, and Then Defines the <div> and <h1>
Elements Used in the Example (9.1), 247
broken_event.js JavaScript Code That Defines an Event Handler and Dynamically
Attaches It to the <div> Elements (9.2), 248
card_suits.css CSS Code That Styles the and <p> Elements (9.12), 261-262
card_suits.html HTML File That Loads CSS and JavaScript and Defines the <p>, text
<input>, and Elements (9.10), 261
card_suits.js JavaScript Code That Triggers the keypress Event for the <input>
Element from the Elements’ Event Handler (9.11), 261
class_transitions.css CSS Code That Styles the Page (17.6), 485
class_transitions.html HTML Document That Adds the Web Page (17.4), 484
class_transitions.js jQuery and jQuery UI Code That Implements the Class
Transitions with Animation Effects (17.5), 485
clock.html HTML File Basic Web Used to Display a Time Element (11.4), 316-317
clock.js jQuery and JavaScript Code That Implements a Timeout and Interval Timer
(11.5), 317
config_run_blocks.js Implementing Configuration and Run Blocks in an AngularJS

Module (21.5), 578-580
cookies.css CSS Code That Styles the Buttons and Images (11.3), 312-313
cookies.html HTML File Basic Web Page Used in the Example That Defines Several
 Elements Used for Buttons and <input> Elements to Input Cookie Names and
Values (11.1), 309
cookies.js jQuery and JavaScript Code That Gets, Sets, and Deletes Cookies (11.2),
312
CSS Rules That Define Several Border Styles (4.5), 129-130
css_errors.html (2.3), 51-52
css_styling.html Adding CSS to an HTML Document Using the <style> Tag (3.4), 82
custom_objects.html Example of Creating and Manipulating Custom Objects in
JavaScript (6.3), 194
data.html (1.4), 20
date_picker.html HTML Document That Adds the jQuery UI Libraries and Renders a
Date Picker (16.1), 462
directive_angular_include.html An AngularJS Template That Uses the nd-include
Directive to Change the Title Bar of the Page by Swapping Between Two HTML
Files (24.2), 632
directive_angular_include.js Implementing a Controller to Store the HTML Filename
for a Title Element in the Scope (24.1), 630
directive_bind.html An AngularJS Template That Implements Several Data Binding
Directives (24.8), 644
directive_bind.js Implementing a Controller with a Scope Model to Support Data
Binding Directives (24.7), 644
directive_custom_dom.html An AngularJS Template That Utilizes a Custom
Directive That Manipulates the DOM (25.2), 670-671
directive_custom_dom.js Implementing Custom Directives That Manipulate the DOM
(25.1), 670
directive_custom_photos.html An AngularJS Template That Implements Nested
Custom Directives (25.6), 680-681
directive_custom_photos.js Implementing Custom Directives That Interact with Each
Other (25.5), 680
directive_custom_zoom.html An AngularJS Template That Utilizes a Custom
Directive to Provide Interactions with Mouse Events (25.4), 676
directive_custom_zoom.js Implementing Custom Directives That Register with DOM
Events (25.3), 674-676
directive_focus_events.html An AngularJS Template That Implements the ngFocus
and ngBlur Directives (24.10), 648-649

directive_focus_events.js Implementing a Controller with Scope Data and Event
Handlers to Support Blur and Focus Events from the View (24.9), 648
directive_form.html An AngularJS Template That Implements Several Form Element
Directives (24.6), 638
directive_form.js Implementing a Controller for Form Directives (24.5), 638
directive_keyboard_events.html An AngularJS Template That Implements the
ngKeydown and ngKeyup Directives (24.12), 651
directive_keyboard_events.js Implementing a Controller with Scope Data and Event
Handlers to Support Key-Down and Key-Up Events from the View (24.11), 649-651
directive_mouse_events.html An AngularJS Template That Implements the ngClick
and Other Mouse Click and Move Event Directives (24.14), 654-655
directive_mouse_events.js Implementing a Controller with Scope Data and Event
Handlers to Support Mouse Click and Movement Events from the View (24.13), 654
dom_manipulation.css CSS Code That Styles the and <p> Elements (8.3),
229
dom_manipulation.css HTML File That Loads jQuery and JavaScript (8.1), 228
dom_manipulation.js jQuery and JavaScript Code Gets the <p> Elements and Iterates
Through Them Using .map() and .each() to Apply Different Changes for Each Element
(8.2), 228-229
dom_objects.css CSS That Styles <p> Elements (7.3), 204
dom_objects.html HTML File That Loads JavaScript and Attaches an Event Handler
to a Button Element to Update the Page (7.1), 204
dom_objects.js JavaScript File Contains a Function Showing Examples of Accessing
Variables by id, tag, and class Attributes (7.2), 204
drag_n_drop.html HTML Document That Adds the Web Page (18.4), 503-505
drag_n_drop.js CSS Code That Styles the Page (18.6), 506-507
drag_n_drop.js jQuery and jQuery UI Implements Draggable and Droppable
Elements (18.5), 506
dragdrop.html AngularJS Template That Uses the dragit and dropit Directives to Add
Draggable and Droppable Elements to the Web Page (29.6), 759-760
dragdrop.js AngularJS Application That Implements dragit and dropit Custom
AngularJS Directives to Provide Drag and Drop Functionality (29.5), 756-759
draggable_images.css CSS Code That Styles the Page (18.3), 501
draggable_images.html HTML Document That Adds the Web Page (18.1), 500
draggable_images.js jQuery and jQuery UI Implements Draggable Images (18.2),
500-501
dynamic_dialog.css CSS Code That Styles the Page, Overlay, and Dialog Elements
(14.12), 412-413

dynamic_dialog.html HTML Document That Implements the Page, Overlay, and
Dialog (14.10), 410-411
dynamic_dialog.js jQuery and JavaScript Code That Shows and Hides the Dialog and
Updates the Web Page (14.11), 412
dynamic_positioning.css CSS Code That Styles the Page (16.7), 472
dynamic_positioning.html HTML Document That Adds the Images to the Web Page
(16.5), 471
dynamic_positioning.js jQuery and jQuery UI That Dynamically Positions the Images
(16.6), 471-472
dynamic_spark.css CSS Code That Styles the Page Elements and Sparkline (14.18),
421
dynamic_spark.html HTML Document That Implements Page Elements (14.16),
418-420
dynamic_spark.js jQuery and JavaScript Code Dynamically Populates and Updates
the Sparklines (14.17), 420-421
dynamic_tree.css CSS Code That Styles the Form Elements (14.9), 408
dynamic_tree.html HTML Document That Implements the Root Tree Element (14.7),
407
dynamic_tree.js jQuery and JavaScript Code Populates and Controls the Expansion
and Collapsing of the Tree (14.8), 407-408
expand_item.html AngularJS Partial Template That Defines the expandItem Element
(29.12), 768
expand_list.html AngularJS Partial Template That Defines the expandList Element
(29.11), 767
expand.html AngularJS Code That Styles and Implements Expandable/Collapsible
Elements Using the expandList and expandItem Custom Directives (29.13), 768-770
expand.js AngularJS Application That Implements the expandList and expandItem
Custom Directive to Provide Expandable and Collapsible Elements (29.10), 766-767
expressions_basic.html Applying Basic Strings and Numbers with Simple Math
Operations to an AngularJS Template (23.2, 603-604
expressions_basic.js Basic AngularJS Application Code with Empty Controller
(23.1), 603
expressions_javascript.html An AngularJS Template That Uses Expressions That
Contain Arrays and Math Logic in Various Ways to Interact with Data from the Scope
Model (23.5), 610
expressions_javascript.js Building a Scope with Arrays and the Math Object That
AngularJS Expressions Can Use (23.5), 610
expressions_scope.html An AngularJS Template That Uses Expressions in Various

Ways to Interact with Data from the Scope Model (23.4), 607
expressions_scope.js Building a Scope That AngularJS Expressions Can Use (23.3),
606
filter_custom.html An AngularJS Template That Uses a Custom Filter (23.12), 622
filter_custom.js Implementing a Custom Filter Provider in AngularJS (23.11),
621-622
filter_sort.html An AngularJS Template That Implements filter and orderBy Filters to
Order and Filter Items in a Table View (23.10), 618-619
filter_sort.js AngularJS Module that Builds a List of Planes and Provides
Functionality to Sort and Order the List (23.9), 618
filters.html An AngularJS Template That Implements Various Types of Filters to
Modify Data Displayed in the Rendered View (23.8), 615
filters.js Building a Scope That AngularJS Filters Can Use (23.7), 615
first.html A Simple AngularJS Template That Provides Two Input Elements and a
Button to Interact with the Model (20.1), 560
first.js A Simple AngularJS Module That Implements a Controller to Support the
Template in Listing 20.1 (20.2), 560
form_effects.html HTML Document That Implements the Registration Form Used in
the Example (13.7), 371-372
form_effects.js CSS Code That Styles the Form Elements and Provide Classes for
Dynamic Adjustments (13.9), 374
form_effects.js jQuery Code Implements the Animated Visual Elements (13.8),
372-373
form_flow.css CSS Code That Styles the Payment Form Elements (13.6), 367-368
form_flow.html HTML Document That Implements the Payment Form Used in the
Example (13.4), 365-366
form_flow.js jQuery Code That Provides the Intelligent Flow Control for the Payment
Form (13.5), 366-367
form_manipulation.css CSS Code That Styles the Form Elements (13.3), 360
form_manipulation.html HTML Document That Implements the Form Elements Used
in the Example (13.1), 358-359
form_manipulation.js jQuery and JavaScript Code That Implements a Series of Event
Handlers That Read Data from an Element in One Form as It Changes and Updates
the Second (13.2), 359-360
form_validation.css CSS Code That Styles the Form Elements and Errors (13.12),
386-387
form_validation.html HTML Document That Implements the Registration Form Used
in the Example (13.10), 382-386

form_validation.js jQuery Code Implements the Validation of Form Elements
(13.11), 386
forms.html HTML Generating a Form with Text, Radio, and Select Inputs (3.6), 90
graphic_equalizer.css CSS code That Styles Elements to Render the Graphical
Equalizer (14.15), 417
graphic_equalizer.html HTML Document That Implements a Web Page (14.13),
415-416
graphic_equalizer.js jQuery and JavaScript Code Dynamically Build and Populate
the Graphical Equalizer (14.14), 416
HTML That Creates a Series of <div> Elements That Are Styled by Listing 4.5 (4.4),
129
html_errors.html (2.2), 43
if_logic.html Simple Example of Using Conditional Logic Inside JavaScript (5.3),
158-160
image_fade.html HTML File Basic Web Used to Display the Images (12.4), 331
image_fade.js CSS Code That Styles the Collapsible Image Element (12.6), 332
image_fade.js jQuery and JavaScript Code That Implements Image Selection Fades
(12.5), 332
image_hide.css CSS Code That Styles the Collapsible Image Element (12.3),
328-329
image_hide.html HTML File Basic Web Used to Display the Collapsible Image
Element (12.1), 328
image_hide.js jQuery and JavaScript Code That Implements the Collapsible Image
(12.2), 328
image_slider.css CSS Code That Styles the Images and Controls (14.3), 397
image_slider.html HTML Document That Implements the Slider, Control, and Image
Elements (14.1), 395
image_slider.js jQuery and JavaScript Code Implements the Mouse Event Handlers
for the Image Slider Controls and Thumbnails (14.2), 395-396
images.json JSON Data from the Book Website at lesson15/data/images.json
Containing Image Filenames and Captions (15.11), 440
ineractive_table.css CSS Code That Styles the Table Elements (14.6), 403-404
ineractive_table.html HTML Document That Implements the Table Elements Used in
the Example (14.4), 400-401
ineractive_table.js jQuery and JavaScript Code Define the Interactions of the Table,
Including Sorting and Filtering (14.5), 402-403
inject_builtin.html Using HTML Code to Implement an AngularJS Module That
Implements Dependency Injection (21.2), 574

inject_builtin.js Implementing Dependency Injection of Built-in Services in a
Controller (21.1), 572
inject_custom.html Using HTML Code to Implement an AngularJS Module That
Depends on Another Module (21.4), 576
inject_custom.js Implementing Dependency Injection in Controller and Module
Definitions (21.3), 576
interactive_animation.html HTML File Basic Web Used to Display the Controls,
Cones, and Flying Saucer (12.13), 341-343
interactive_animation.js CSS Code That Styles the Controls, Cones, and Flying
Saucer (12.15), 344
interactive_animation.js jQuery and JavaScript Code That Implements the Flying
Saucer Movement Animation Using Click Handlers (12.14), 343-344
JavaScript and HTML Code That Draws a Cube onto a <canvas> Element (3.8),
100-101
JavaScript and HTML Code That Uses <svg> Elements to Create a Pie Graph and a
Text Border Around a Clock (3.7), 98-99
jquery_effects.html HTML Document That Adds the Web Page (17.1), 481
jquery_effects.js CSS Code That Styles the Page (17.3), 482
jquery_effects.js jQuery and jQuery UI That Apply Several Effects on Images (17.2),
481-482
jquery_image_adder.css CSS Code That Styles the Page Elements (16.4), 468
jquery_image_adder.html HTML Document That Adds the Web Page (16.2), 467
jquery_image_adder.js jQuery and jQuery UI Code That Uses the :data() Selector to
Select Elements (16.3), 467
jquery_selectors.css CSS That Styles Elements and Elements with
class=”label” (7.6), 215
jquery_selectors.html HTML File That Loads jQuery and JavaScript and Attaches
Event Handlers Elements to Provide User Interaction (7.4), 214
jquery_selectors.js JavaScript File Containing Event Handler Functions That Use
jQuery in Various Ways to Select and Alter Page Elements (7.5), 214-215
jquery_version.html Very Basic Example of Loading Using jQuery in a Web Page to
Print Out Its Own Version (5.1), 148
js_errors.html (2.1), 37
js_functions.html Simple Example of JavaScript Functions (5.4), 166-167
js_reversed_text.html Adding JavaScript and jQuery to an HTML Document Using
the <script> Tag (3.3), 75
large_title.html A Partial HTML File That Contains the Large Version of the Title
(24.4), 633

list.html (1.1), 12
load_content.css CSS Code That Styles the Page (15.3), 433
load_content.html HTML Document That Adds Menu and Content (15.1), 432
load_content.js jQuery and JavaScript That Implements the AJAX .load() Requests
(15.2), 432
load_json.css CSS Code That Styles the Images (15.12), 441
load_json.html HTML Document That Loads the jQuery and JavaScript (15.9), 440
load_json.js jQuery and JavaScript Code That Implements the AJAX Request and
Handles the JSON Response (15.10), 440
load_xml.css CSS Code That Styles the Table (15.16), 444
load_xml.html HTML Document That Loads the jQuery and JavaScript (15.13), 443
load_xml.js jQuery and JavaScript Code That Implements the AJAX Request and
Handles the XML Response (15.14), 443
manual_event.css CSS Code That Styles the Elements (9.9), 258
manual_event.html HTML File That Loads CSS and JavaScript and Defines the
Check Boxes and Elements (9.7), 257
manual_event.js JavaScript Code Manually Triggers the Click Event for the Check
Box Elements from the Elements (9.8), 257-258
my_photos.html A Partial AngularJS Template That Provides the Root Element for
the myPhotos Custom Directive (25.7), 681
page_title.html JavaScript Code Changing the <title> Value After the Page Has
Loaded (3.1), 73
pane.html AngularJS Partial Template That Contains the Template Code to Build the
Individual Panes of the Tabbed Container (29.3), 754
parkdata.xml XML Data File with Raw Table Data (15.15), 444
rating.html AngularJS Template That Utilizes Data from the Scope to Display a List
of Images with Descriptions and Ratings (29.15), 772-773
rating.js AngularJS Application That Provides the Data and Functionality to Support
Star Ratings in the View (29.14), 770-772
rearranging_elements.css CSS Code That Styles the Buttons and Images (10.9), 299
rearranging_elements.html HTML File Basic Web Page Used in the Example That
Defines Several Elements Used for Buttons and Elements (10.7), 297
rearranging_elements.js jQuery and JavaScript Code That Dynamically Moves,
Resizes, and Adjusts the z-index of Several Elements (10.8), 297-298
resizable_elements.css CSS Code That Styles the Page (18.9), 510-511
resizable_elements.html HTML Document That Adds the Web Page (18.7), 510
resizable_elements.js jQuery and jQuery UI Implements Resizing and Moving the
Page Elements (18.8), 510

reversed_text.html Adding CSS to an HTML Document Using the <style> Tag (3.2),
74
run_blocks.html Using HTML Code to Display the configTime and runTime Values
Generated in the Configuration and Run Blocks of the AngularJS Module (21.6), 580
scope_controller.html HTML Template That Enables You to See the Data in the
Scope Change Dynamically Based on Incrementing and Decrementing Values (22.2),
586-587
scope_controller.js Implementing a Basic Controller That Uses Dependency
Injection, Initializes Scope Values, and Implements Business Logic (22.1), 586
scope_events.html HTML Template Code That Renders the Scope Hierarchy for
Listing 26.3 Controllers (26.4), 694-695
scope_events.js Implementing $emit() and $broadcast() Events Within the Scope
Hierarchy (26.3), 694-695
scope_hierarchy.js Implementing a Basic Scope Hierarchy with Access to Properties
at Each Level (22.5), 595
scope_template.html HTML Template Code That Implements a Controller and
Various HTML Fields Linked to the Scope (22.4), 590
scope_watch.html HTML Template Code That Provides the View and Interactions
with the Scope and Controller Defined in Listing 26.1 (26.2), 689-690
scope_watch.js Implementing $watch(), $watchGroup(), and $watchCollection()
Handlers to Watch the Value of Scope Variables (26.1), 689
selectable_sets.html HTML Document That Adds the Web Page (18.10), 514
selectable_sets.js CSS Code That Styles the Page (18.12), 515-516
selectable_sets.js jQuery and jQuery UI Implements Item Selection (18.11), 515
server_lesson15_ajax_handling.js Node.js Server That Will Handle the POST and
GET Requests for This Exercise (15.8), 437
server_lesson15_ajax_post.js Node.js Server That Will Handle the POST and GET
Requests for This Exercise (15.20), 449-450
server.js (1.5), 28
service_animate.html An AngularJS Template That Implements Buttons That Change
the Class on an Image to Animate Fading and Resizing (28.8), 719-720
service_animate.js Implementing an AngularJS Controller That Implements jQuery
Animation Using the $animation Service (27.7), 719
service_cache.js Implementing a $cacheFactory Service in an AngularJS Application
(27.4), 704-709
service_cookie.html An AngularJS Template That Implements Radio Buttons to Set a
Cookie Value (27.6), 712
service_cookie.js Implementing an AngularJS Controller That Interacts with Browser

Cookies by Using the $cookieStore Service (27.5), 711-712
service_custom_censor.html AngularJS Template That Illustrates the Interaction of
Multiple Custom Services in an AngularJS Controller (28.2), 736-737
service_custom_censor.js Implementing and Consuming Multiple Custom Services in
an AngularJS Controller (28.1), 735-736
service_custom_db_access.js Implementing a Custom AngularJS Service That
Utilizes the $http and $q Services to Provide Interaction with Data Stored on the
Server (28.6), 744
service_custom_db.html AngularJS Template That Uses a Series of <input> Elements
to Display and Update Data Retrieved from the Server (28.8), 746-747
service_custom_db.js Implementing an AngularJS Application That Injects the
Module and Service from Listing 28.6 to Utilize the Database Access Service (28.7),
745
service_custom_time.html AngularJS Template That Illustrates Injecting a Custom
AngularJS Service into Multiple Controllers (28.4), 739-740
service_custom_time.js Implementing and Consuming a Custom AngularJS Service in
Multiple Controllers (28.71), 737-739
service_db_server.js Implementing a Node.js Express Server That Supports GET and
POST Routes to Simulate a Database Service for the AngularJS Controller (28.5),
742-743
service_http.html An AngularJS Template That Implements Directives That Are
Linked to Web Server Data (27.3), 707
service_http.js Implementing an AngularJS Controller That Interacts with the Web
Server Using the $http Service (27.2), 706
service_location.html An AngularJS Template That Displays Information Gathered
from the $location Service and Provides Links to Change the path, search, and hash
Values (27.11), 725
service_location.js An AngularJS Application That Implements a Controller to
Gather Information from the $location Service and Provides Functions to Change the
path, search, and hash Values (27.10), 727
service_server.js Implementing an Express Server That Supports GET and POST
Routes for an AngularJS Controller (27.1), 705
Simple Interactive jQuery and JavaScript Web Page (1.6), 31-32
sliding_images.css CSS Code That Styles the Sliding Menu (12.9), 336-337
sliding_images.html HTML File Basic Web Used to Display the Sliding Menu
Element (12.7), 335-336
sliding_images.js jQuery and JavaScript Code That Implements the Sliding Image
Menu (12.8), 336

small_title.html A Partial HTML File That Contains the Small Version of the Title
(24.3), 632
sortable_elements.css CSS Code That Styles the Page (18.15), 521-522
sortable_elements.html HTML Document That Adds the Web Page (18.13), 518-520
sortable_elements.js jQuery and jQuery UI Implements Sorting (18.14), 521
string_manipulation.html Example of Combining Multiple Lines of Text into a Single
String and Using replace() to Fill in Specifically Formatted Sections of the String
with Variable Values (6.1), 181
style.html (1.2), 13-14
tabbable.html AngularJS Template That Implements the myTabs and myPane Custom
Directives to Create a Tabbed View (29.4), 754-755
tabbable.js AngularJS Application That Defines Two Custom Directives That Can Be
Nested to Provide a Tabbed Panel View (29.1), 753
tables.html HTML Generating a Table with Headers, Rows, and Columns (3.5),
87-88
tabs.html AngularJS Partial Template That Contains the Template Code to Build the
Tabs Container (29.2), 754
text_styles.css CSS Code That Stylizes the Various Textual Elements by Adjusting the
Color, Alignments, Adding Lines, and Adjusting the Spacing (4.2), 118-119
text_styles.html HTML Code with Several Paragraph Elements to Be Stylized (4.1),
118
traverse_dom.css CSS Code That Styles the , <input>, and <label> Element
(8.6), 232
traverse_dom.html HTML File That Loads jQuery and JavaScript and Attaches Event
Handler Elements to Provide User Interaction (8.4), 229-232
traverse_dom.js JavaScript Code That Handles the Key Up Event and Uses jQuery to
Manipulate the Color of the Elements Based on the Input Value (8.5), 232
Very Basic Example of Using JavaScript and jQuery to Access DOM Elements (5.2),
151
visibility_transitions.css CSS Code That Styles the Page (17.9), 488-489
visibility_transitions.html HTML Document That Adds the Web Page (17.7),
490-488
visibility_transitions.js jQuery and jQuery UI That Implements the Visibility and
Effects (17.8), 488
web_element_manipulation.css CSS Code That Styles the Banner, Buttons, and Other
Elements (10.6), 291-292
web_element_manipulation.html HTML File Basic Web Page Used in the Example
(10.4), 290

web_element_manipulation.js jQuery and JavaScript Code That Dynamically Builds
the Left Navigation Items Based on the Button Clicked in the Top Menu (10.5),
290-291
web_layout.css CSS Code Used to Apply a Page Layout That Places Elements in
Fixed Positions (4.7), 139-140
web_layout.html HTML That Creates a Pair of <div> Elements That Are Styled by
Listing 4.7 to Be Song Info and a Set of Playback Controls (4.6), 136-139
web_page_manipulation.css CSS Code That Styles the <div> and Other Elements
(10.3), 281
web_page_manipulation.html HTML File That Provides Several Elements to Play
with, as Well as an Independent <div> That Displays Info (10.1), 279-280
web_page_manipulation.js jQuery and JavaScript Code That Retrieves and Displays
Information About the Screen, Browser, Mouse, and HTML Elements (10.2),
280-281
widgets_accordian.html jQuery, CSS, and HTML to Implement the Accordion (19.1),
527
widgets_autocomplete.html jQuery, CSS, and HTML to Implement the Autocomplete
Field (19.2), 528
widgets_calendar.html jQuery, CSS, and HTML to Implement the Datepicker Widget
(19.4), 531
widgets_custom.html jQuery Code Outline to Implement a Custom Widget (19.12),
544-545
widgets_dialogs.html jQuery, CSS, and HTML to Implement the Dialog (19.5), 533
widgets_menus.html jQuery, CSS, and HTML to Implement the Menus (19.6),
534-535
widgets_progress_bars.html jQuery, CSS, and HTML to Implement the Progress Bar
(19.7), 536
widgets_slider_bars.html jQuery, CSS, and HTML to Implement the Sliders (19.8),
537-538
widgets_spinner.html jQuery, CSS, and HTML to Implement the Spinner (19.9), 539
widgets_tabs.html jQuery, CSS, and HTML to Implement the Tabbed Panel (19.10),
541-542
widgets_tooltips.html jQuery, CSS, and HTML to Implement the Tabbed Panel
(19.11), 543-544
working_event.css CSS Code That Styles the <div> Elements (9.6), 252
working_event.html HTML File That Loads jQuery and JavaScript, Attaches Event
Handlers Elements to Provide User Interaction, and Defines the <div> and <h1>
Elements Used in the Example (9.4), 251-252

working_event.js jQuery and JavaScript Code That Defines an Event Handler and
Dynamically Attaches It to the <div> Elements (9.5), 252
zooming.html AngularJS Template That Styles and Implements the <zoomit> Custom
AngularJS Directive (29.9), 763-764
zooming.js AngularJS Application That Defines a Custom AngularJS Directive
Called zoomit That Implements an Element with a Zoom View Field (29.7),
762-763
zoomit.html AngularJS Partial Template That Implements the and <div>
Elements for the Image and Zoom View Field (29.8), 763

lists, browsers
altering appearance, 13-14
rendering in, 12

load event, 239
load_content.css listing (15.3), 433
load_content.html listing (15.1), 432
load_content.js listing (15.2), 432
load_json.css listing (15.12), 441
load_json.html listing (15.9), 440
load_json.js listing (15.10), 440
load_xml.css listing (15.16), 444
load_xml.html listing (15.13), 443
load_xml.js listing (15.14), 443
loading library, jQuery, 145-146
looping, JavaScript, 160-163
lowercase filter (AngularJS templates), 612
lowercase() method, 556
low-level AJAX requests, 451-453

M
manual_event.css listing (9.9), 258
manual_event.html listing (9.7), 257
manually triggering events, 253

JavaScript, 254-258
jQuery, 258-262

manually validating web forms, 375
margins, adding around HTML elements, 133

match() method, 177
Math object (JavaScript), 188
max option (slider widget), 526
max rule (validation), 376
maxlength rule (validation), 376
media elements, 102
menus

sliding animations, 333-334
styalized, implementing, 533-535

messages, web form validation, 378-384
<meta> tag, 73-74
metaKey attribute (event objects), 237
Method item (network traffic analyzer), 64
method property (config parameter), $http service requests, 702
methods, 177

$broadcast() method, 691
$emit(), 691
$on(), 691-692
$watch(), 687, 689
$watchCollection(), 688-690, 689
$watchGroup(), 687, 689
.animate(), 322
abort(), 453
absUrl(), 722
addClass(), 199, 561
addEventListener(), 253
after(), 561
ajax(), 450-452
ajaxComplete(), 451
ajaxError(), 451
ajaxSend(), 451
ajaxSetup(), 450
ajaxStart(), 451
ajaxStop(), 451
ajaxSuccess(), 451
always(), 453

angular.module(), 569-570
append(), 561
appendChild(), 198
Array object, 182
attr(), 199, 561
bind(), 561
charAt(), 177
charCodeAt(), 177
children(), 561
click(), 198
clone(), 561
compile(), 665-667
concat(), 177, 182
config(), 578
contents(), 561
controller(), 562
copy(), 556
css(), 199, 561
data(), 561
destroy(), 495
detatch(), 561
directive(), 683
directve(), 657-658
disable(), 495
DOM objects, 198
done(), 453
element(), 556
empty(), 561
enable(), 495
eq(), 561
equals(), 556
events, 239
extend(), 556
fadeOut(), 329
fadeTo(), 330-331
fadeToggle(), 329-330
fail(), 453

filter(), 620
find(), 561
forEach(), 556
fromCharCode(), 177
fromJson(), 556
getAllResponseHeaders(), 453
getAttribute(), 198
getResponseHeader(), 453
hasClass(), 561
hash(), 722
height(), 199, 273
hide(), 199, 325

animating, 325-329
history.back(), 308
history.forward(), 307
host(), 722
html(), 199, 561
indexOf(), 177, 182
inheritedData(), 562
injector(), 562
innerHeight(), 273
isArray(), 556
isDate(), 556
isDefined(), 556
isElement(), 556
isFunction(), 556
isNumber(), 556
isObject(), 556
isolateScope(), 562
isString(), 556
isUndefined(), 556
JavaScript objects

accessing, 174
adding to, 190-191
assigning new, 174-175

join(), 182
lastIndexOf(), 177, 182

link(), 665-667
lowercase(), 556
match(), 177
Number object, 175
off(), 250, 561
on(), 249, 561
one(), 561
onloadHandler(), 240
open(), 428
option(), 495
outerHeight(), 273
outerWidth(), 273
parent(), 561
path(), 722
pop(), 182
port(), 722
position(), 468-472
prepend(), 561
promise(), 325
prop(), 561
protocol(), 722
push(), 182
ready(), 561
remove(), 561
removeAttr(), 561
removeClass(), 561
removeData(), 561
replace(), 177, 722
replaceWith(), 561
reverse(), 182
scope(), 562
scrollParent(), 463
search(), 177, 722
send(), 428
setAttribute(), 198
setRequestHeader(), 453
shift(), 182

show(), 199, 325
animating, 326-327

slice(), 177, 182
slideDown(), 332-333
slideToggle(), 332-333
slideUp(), 332-333
sort(), 182
splice(), 182
split(), 177
String object, 177
substr(), 177
substring(), 177
text(), 561
toggle(), animating, 326-327
toggleClass(), 561
toLowerCase(), 177
toString(), 182
toUpperCase(), 177
triggerHandler(), 561
unbind(), 561
uniqueID(), 463
unshift(), 182
uppercase(), 556
url(), 722
val(), 199, 561
validate(), 376-387
valueOf(), 177, 182
widget(), 495
width(), 199, 273
window object, 305, 307
wrap(), 562
x.toExponential(), 175
x.toFixed(2), 175
x.toPrecision(5), 175
x.toString(), 175
x.valueOf(), 175
zIndex(), 463

min rule (validation), 376
minlength rule (validation), 376
modal mutation phase (AngularJS scope), 592
modal option (dialog widget), 532
Model View Controller (MVC). See MVC (Model-View Controller)
modules, AngularJS, 549, 567-568

adding configuration blocks, 575-578
adding run blocks, 578
creating providers, 570-572
defining module object, 569-570
injecting into another, 575-577
providers, 569

mouse events, handling on AngularJS elements, 652-653
mouse interaction widget, 496
mouse position, obtaining, 270
mousecenter event, 239
mousedown event, 239
mouseleave event, 239
mousemove event, 239
mouseout event, 239
mouseover event, 239
mouseup event, 239
moveBy() method (window object), 305
moveTo() method (window object), 305
multiElement definition property (AngularJS), 658
MVC (Model-View Controller), 547

implementation, 548-549
my_photos.html listing (25.7), 681
MySQL, 424

N
name property (window object), 304
nested controllers

custom events, 692-693
scopes, 593-595

nested directives, implementing, 677-680

network traffic, analyzing, 63-65
ngApp directive (AngularJS templates), 628
ngBind directive (AngularJS templates), 640
ngBindHtml directive (AngularJS templates), 640
ngBindTemplate directive (AngularJS templates), 640
ngBlur directive (AngularJS templates), 646
ngChange directive (AngularJS templates), 646
ngChecked directive (AngularJS templates), 646
ngClass directive (AngularJS templates), 640
ngClassEven directive (AngularJS templates), 640
ngClassOdd directive (AngularJS templates), 640
ngClick directive (AngularJS templates), 646
ngCloak directive (AngularJS templates), 628
ngController directive (AngularJS templates), 629
ngCopy directive (AngularJS templates), 646
ngCut directive (AngularJS templates), 646
ngDblclick directive (AngularJS templates), 646
ngDisabled directive (AngularJS templates), 640
ngFocus directive (AngularJS templates), 646
ngHide directive (AngularJS templates), 641
ngHref directive (AngularJS templates), 629
ngIf directive (AngularJS templates), 641
ngInclude directive (AngularJS templates), 629
ngInit directive (AngularJS templates), 642
ngKeydown directive (AngularJS templates), 646
ngKeypress directive (AngularJS templates), 646
ngKeyup directive (AngularJS templates), 646
ngList directive (AngularJS templates), 629
ngModel directive (AngularJS templates), 641
ngMousedown directive (AngularJS templates), 646
ngMouseenter directive (AngularJS templates), 646
ngMouseleave directive (AngularJS templates), 646
ngMousemove directive (AngularJS templates), 646
ngMouseover directive (AngularJS templates), 646
ngMouseup directive (AngularJS templates), 646

ngNonBindable directive (AngularJS templates), 629
ngOpen directive (AngularJS templates), 629
ngOptions directive (AngularJS templates), 634
ngPaste directive (AngularJS templates), 646
ngPluralize directive (AngularJS templates), 629
ngReadonly directive (AngularJS templates), 629
ngRepeat directive (AngularJS templates), 641
ngRequired directive (AngularJS templates), 629
ngSelected directive (AngularJS templates), 629
ngShow directive (AngularJS templates), 641
ngSrc directive (AngularJS templates), 629
ngSrcset directive (AngularJS templates), 629
ngStyle directive (AngularJS templates), 642
ngSubmit directive (AngularJS templates), 646
ngSwipeLeft directive (AngularJS templates), 646
ngSwipeRight directive (AngularJS templates), 646
ngSwitch directive (AngularJS templates), 642
ngTransclude directive (AngularJS templates), 629
ngValue directive (AngularJS templates), 642
ngView directive (AngularJS templates), 629
Node.js, 424

configuring, 21-22
creating Express web servers, 26-29

<noscript> tag, 76
Null data type (JavaScript), 153
Number data type (JavaScript), 153
Number object (JavaScript), 175-176
number rule (validation), 376
number[:fraction] filter (AngularJS templates), 612
numberOfMonths option (datepicker widget), 530

O
objects

browser history, 307-308
browser location, 306-307
chaining operations, jQuery, 217-218

determining, 200
events, 237-239

attributes, 237
filtering results, jQuery, 218-219
jQuery, adding effects to, 478-482
jQuery Lite, events and methods, 562
jqXHR, 453
screen, 303-304
window, 304-305

methods, 305
properties, 304

window.location, providing wrapper for, 721-724
XMLHttpRequest, 428

objects (DOM), 197-198
accessing, 201-204

jQuery, 211-213
finding by class name, 201
finding by ID, 201
finding objects by tag name, 202-203

objects (JavaScript), 173, 195
accessing methods, 174
accessing properties, 174
adding methods to, 190-191
Array, 181-187
assigning new values and methods, 174-175
built-in, 175-189
creating new instance, 174
custom-definied, creating, 189-194
Date, 187-188
defining, 190
Math, 188
Number, 175-176
prototyping patterns, 191-194
RegExp, 189
String, 176-178
syntax, 173-175

off() method, 250, 561

on() method, 249, 561
one() method, 561
onload event, 240-242
onloadHandler() method, 240
onreadystatechange attribute (XMLHttpRequest object), 428
onSelect option (datepicker widget), 530
opacity design properties (CSS), 131
opacity option (draggable widget), 497
opacity option (sortable widget), 516
open() method, 305, 428
opener property (window object), 304
operators, JavaScript, 154

arithmetic, 154
assignment, 154
comparison, 155-160

option() method, 495
<option> tag, 89
orderBy:exp:reverse filter (AngularJS templates), 612
ordering, AngularJS template filters, 616-618
orientation option (slider widget), 536
outerHeight() method, 273
outerHeight property (window object), 304
outerHTML attribute (DOM objects), 198
outerWidth() method, 273
outerWidth property (window object), 304
overflow property (CSS), 135-136
overlay dialogs, 409-413

P
<p> element, 261
padding, adding around HTML content, 133
page events, binding to contollers, 645-653
page load events, iniialization, 240-242
page_title.html listing (3.1), 73
pageX attribute (event object), 270
pageXOffset property (window object), 304

pageY attribute (event object), 270
pageYOffset property (window object), 304
pane.html listing (29.3), 754
params property (config parameter), $http service requests, 702
parent() method, 561
parent property (window object), 304
parent scope hierarchy, emitting and broadcasting custom, 691
parentNode attribute (DOM objects), 198
parkdata.xml listing (15.15), 444
path() method, 722
<path> element (HTML5), 95
pathname property (window object), 307
patterns, JavaScript objects, prototyping, 191-194
Pause on Exceptions command (debugger), 57
PHP (Hypertext Preprocessor), 425
pixelDepth property (screen object), 304
placeholder option (sortable widget), 516
pop() method, 182
pop-up boxes, adding, 313-314
port() method, 722
port property (window object), 307
position() method, 468-472
POST requests

versus GET, 427
HTTP (Hypertext Transform Protocol), 16, 32

prefentDefault() method, 239
prepend() method, 561
Preview tab (network traffic analyzer), 65
print() method (window object), 305
priority definition property (AngularJS), 658
progress bars, web pages, 535-536
promise() method, 325
prompt() method (window object), 305
prop() method, 561
properties

CSS (Cascading Style Sheets), obtaining and setting, 272-273

JavaScript objects, accessing, 174
screen object, 304
window object, 304, 307

protocol() method, 722
protocol property (window object), 307
protocols

HTTP (Hypertext Transform Protocol), 14-15
HTTPS (Hypertext Transfer Protocol Secure), 14-15

prototyping patterns, JavaScript objects, 191-194
providers (AngularJS modules), 569

creating, 570-572
implementing, 572
injecting into contoller, 572

puff effect (jQuery UI), 476
pulsate effect (jQuery UI), 476
push() method, 182
PUT requests, sending, $http service, 701-708

Q-R
queue option (jQuery animation), 322
queues, animation, 323

radio input elements, web forms, accessing, 350-351
range option (slider widget), 537
range rule (validation), 376
rangelength rule (validation), 376
rating.html listing (29.15), 772-773
rating.js listing (29.14), 770-772
ratings, elements, adding to, 770-773
ready() method, 561
readyState attribute (jqXHR object), 453
rearranging, elements, 292-299
rearranging_elements.css listing (10.9), 299
rearranging_elements.html listing (10.7), 297
rearranging_elements.js listing (10.8), 297-298
RegExp object (JavaScript), 189

relatedTarget attribute (event objects), 237
reload() method (window object), 307
remote rule (validation), 376
remove() method, 561
removeAttr() method, 561
removeClass() method, 561
removeData() method, 561
reoccurring timers, adding, 315-316
replace() method, 177, 307, 722
replaceWith() method, 561
requests (AJAX), 423

advanced jQuery, 450-453
global event handlers, 451
global setup, 450

cross-domain, 426
GET versus POST, 427
handling responses, 433-444

HTML response data, 439-444
JSON response data, 438-441
success and failures, 434-437
XML response data, 439-444

implementing, 428-450
from JavaScript, 428-429
from jQuery, 429-433
low-level, 451-453
versus page requests, 424-425
response data types, 427
server-side services, 425

require definition property (AngularJS), 658
required rule (validation), 376
reset, web forms, controlling, 362-364
reset event, 239
resizable widget (jQuery), 507-511
resizable_elements.css listing (18.9), 510-511
resizable_elements.html listing (18.7), 510
resizable_elements.js listing (18.8), 510

resizable elements, 508-510
resize animations, creating, 337-339
resize event, 241, 508
resizeBy() method (window object), 305
resizestart event (jQuery resizable widget), 508
resizestop event (jQuery resizable widget), 508
resizeTo() method (window object), 305
response attribute (XMLHttpRequest object), 428
response data types, AJAX requests, 427
Response tab (network traffic analyzer), 65
responses (AJAX), handling, 433-444

HTML response data, 439-444
JSON response data, 438-441
success and failures, 434-437
XML response data, 439-444

responseText attribute (XMLHttpRequest object), 428
responseType property (config parameter), $http service requests, 702
restrict definition property (AngularJS), 658
results attribute (event objects), 237
Resume option (debugger), 58
reverse() method, 182
reversed_text.html listing (3.2), 74
revert option (draggable widget), 497
root scope, relation between applications, 584-586
rules, web form validation, 377-378
run blocks, applying to modules, 578
run_blocks.html listing (21.6), 580
runtime data binding phase, AngularJS life cycle, 552-553

S
scale effect (jQuery UI), 476
scope, JavaScript variables, 167-168
scope change events, AngularJS applications, tracking with $watches, 686-689
scope definition property (AngularJS), 658
scope destruction phase (AngularJS scope), 592
scope() method, 562

scope_controller.html listing, 586-587
scope_controller.js listing (22.1), 586
scope_events.html listing (26.4), 694-695
scope_events.js listing (26.3), 694
scope_hierarchy.html listing (22.6), 596-595
scope_hierarchy.js listing (22.5), 595
scope_template.html listing (22.4), 590
scope_watch.html listing (26.2), 689-690
scope_watch.js listing (26.1), 689
scopes (AngularJS), 550, 583, 597

directives, configuring, 663-664
expressions, 604-606
inherited, 663
isolate, 663-664
life cycle, 591-595
nested controllers, 593-595
object properties, tracking changes to with $watchCollection, 688-690
parent hierarchy, emitting, 691
relationship between backend server data, 591
relationship between root scope and applications, 584
relationship between templates, 587-589
template values, 588-589
variables, tracking with $watch, 686-687

screen object, 303-304
screenX attribute (event objects), 237, 270
screenX property (window object), 304
screenY attribute (event objects), 237, 270
screenY property (window object), 304
script directive (AngularJS templates), 628
<script> element, 146
<script> tag, 75
scripting

client-side, 16-17
server-side, 17

scripts. See also listings, applying jQuery UI, 463-472
scroll event, 241

scroll option (sortable widget), 516
scrollBy() method (window object), 305
scrollParent() method, 463
scrollTo() method (window object), 305
search() method, 177, 722
search property (window object), 307
select directive (AngularJS templates), 634
select event, 241
select input elements, web forms, accessing, 351-352
<select> tag, 89
selectable widget (jQuery), 511-516
selectable_sets.html listing (18.10), 514
selectable_sets.js listing (18.11), 515
selectable_sets.js listing (18.12), 515-516
selectors

CSS, styling HTML elements, 110-111
jQuery UI

applying based on data values, 465-466
applying basic, 205
attribute, 206
content, 207
filtered, 211
form, 209
hierarchy, 208-209
new, 464-465
visibility, 210

self property (window object), 304
send() method, 428
separation of responsibilities, AngularJS, 553
serializing data, web forms, 354-360
server_lesson15_ajax_handling.js listing (15.7), 437
server_lesson15_ajax_post.js listing (15.20), 449-450
server.js listing (1.5), 28
servers

updating data from jQuery, AJAX, 442-450
web server/browser paradigm, 9-20

server-side scripting, dynamic JSON data generation, 20
server-side services, 425
server-side templates, 17-18
service providers (AngularJS), 570-571
service services (AngularJS), defining, 733
service_animate.html listing (27.8), 719-720
service_animate.js listing (27.7), 719
service_cache.js listing (27.4), 704-709
service_cookie.html listing (27.6), 712
service_cookie.js listing (27.5), 711-712
service_custom_censor.html listing (28.2), 736-737
service_custom_censor.js listing (28.1), 735-736
service_custom_db_access.js listing (28.6), 744
service_custom_db.html listing (28.8), 746-747
service_custom_db.js listing (28.7), 745
service_custom_time.html listing (28.4), 739-740
service_custom_time.js listing (28.3), 737-739
service_db_server.js listing (28.5), 742-743
service_http.html listing (27.3), 707
service_http.js listing (27.2), 706
service_location.html listing (27.11), 725
service_location.js listing (27.10), 727
service_server.js listing (27.1), 705
services (AngularJS), 551, 699-700, 728

built-in, 700-701
$animate, 714-719
$cacheFactory, 704-709
$cookieStore, 709-711
$http, 701-708
$interval, 714
$location, 721-724
$q, 726-728
$timeout, 714
$window, 704-709

custom, 731, 748
censor, 735-737

database access, 741-747
defining constant service, 732
defining value service, 732
integrating into applications, 733-747
time, 737

defining, 733
factory, building using factory provider, 732

setAttribute() method, 198
SET-COOKIE header (HTTP), 15
setInterval() method (window object), 305
setRequestHeader attribute (XMLHttpRequest object), 428
setRequestHeader() method, 453
setTimeout() method, 305
shift() method, 182
shiftKey attribute (event objects), 237
show() method, 199, 325-327

animating, 326-327
showButtonPanel option (datepicker widget), 530
showOn option (datepicker widget), 530
size, HTML elements, obtaining and setting, 273
size effect (jQuery UI), 476
Size item (network traffic analyzer), 64
slice() method, 177, 182
slide effect (jQuery UI), 476
slide option (slider widget), 536
slideDown() method, 332-333
slider bars, implementing, 536-538
slider-based image gallery, adding, 392-397
slideToggle() method, 332-333
slideUp() method, animating, 332-333
sliding animations, 332-337
sliding_images.css listing (12.9), 336-337
sliding_images.html listing (12.7), 335-336
sliding_images.js listing (12.8), 336
small_title.html listing (24.3), 632
snake effect (jQuery UI), 476

sort() method, 182
sortable widget (jQuery), 516-522
sortable_elements.css listing (18.15), 521-522
sortable_elements.html listing (18.13), 518-520
sortable_elements.js listing (18.14), 521
sorting

AngularJS template filters, 616-618
tables, implementing, 397-404

Source Selection menu (debugger), 57
 element, 232, 257-258, 261, 309
sparkline graphics, adding, 417-421
special effects, 321
specialEasing option (jQuery animation), 322
specialized object providers (AngularJS), 570-571
splice() method, 182
split() method, 177
stack option (draggable widget), 497
star ratings, elements, adding to, 770-773
status attribute

jqXHR object, 453
XMLHttpRequest object, 428

Status item (network traffic analyzer), 64
statusText attribute (jqXHR object), 453
Step Into option (debugger), 58
step option (jQuery animation), 322
Step Out option (debugger), 58
Step Over option (debugger), 58
stopImmediatePropagation() method, 239
stopping animation, 323
stopPropagation() method, 239
String data type (JavaScript), 152
String object (JavaScript), 176-178
string_manipulation.html listing (6.1), 181
strings

combining, 178
converting arrays into, 183

escape codes, 176
manipulating, 179-180
replacing words in, 179
searching for substrings, 178
splitting into arrays, 179-181

style attribute (body element), 77
style attribute (DOM objects), 198
<STYLE> element (CSS), 13-14
<style> tag, 74, 82
style.html listing (1.2), 13-14
styles (CSS), 13-14

adding, 105-108
adding to HTML elements, 108-140
applying text, 113-119
defining in HTML elements, 108
preparing for dynamic design, 140-141
selectors, using to style HTML elements, 110-111

submission, web forms, controlling, 362-364
submit event, 241
substr() method, 177
substring() method, 177
substrings, searching for, 178
success, AJAX requests, handling, 433-444
<svg> element, 93, 95-99
syntax

CSS (Cascading Style Sheets), 108-110
HTML elements, 71
JavaScript, 145, 151-169

objects, 173-175
jQuery, 145

T
tabbable.html listing (29.4), 754-755
tabbable.js listing (29.1), 753
tabbed panels, creating, 539-542
tabbed views, building, 751-755

table elements, 85-88
<table> tag, 85
tables, 87-88
implementing with sorting and filtering, 397-404
tables.html listing (3.5), 87-88
tabs.html listing (29.2), 754
tags

<audio>, 102
<button>, 89
<caption>, 85
<col>, 85
<colgroup>, 85
<fieldset>, 89
<form>, 88
, 83-84
<input>, 89
<label>, 89
<legend>, 89
<link>, 76-77
<meta>, 73-74
<noscript>, 76
<option>, 89
<script>, 75
<select>, 89
<style>, 74, 82
<table>, 85
<tbody>, 85
<textarea>, 89
<tfoot>, 85
<th>, 85
<thead>, 85
<title>, 72-73
<tr>, 85
<video>, 102

target attribute (event objects), 237
<tbody> tag, 85

template definition property (AngularJS), 658
templates (Angular JS), 550, 599-600, 623, 650

directives, 599, 627
adding a controller to, 661-662
built-in, 628-653
configuring scope, 663-664
creating custom, 657-668
directive view template, 659-660
implementing custom, 668-680
implementing event handlers in, 672-674
manipulating DOM in, 668-670
manipulating DOM with compile() function, 634-636
manipulating DOM with link() function, 665-667
nested, 677-680
restricting behavior, 660-661
transcluding elements, 664-665

expressions, 599-609
basic, 602-603
JavaScript, 608-609
scope, 604-606

filters, 599, 611-618
built-in, 612
custom, 620-621
data rendering, 613-615
ordering and sorting, 616-618

relation between scopes, 587-589
server-side, 17-18

templateUrl definition property (AngularJS), 658
terminal definition property (AngularJS), 658
text input elements, web forms, accessing, 349-350
text() method, 561
text responses, AJAX requests, 427
text styles (CSS), applying, 113-119
text_styles.css listing (4.2), 118-119
text_styles.html listing (4.1), 118
text-align property (CSS), 114

textarea directive (AngularJS templates), 634
<textarea> tag, 89
text-decoration property (CSS), 115
text-indent property (CSS), 115
text-overflow property (CSS), 116
text-transform property (CSS), 115
<tfoot> tag, 85
<th> tag, 85
<thead> tag, 85
ThemeRoller, 459-461
themes, jQuery UI, 459-461
time service (AngularJS), implementing, 737
Timeline item (network traffic analyzer), 64
timeout property (config parameter), $http service requests, 702
timers, 314-317

delay, 314-315
reoccuring, 315-316
simple, 315-316

timeStamp attribute (event objects), 237
Timing tab (network traffic analyzer), 65
<title> tag, 72-73
toggle() method, animating, 326-327
toggleClass() method, 561
tolerance option

droppable widget, 501
selectable widget, 511
sortable widget, 516

toLowerCase() method, 177
tooltips widget (jQuery), 542-544
top property (window object), 304
toString() method, 182
toUpperCase() method, 177
<tr> tag, 85
traffic, network, analyzing, 63-65
transclude definition property (AngularJS), 658
transfer effect (jQuery UI), 476

transformRequest property (config parameter), $http service requests, 702
transformResponse property (config parameter), $http service requests, 702
traverse_dom.css listing (8.6), 232
traverse_dom.html listing (8.4), 229-232
traverse_dom.js listing (8.5), 232
tree view, creating, 404-408
triggerHandler() method, 561
triggering events manually, 253

JavaScript, 254-258
jQuery, 258-262

type attribute
ajax() method, 450
event objects, 237

type definition property (AngularJS), 658
Type item (network traffic analyzer), 64

U
UI (user interface) (jQuery), 457, 472, 475, 492

adding and removing unique IDs, 463
adding effects to class transitions, 482-485
adding to element visibility transitions, 485-491
adding to web pages, 461-462
applying effects, 475-482
applying to scripts, 463-472
creating custom theme, 459-461
CSS, 457-458
functionality, 463-464
JavaScript, 457-458
obtaining library, 458-459
positioning elements, 468-472
selectors, 464-466
widgets, 495, 522, 525, 545

autocomplete, 527-528-530
creating custom, 544-545
datepicker, 530-531
dialog, 532-533

drag-and-drop, 497-507
events, 495
expandable accordion element, 526-527
interactions, 495-496
jQuery.widget factory, 495-496
methods, 495
mouse interaction widget, 496
progress bar, 535-536
resizable, 507-511
reviewing, 525
selectable, 511-516
slider, 536-538
sortable, 516-522
spinner, 538-539
stylized menus, 533-535
tabs, 539-542
tooltips, 542-544

unbind() method, 561
uniqueID() method, 463
unload event, 241
unshift() method, 182
updating server data from jQuery, AJAX, 442-450
uppercase filter (AngularJS templates), 612
uppercase() method, 556
url attribute, ajax() method, 450
url() method, 722
URL Path item (network traffic analyzer), 64
url property (config parameter), $http service requests, 702
url rule (validation), 376
URLs (uniform resource locators), 11
users

confirmation pop-up boxes, 314
notification pop-up boxes, 313
prompting for input, 314

utilities, AngularJS global API, 556

V
val() method, 199, 561
validate() method, 376-387
validation, web forms, 375-387

adding messages, 378-380
adding rules, 377-378
complex validation, 377-384
jQuery validation plug-in, 376
jQuery validation with HTML, 376-377
manually, 375
placing messages, 380-384

validator object messages, 378-380
value attribute (DOM objects), 198
value option (slider widget), 526
value services (AngularJS), defining, 732
value spinner element, adding, 538-539
valueOf() method, 177, 182
values

JavaScript objects, assigning new, 174-175
web form elements, obtaining and setting, 348-353

variables (JavaScript)
creating, 151-152
scope, 167-168
tracking with $watch, 687

<video> tag, 102
views (AngularJS), 550

building tabbed, 751-755
directives, 627

built-in, 628-653
creating custom, 657-668

templates, 599-600
custom filters, 620-621
directives, 599
expressions, 599-609
filters, 599, 611-618

visibility

animating, 329-332
elements, toggling, 286-287

visibility design properties (CSS), 131
visibility selector (jQuery), 210
visibility_transitions.css listing (17.9), 488-489
visibility_transitions.html listing (17.7), 490-488
visibility_transitions.js listing (17.8), 488

W
Watch pane (debugger), 57-58
watcher registration phase (AngularJS scope), 592
web development environment, setting up, 21-32
web forms, 347-348, 387

accessing hidden inputs, 353
controlling submission and reset, 362-364
elements, 348-360

animated, 368-370
automatically focusing and blurring, 361
button input, 352
check box, 350
disabling, 362
dynamically controlling appearance and behavior, 368-374
file input, 352-353
hiding and showing, 361
obtaining and setting values, 348-353
radio input, 350-351
select input, 351-352
text input, 349-350

flow control, 361-368
dynamic, 362-364

serializing data, 354-360
validating, 375-387

adding messages, 378-380
adding rules, 377-378
complex validation, 377-384
jQuery, 381-384
jQuery validation plug-in, 376

jQuery validation with HTML, 376-377
manually, 375
placing messages, 380-384

web pages. See also elements (HTML)
accessing element values, 270-281

obtaining and setting values, 271
obtaining mouse position, 270

adding
CSS, 29-30, 105-108
draggable images to, 498-501
HTML, 29
image galery, 391-397
jQuery UI, 461-462
sparkline graphics, 417-421

animation, 321-325
applying buttons to form controls, 528-530
bootstrapping AngularJS, 555
calendar input, 530-531
cookies, obtaining and setting, 308-313
creating

progress bars, 535-536
tree view, 404-408

dynamic, 69
HTML document structure, 70-72
HTML elements, 69-70

effects
adding to class transitions, 482-485
adding to element visibility transitions, 485-491
applying with jQuery UI, 475-482

elements
drag-and-droppable, 502-507
expandable accordian, 526-527
implementing autocomplete form, 528-530
positioning, 273-274
resizable, 508-511
selectable sets, 512-516
sorting, 516-522

value spinner, 538-539
external links, 308

forcing to open in new browser windows, 308-311
stopping, 308

implementing graphical equalizer displays, 413-417
menus, implementing stylized, 533-535
overlay dialogs, 409-413
pop-up boxes, adding, 313-314
positioning images, jQuery UI, 469-472
setting timers, 314-317
slider bars, 536-538
special effects, 321
styalized dialogs, 532-533
tabbed panels, 539-542
tables, implementing with sorting and filtering, 397-404
tooltips, 542-544

web server/browser paradigm, 9-20
web servers, 10

client-side scripting, 16-17
development, 21
Express, creating, 26-29
web server/browser paradigm, 9-20

web_element_manipulation.css listing (10.6), 291-292
web_element_manipulation.html listing (10.4), 290
web_element_manipulation.js listing (10.5), 290-291
web_layout.css listing (4.7), 139-140
web_layout.html listing (4.6), 136-139
web_page_manipulation.css listing (10.3), 281
web_page_manipulation.html listing (10.1), 279-280
web_page_manipulation.js listing (10.2), 280-281
which attribute (event objects), 237
while loop (JavaScript), 160-161
widget() method, 495
widgets (jQuery), 495, 522, 525, 545

autocomplete, 527-530
creating custom, 544-545

datepicker, 530-531
dialog, 532-533
drag-and-drop

creating drop targets, 497-507
draggable, 497-507
dragging elements, 497-507
droppable widget, 497-507

events, 495
expandable accordion element, 526-527
interactions, 495-496

jQuery.widget factory, 495-496
mouse interaction widget, 496

methods, 495
progress bar, 535-536
resizable, 507-511
reviewing, 525
selectable, 511-516
slider, 536-538
sortable, 516-522
spinner, 538-539
tabs, 539-542
tooltips, 542-544

widgets_accordian.html listing (19.1), 527
widgets_autocomplete.html listing (19.2), 528
widgets_calendar.html listing (19.4), 531
widgets_custom.html listing (19.12), 544-545
widgets_dialogs.html listing (19.5), 533
widgets_menus.html listing (19.6), 534-535
widgets_progress_bars.html listing (19.7), 536
widgets_slider_bars.htm listing (19.8), 537-538
widgets_spinner.html listing (19.9), 539
widgets_tabs.html listing (19.10), 541-542
widgets_tooltips.html listing (19.11), 543-544
width() method, 199, 273
width property (screen object), 304
window, browser, 11

window object, 304-305
methods, 305
properties, 304

window.location object, providing wrapper for, 721-724
withCredentials property (config parameter), $http service requests, 702
words, replacing in strings, 179
word-spacing property (CSS), 115
working_event.css listing (9.6), 252
working_event.html listing (9.4), 251-252
working_event.js listing (9.5), 252
wrap() method, 562
writeIt() function, 168
writing dynamic scripts, 31-32

X
XML responses, AJAX requests, 427

handling data, 439-444
XMLHttpRequest object, 428
xsrfCookieName property (config parameter), $http service requests, 702
x.toExponential() method, 175
x.toFixed() method, 175
x.toPrecision() method, 175
x.toString() method, 175
x.valueOf() method, 175

Z
zIndex() method, 463
zIndex option, 497

draggable widget, 497
sortable widget, 516

z-index property (CSS), 135
adjusting, 292-295

zoom view field, images, adding to, 761-764
zooming.html listing (29.9), 763-764
zooming.js listing (29.7), 762-763
zoomit.html listing (29.8), 763

Code Snippets

	About This eBook
	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	About the Authors
	Dedication
	Acknowledgments
	We Want to Hear from You!
	Reader Services
	Introduction
	Who Should Read This Book
	Why You Should Read This Book
	What You Will Learn from This Book
	Why AngularJS, jQuery, and JavaScript in the Same Book?
	What Is JavaScript?
	What Is jQuery?
	What Is AngularJS?
	Beyond AngularJS, jQuery, and JavaScript
	Code Examples
	Development Web Server
	Special Elements
	Q&A, Quizzes, and Exercises
	Finally

	Part I: Introduction to AngularJS, jQuery, and JavaScript Development
	Lesson 1. Introduction to Dynamic Web Programming
	Understanding the Web Server/Browser Paradigm
	Looking at Web Server to Browser Communication Terms
	Web Server and Client-Side Scripting

	Setting Up a Web Development Environment
	Setting Up Node.js
	Configuring Eclipse as a Web Development IDE
	Creating an Express Web Server Using Node.js
	Adding HTML
	Adding CSS
	Writing a Dynamic Script

	Summary
	Q&A
	Workshop
	Quiz
	Quiz Answers
	Exercises

	Lesson 2. Debugging JavaScript in Web Pages
	Viewing the Developer Tools Console
	Understanding the Browser Developer Tools Console

	Debugging HTML Elements
	Inspecting HTML Elements
	Viewing and Editing the DOM Properties of Elements

	Debugging CSS
	Using the CSS Style Editor
	Using the Layout Editor

	Debugging JavaScript
	Navigating the JavaScript Debugger
	So How Do You Debug jQuery or AngularJS?

	Analyzing the Network Traffic
	Summary
	Q&A
	Workshop
	Quiz
	Quiz Answers
	Exercises

	Lesson 3. Understanding Dynamic Web Page Anatomy
	Using HTML/HTML5 Elements to Build a Dynamic Web Page
	Understanding HTML Structure
	Implementing HTML Head Elements
	<title>
	<meta>
	<style>
	<script>
	<noscript>
	<link>

	Adding HTML Body Elements
	Using Important Body Element Attributes
	Understanding Block Versus Inline Elements
	Creating Container Elements
	Adding Link Elements
	Using Image Elements
	Applying List Elements
	Creating Table Elements
	Implementing Form Elements

	Adding Some Advanced HTML5 Elements
	Using HTML5 Graphical Elements
	Adding Media Elements

	Summary
	Q&A
	Workshop
	Quiz
	Quiz Answers
	Exercises

	Lesson 4. Adding CSS/CSS3 Styles to Allow Dynamic Design and Layout
	Adding CSS Styles to the Web Page
	Loading CSS Styles from a File
	Adding CSS Styles to the Header
	Using CSS Styles in the HTML Body
	Defining CSS Styles in HTML Elements

	Adding CSS Styles to HTML Elements
	Understanding the Basic CSS Syntax
	Using CSS Selectors to Style HTML Elements
	Using CSS Design Properties
	Applying CSS Layout Properties

	Preparing CSS Styles for Dynamic Design
	Preparing to Add Classes to HTML Elements Dynamically
	Preparing to Directly Adjust CSS Properties

	Summary
	Q&A
	Workshop
	Quiz
	Quiz Answers
	Exercises

	Lesson 5. Jumping into jQuery and JavaScript Syntax
	Adding jQuery and JavaScript to a Web Page
	Loading the jQuery Library
	Implementing Your Own jQuery and JavaScript
	Accessing HTML Event Handlers

	Accessing the DOM
	Using Traditional JavaScript to Access the DOM
	Using jQuery Selectors to Access HTML Elements

	Understanding JavaScript Syntax
	Creating Variables
	Understanding JavaScript Data Types
	Using Operators
	Applying Comparison and Conditional Operators
	Implementing Looping
	Creating Functions
	Understanding Variable Scope
	Adding Error Handling

	Summary
	Q&A
	Workshop
	Quiz
	Quiz Answers
	Exercises

	Lesson 6. Understanding and Using JavaScript Objects
	Using Object Syntax
	Creating a New Object Instance
	Accessing Object Properties
	Accessing Object Methods
	Assigning New Values and Methods to Objects

	Understanding Built-in Objects
	Number
	String
	Array
	Date
	Math
	RegExp

	Creating Custom-Defined Objects
	Defining JavaScript Objects
	Adding Methods to JavaScript Objects
	Using a Prototyping Object Pattern

	Summary
	Q&A
	Workshop
	Quiz
	Quiz Answers
	Exercises

	Part II: Implementing jQuery and JavaScript in Web Pages
	Lesson 7. Accessing DOM Elements Using JavaScript and jQuery Objects
	Understanding DOM Objects Versus jQuery Objects
	Introducing JavaScript DOM Objects
	Introducing jQuery Objects
	Determining Whether an Object Is DOM or jQuery
	Changing an Object from DOM to jQuery and Back

	Accessing DOM Objects from JavaScript
	Finding DOM Objects by ID
	Finding DOM Objects by Class Name
	Finding DOM Objects by Tag Name

	Using jQuery Selectors
	Applying Basic Selectors
	Applying Attribute Selectors
	Applying Content Selectors
	Applying Hierarchy Selectors
	Applying Form Selectors
	Applying Visibility Selectors
	Applying Filtered Selectors

	Summary
	Q&A
	Workshop
	Quiz
	Quiz Answers
	Exercise

	Lesson 8. Navigating and Manipulating jQuery Objects and DOM Elements with jQuery
	Chaining jQuery Object Operations
	Filtering the jQuery Object Results
	Traversing the DOM Using jQuery Objects
	Looking at Some Additional jQuery Object Methods
	Using .each�⠀)
	Using .map�⠀)

	Summary
	Q&A
	Workshop
	Quiz
	Quiz Answers
	Exercise

	Lesson 9. Applying JavaScript and jQuery Events for Richly Interactive Web Pages
	Understanding Events
	Understanding the Event Process
	Looking at Event Objects
	Reviewing Event Types

	Using the Page Load Events for Initialization
	Using the JavaScript onload Event
	Adding Initialization Code in jQuery

	Adding and Removing Event Handlers to DOM Elements
	Assigning Event Handers in HTML
	Adding Event Handlers in JavaScript
	Applying Event Handlers in jQuery

	Triggering Events Manually
	Triggering Events in JavaScript
	Using jQuery to Trigger Events Manually

	Creating Custom Events
	Adding Custom Events Using JavaScript
	Adding Custom Events Using jQuery

	Implementing Callbacks
	Understanding the Callback Mechanism
	Using Deferred Objects

	Summary
	Q&A
	Workshop
	Quiz
	Quiz Answers
	Exercises

	Lesson 10. Dynamically Accessing and Manipulating Web Pages with JavaScript and jQuery
	Accessing Browser and Page Element Values
	Getting Mouse Position
	Getting and Setting Values
	Getting and Setting Attributes and Properties in jQuery
	Getting and Setting CSS Properties
	Getting and Setting Element Size
	Getting and Setting Element Position
	Accessing the Class
	Getting Browser and Screen Size and Color Information

	Dynamically Manipulating Page Elements
	Adding Page Elements Dynamically
	Removing Page Elements
	Replacing Elements in jQuery
	Inserting Elements in jQuery
	Changing Classes
	Toggling Visibility

	Dynamically Rearranging Elements on the Web Page
	Adjusting the z-index

	Summary
	Q&A
	Workshop
	Quiz
	Quiz Answers
	Exercises

	Lesson 11. Working with Window, Browser, and Other Non-Web Page Elements
	Understanding the Screen Object
	Using the Window Object
	Accessing the Window Object Properties
	Using the Window Object Methods

	Using the Browser Location Object
	Using the Browser History Object
	Navigating Forward in the Browser History
	Navigating Backward in the Browser History

	Controlling External Links
	Stopping External Links on a Web Page
	Forcing Links to Open in New Browser Windows

	Adding Pop-up Boxes
	Notifying the User
	Asking the User to Confirm
	Prompting the User for Input

	Setting Timers
	Adding a Delay Timer
	Adding a Reoccurring Timer

	Summary
	Q&A
	Workshop
	Quiz
	Quiz Answers
	Exercises

	Part III: Building Richly Interactive Web Pages with jQuery
	Lesson 12. Enhancing User Interaction Through jQuery Animation and Other Special Effects
	Understanding jQuery Animation
	Animating CSS Settings
	Understanding Animation Queues
	Stopping Animation
	Delaying Animation
	Applying .promise�⠀) to Animations

	Animating Show and Hide
	Animating hide�⠀)
	Animating show�⠀)
	Animating toggle�⠀)

	Animating Visibility
	fadeIn�⠀)
	fadeOut�⠀)
	fadeToggle�⠀)
	fadeTo�⠀)

	Sliding Elements
	Animating slideUp�⠀), slideDown�⠀), and slideToggle�⠀)
	Sliding Using Width and Height

	Creating Resize Animations
	Implementing Moving Elements
	Animating Element Position Changes on Static Elements
	Animating Element Position Changes on Nonstatic Elements

	Summary
	Q&A
	Workshop
	Quiz
	Quiz Answers
	Exercises

	Lesson 13. Interacting with Web Forms in jQuery and JavaScript
	Accessing Form Elements
	Getting and Setting Form Element Values
	Serializing Form Data

	Intelligent Form Flow Control
	Automatically Focusing and Blurring Form Elements
	Intelligently Hiding and Showing Elements
	Disabling Elements
	Controlling Submit and Reset

	Dynamically Controlling Form Element Appearance and Behavior
	Validating a Form
	Manually Validating a Web Form
	Getting the jQuery Validation Plug-In
	Applying Simple jQuery Validation Using HTML
	Applying Complex Validation

	Summary
	Q&A
	Workshop
	Quiz
	Quiz Answers
	Exercises

	Lesson 14. Creating Advanced Web Page Elements in jQuery
	Adding an Image Gallery
	Implementing Tables with Sorting and Filters
	Creating a Tree View
	Using Overlay Dialogs
	Implementing a Graphical Equalizer Display
	Adding Sparkline Graphics
	Summary
	Q&A
	Workshop
	Quiz
	Quiz Answers
	Exercises

	Lesson 15. Accessing Server-Side Data via JavaScript and jQuery AJAX Requests
	Making AJAX Easy
	Clarifying AJAX Versus Page Requests
	Understanding Server-Side Services Such as Node.js, ASP, PHP, and MySQL
	Understanding Asynchronous Communication
	Understanding Cross-Domain Requests
	Looking at GET Versus POST Requests
	Understanding Response Data Types—Binary Versus Text Versus XML Versus JSON

	Implementing AJAX
	AJAX from JavaScript
	AJAX from jQuery
	Handling AJAX Responses
	Handling Response Data

	Using Advanced jQuery AJAX
	Reviewing Global Setup
	Using Global Event Handlers
	Implementing Low-Level Ajax Requests

	Summary
	Q&A
	Workshop
	Quiz
	Quiz Answers
	Exercises

	Part IV: Utilizing jQuery UI
	Lesson 16. Introducing jQuery UI
	Getting Started with jQuery UI
	Getting the jQuery UI Library
	Using ThemeRoller to Create a Custom Theme

	Applying jQuery UI in Your Scripts
	Understanding Enhanced jQuery UI Functionality
	Using New Selectors in jQuery UI
	:focusable
	Positioning UI Elements with jQuery UI

	Summary
	Q&A
	Workshop
	Quiz
	Quiz Answers
	Exercises

	Lesson 17. Using jQuery UI Effects
	Applying jQuery UI Effects
	Understanding jQuery UI Effects
	Setting the Effect Animation Easing
	Adding Effects to jQuery Objects

	Adding Effects to Class Transitions
	Adding Effects to Element Visibility Transitions
	Summary
	Q&A
	Workshop
	Quiz
	Quiz Answers
	Exercises

	Lesson 18. Advanced Interactions Using jQuery UI Interaction Widgets
	Introducing jQuery UI Interactions
	Reviewing the jQuery.widget Factory
	Understanding the Mouse Interaction Widget

	Using the Drag-and-Drop Widgets
	Dragging Elements with the Draggable Widget
	Creating Drop Targets with the Droppable Widget

	Resizing Elements Using the Resizable Widget
	Applying the Selectable Widget
	Sorting Elements with the Sortable Widget
	Summary
	Q&A
	Workshop
	Quiz
	Quiz Answers
	Exercises

	Lesson 19. Using jQuery UI Widgets to Add Rich Interactions to Web Pages
	Reviewing Widgets
	Adding an Expandable Accordion Element
	Implementing Autocomplete in Form Elements
	Applying jQuery UI Buttons to Form Controls
	Creating a Calendar Input
	Generating Stylized Dialogs with jQuery UI
	Implementing Stylized Menus
	Creating Progress Bars
	Implementing Slider Bars
	Adding a Value Spinner Element
	Creating Tabbed Panels
	Adding Tooltips to Page Elements
	Creating Custom Widgets
	Summary
	Q&A
	Workshop
	Quiz
	Quiz Answers
	Exercises

	Part V: Building Web Applications with AngularJS
	Lesson 20. Getting Started with AngularJS
	Why AngularJS?
	Understanding AngularJS
	Modules
	Scopes and the Data Model
	Views with Templates and Directives
	Expressions
	Controllers
	Data Binding
	Services
	Dependency Injection
	Compiler

	An Overview of the AngularJS Life Cycle
	The Bootstrap Phase
	The Compilation Phase
	The Runtime Data Binding Phase

	Separation of Responsibilities
	Integrating AngularJS with Existing JavaScript and jQuery
	Adding AngularJS to Your Environment
	Bootstrapping AngularJS in an HTML Document
	Using the Global APIs
	Using jQuery or jQuery Lite in AngularJS Applications
	What Is jQuery Lite?
	Accessing jQuery or jQuery Lite Directly

	Summary
	Q&A
	Workshop
	Quiz
	Quiz Answers
	Exercises

	Lesson 21. Understanding AngularJS Application Dynamics
	Looking at Modules and Dependency Injection
	Understanding Modules
	Dependency Injection

	Defining an AngularJS Module Object
	Creating Providers in AngularJS Modules
	Specialized AngularJS Object Providers
	Service Providers

	Implementing Providers and Dependency Injection
	Applying Configuration and Run Blocks to Modules
	Adding Configuration Blocks
	Adding Run Blocks

	Summary
	Q&A
	Workshop
	Quiz
	Quiz Answers
	Exercises

	Lesson 22. Implementing the Scope as a Data Model
	Understanding Scopes
	The Relationship Between the Root Scope and Applications
	The Relationship Between Scopes and Controllers
	The Relationship Between Scopes and Templates
	The Relationship Between Scope and Back-End Server Data
	The Scope Life Cycle

	Implementing Scope Hierarchy
	Summary
	Q&A
	Workshop
	Quiz
	Quiz Answers
	Exercises

	Lesson 23. Using AngularJS Templates to Create Views
	Understanding Templates
	Using Expressions
	Using Filters
	Using Built-in Filters

	Creating Custom Filters
	Summary
	Q&A
	Workshop
	Quiz
	Quiz Answers
	Exercises

	Lesson 24. Implementing Directives in AngularJS Views
	Understanding Directives
	Using Built-In Directives
	Directives That Support AngularJS Functionality
	Directives That Extend Form Elements
	Directives That Bind the Model to Page Elements
	Directives That Bind Page Events to Controllers

	Summary
	Q&A
	Workshop
	Quiz
	Quiz Answers
	Exercises

	Lesson 25. Creating Your Own Custom Directives to Extend HTML
	Understanding Custom Directive Definitions
	Defining the Directive View Template
	Restricting Directive Behavior
	Adding a Controller to a Directive
	Configuring the Directive Scope
	Transcluding Elements
	Manipulating the DOM with a Link Function
	Manipulating the DOM with a Compile Function

	Implementing Custom Directives
	Summary
	Q&A
	Workshop
	Quiz
	Quiz Answers
	Exercises

	Lesson 26. Using Events to Interact with Data in the Model
	Browser Events
	User Interaction Events
	Adding $watches to Track Scope Change Events
	Using $watch to Track a Scope Variable
	Using $watchGroup to Track Multiple Scope Variables
	Using $watchCollection to Track Changes to Properties of an Object in the Scope

	Emitting and Broadcasting Custom Events
	Emitting a Custom Event to the Parent Scope Hierarchy
	Broadcasting a Custom Event to the Child Scope Hierarchy
	Handling Custom Events with a Listener

	Summary
	Q&A
	Workshop
	Quiz
	Quiz Answers
	Exercises

	Lesson 27. Implementing AngularJS Services in Web Applications
	Understanding AngularJS Services
	Using the Built-In Services
	Sending HTTP GET and PUT Requests with the $http Service
	Using the $cacheFactory Service
	Implementing Browser Alerts Using the $window Service
	Interacting with Browser Cookies Using the $cookieStore Service
	Implementing Timers with $interval and $timeout Services
	Using the $animate Service
	Using the $location Service

	Using the $q Service to Provide Deferred Responses
	Summary
	Q&A
	Workshop
	Quiz
	Quiz Answers
	Exercises

	Lesson 28. Creating Your Own Custom AngularJS Services
	Understanding Custom AngularJS Services
	Defining a value Service
	Defining a constant Service
	Using a Factory Provider to Build a factory Service
	Using an Object to Define a service Service

	Integrating Custom Services into Your AngularJS Applications
	Summary
	Q&A
	Workshop
	Quiz
	Quiz Answers
	Exercises

	Lesson 29. Creating Rich Web Application Components the AngularJS Way
	Summary
	Q&A
	Workshop
	Quiz
	Quiz Answers
	Exercises

	Index
	Code Snippets

