
ptg11524036

ptg11524036

iOS Drawing

Practical UIKit Solutions

Erica Sadun

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Apache Cordova 3
Programming

John M. Wargo

Upper Saddle River, NJ  •  Boston  •  Indianapolis  •  San Francisco
New York  •  Toronto  •  Montreal  •  London  •  Munich  •  Paris  •  Madrid

Capetown  •  Sydney  •  Tokyo  •  Singapore  •  Mexico City

ptg11524036

The Addison-Wesley Mobile Programming Series is a collection of digital-only
programming guides that explore key mobile programming features and topics

in-depth. The sample code in each title is downloadable and can be used in your
own projects. Each topic is covered in as much detail as possible with plenty of
visual examples, tips, and step-by-step instructions. When you complete one of
these titles, you’ll have all the information and code you will need to build that
feature into your own mobile application.

Visit informit.com/mobile for a complete list of available publications.

Addison-Wesley Mobile Programming Series

Make sure to connect with us!
informit.com/socialconnect

ptg11524036

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was aware
of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corporate sales
department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.Visit us on
the Web: informit.com/aw

Copyright © 2014 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. To obtain permission to use material from this work, please submit a written request to
Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New
Jersey 07458, or you may fax your request to (201) 236-3290.

Apache Cordova website, PhoneGap, and PhoneGap Build screenshots © Adobe Systems
Incorporated. All rights reserved. Adobe, PhoneGap, and PhoneGap Build is/are either [a]
registered trademark[s] or trademark[s] of Adobe Systems Incorporated in the United States
and/or other countries.

ISBN-13: 978-0-321-95736-8
ISBN-10: 0-321-95736-9

First released, December 2013

The Addison-Wesley Mobile Programming Series is a collection of digital-only
programming guides that explore key mobile programming features and topics

in-depth. The sample code in each title is downloadable and can be used in your
own projects. Each topic is covered in as much detail as possible with plenty of
visual examples, tips, and step-by-step instructions. When you complete one of
these titles, you’ll have all the information and code you will need to build that
feature into your own mobile application.

Visit informit.com/mobile for a complete list of available publications.

Addison-Wesley Mobile Programming Series

Make sure to connect with us!
informit.com/socialconnect

ptg11524036

To my wife, Anna.

This work exists because of your outstanding support.

To my children,

who were relatively patient as I worked on yet another book.

ptg11524036

Contents v

Contents

FOREWORD .. x
PREFACE .. xi
ACKNOWLEDGMENTS .. xiv

11.. THE WHAT, HOW, WHY, AND MORE OF APACHE CORDOVA 1
Introduction to Apache Cordova ... 1
What Is Adobe PhoneGap? .. 7
PhoneGap History .. 7
Cordova Going Forward ... 8
Supported Platforms ... 9
Cordova License ... 9
Working with Cordova ... 10

Designing for the Container .. 10
Coding Cordova Applications .. 11
Building Cordova Applications .. 12

Cordova Plugins ... 14
Putting Cordova to Best Use .. 14
Getting Support ... 15
Resources ... 16
Hybrid Application Frameworks .. 18
Wrap-Up ... 19

22.. INSTALLING THE CORDOVA AND PHONEGAP FRAMEWORKS 20
Installing Apache Cordova .. 20
Ant-Based Command-Line Interface .. 25
Installing Adobe PhoneGap .. 25
Wrap-Up ... 27

33.. INSTALLING THE CORDOVA COMMAND-LINE INTERFACE 28
Installing the CLI ... 28

Android Development Tools .. 29
BlackBerry Development Tools ... 33
iOS Development Tools .. 34
Windows Phone Development Tools .. 38

ptg11524036

vi Contents

CLI Installation .. 39
Wrap-Up ... 41

44.. USING THE CORDOVA COMMAND-LINE INTERFACE 42
About the CLI .. 42
Troubleshooting the CLI ... 43
CLI Command Summary .. 43
Using the CLI .. 44

Creating a Cordova Project ... 44
Platform Management ... 48

Adding Platforms ... 48
Listing Platforms .. 50
Removing Platforms .. 51

Plugin Management .. 52
Adding Plugins ... 52
Listing Plugins .. 53
Removing Plugins .. 53

Build Management .. 54
Prepare .. 54
Compile .. 54
Build ... 55

Running Cordova Applications .. 55
Emulate .. 55
Run .. 56
Serve ... 56

Wrap-Up ... 58
55.. ANATOMY OF A CORDOVA APPLICATION .. 59

Hello World! .. 59
Cordova Initialization .. 60
Leveraging Cordova APIs ... 64
Enhancing the User Interface of a Cordova Application 66
The Generated Web Application Files .. 71
Wrap-Up ... 75

66.. THE MECHANICS OF CORDOVA DEVELOPMENT 76
Cordova Development Issues ... 76

Dealing with API Inconsistency ... 76
Application Graphics ... 78

Developing Cordova Applications ... 78
Working with a Single Mobile Device Platform 78
Working with Multiple Mobile Device Platforms 80

Testing Cordova Applications ... 82
Run a Cordova Application on a Device Simulator 82
Run a Cordova Application on a Physical Device 83

Leveraging Cordova Debugging Capabilities 84
Using Alert() .. 84

ptg11524036

Contents vii

Writing to the Console ... 85
Debugging and Testing Using External Tools 88

Debugging Applications with Weinre ... 88
Testing Applications Using the Ripple Emulator 93

Wrap-Up ... 95
77.. ANDROID DEVELOPMENT WITH CORDOVA .. 96

Working with the Android Development Tools 96
Using the ADT IDE ... 97

Dealing with ADT IDE Memory Problems 97
Editing Cordova Application Content Files 98
Importing the Cordova Project .. 99
Running Your Cordova Application .. 103
ADT Debugging Tools .. 104

Debugging Outside of the ADT IDE ... 106
Grabbing a Screenshot .. 107
Debugging on a Physical Device ... 108
Wrap-Up .. 111

88.. BLACKBERRY 10 DEVELOPMENT WITH CORDOVA 112
Configuring Your Environment for BlackBerry Development 112
Configuring a BlackBerry Cordova Project .. 114
Defining BlackBerry 10 Targets ... 116

Defining a BlackBerry 10 Simulator Target 117
Defining a BlackBerry 10 Device Target .. 118

Debugging on a Device Simulator ... 120
Using the BlackBerry Simulator Controller 124
Using the BlackBerry Web Inspector ... 125

Debugging on a Physical Device ... 129
Wrap-Up .. 129

99.. IOS DEVELOPMENT WITH CORDOVA ... 130
Working with Xcode ... 130
Debugging iOS Applications .. 131
Debugging on a Physical Device ... 132
Using the Safari Web Inspector ... 132
Wrap-Up .. 138

1100.. WINDOWS PHONE 8 DEVELOPMENT WITH CORDOVA 139
Getting Started with Windows Phone Development 139
Configuring a Windows 8 Device for Application Testing 140
Running a Cordova Application Using Visual Studio 142
Wrap-Up .. 148

1111.. USING PHONEGAP BUILD ... 149
What Is PhoneGap Build? ... 149

Quick Prototyping ... 151

ptg11524036

viii Contents

Collaboration .. 151
Content Refresh through Hydration ... 151

Using PhoneGap Build .. 152
A Quick Example .. 153
Deploying PhoneGap Build Applications .. 157
Configuring a PhoneGap Build Application 160

Wrap-Up .. 162
1122.. WORKING WITH THE CORDOVA APIS ... 163

The Cordova Core APIs ... 163
Working with the API Cordova Documentation 164
Setting Application Permissions .. 165
Cordova Objects .. 168

Connection Type .. 168
Device .. 169

Alerting the User .. 170
Hardware Notifications ... 170

Beep .. 170
Vibrate ... 171

Visual Notifications ... 171
Alert ... 171
Confirm .. 172
Prompt ... 173

Cordova Events ... 175
Hardware APIs ... 176

Accelerometer .. 177
Compass .. 179
Geolocation .. 181
Camera .. 182
Capturing Media Files .. 187

Globalization .. 188
Working with the Contacts Application .. 193
Playing/Recording Media Files .. 197
InAppBrowser .. 199

Loading Content ... 199
Browser Window Events .. 201
Execute Scripts .. 202
Insert CSS .. 204

Splash Screen ... 205
Wrap-Up .. 205

1133.. CREATING CORDOVA PLUGINS ... 206
Anatomy of a Cordova Plugin .. 206
Creating a Simple Plugin ... 207
Creating a Native Plugin .. 211

Creating the Android Plugin ... 213

ptg11524036

Contents ix

Creating the iOS Plugin .. 221
Deploying Plugins .. 228
Wrap-Up .. 228

1144.. BUILDING A CORDOVA APPLICATION .. 229
About the Application ... 229
Creating the Application ... 230
Using Merges ... 239
Testing the Application .. 240
Wrap-Up .. 242

1155.. EXTENDING CORDOVA TO THE ENTERPRISE 243
Mobile Application Development Platforms 243
SAP Mobile Platform .. 244
Kapsel .. 246

Registration, Authentication, and Single Sign-on 246
Application Updates ... 246
Offline Access and Data Protection ... 247
Push Notifications .. 247
Remote Problem Analysis .. 248

Wrap-Up .. 248

ptg11524036

x Foreword

Foreword

It has been roughly twenty-five years now since the mobile technology era began. Can it be just a
coincidence that it is almost exactly the same amount of time that I have known John Wargo, the author
of this book? In 1988, the mobile technology landscape consisted of mobile phones the size of a carry-
on suitcase and personal organizers that looked like glorified financial calculators. Wireless networks
and widespread access to resources like the Internet were distant dreams. Unless you were a science
fiction writer, it would have been hard to imagine the connected world that we take for granted today. If
you knew John Wargo as I do, though, it would not have been very far-fetched at all to predict that he
would turn out to be the author of four books.

Looking ahead another twenty-five years, I imagine it’s safe to say that our ability to accurately predict
the advance of technology will continue to fall short. Powerful development tools like Cordova and the
combined creativity of millions of application developers around the world virtually guarantee that we
won’t be able to guess what indispensable capabilities will appear on our mobile devices tomorrow or
the next day. Will tomorrow’s devices interface directly to our human nervous systems? Will they
assemble themselves from organic compounds and heal themselves if they become damaged? Who
knows.

Whatever the future of mobile technology holds for us, as long as there is a means to program or
control it in some way, I hope that John will put together a collection of words to point others in the
right direction.

—David M. Via
AT&T

ptg11524036

Preface xi

Preface

This is a book about programming cross-platform mobile applications using Apache Cordova 3 (with
some coverage of PhoneGap 3 as well). In Apache Cordova 3, the Cordova development team made
some dramatic changes in the framework, and this book is what you need to understand what Cordova 3
is all about. The book can be considered as a sequel to my PhoneGap Essentials, updated for
Cordova 3.

This is a book about Cordova 3. This book is targeted at mobile developers who want to learn about
Cordova 3. If you’re brand new to Cordova, then this book is just what you need to get started. If
you’re experienced with an older version of Cordova, this book will show you in detail how to use all
of the new stuff that’s in Cordova 3. You will, however, need to have at least some experience with
mobile development to benefit from this book. The target audience could be existing web developers
who want to get into mobile development, but much of the needed native mobile development
background just isn’t in here.

What you’ll find in the book:

• Lots of detailed information about Apache Cordova: what it does and how it works

• Lots of examples and code

What you won’t find in this book:

• Mobile web development and mobile development topics; this book is about Apache Cordova, not
mobile development

• Expressions or phrases in languages other than English (I hate it when authors include phrases in
Latin or French)

• Obscure references to pop-culture topics (although there is an overt reference to Douglas Adams’s
Hitchhiker’s Guide to the Galaxy and one obscure reference to “Monty Python”)

• Pictures of my children or my pets

This book is not a book for experienced Cordova 3 developers—if you consider yourself an
experienced Cordova 3 developer, then you probably should not buy this book.

ptg11524036

xii Preface

Herein I tried to provide complete coverage of Cordova 3; covering enough detail that readers will
leave with a complete understanding of what Cordova is, what it does, how it works, and how to use it
for their mobile application projects. There’s a whole lot more to Cordova; many advance topics and
more detailed coverage of the Cordova APIs can be found in the Cordova documentation and maybe in
some future book I’ll write.

Cordova as a Moving Target
One of the challenges in writing a book about open source projects is that if the project is well staffed
and busy, the project gets regular updates. In Cordova’s case, it’s one of the fastest moving open source
projects on the planet, so with their monthly updates and yearly major release, it is definitely a moving
target.

I’ve worked very hard to structure and craft this book so that it can survive the rapid pace of the project,
but only time will tell. You may find that something I’ve written here has changed and the book doesn’t
align with reality. There’s nothing I can do about this except to stay on top of it and post updates to the
book’s website (described shortly) when I find that something has changed enough that it breaks part of
the book.

A Comment on Source Code
One of the things you’ll notice as you look at the source code included in the book is that I’ve paid
special attention to the formatting of the code so that it can be easily read and understood. Rather than
allowing the source code to wrap wherever necessary to fit the printed page, I’ve forced line breaks in
the code in order to structure it in a way that should benefit the reader. Because of this, as you copy the
source code over into your Cordova applications, you will likely find some extra line breaks that affect
the functionality of the code. Sorry.

Resources
I’ve created a website for the book at www.cordovaprogramming.com, shown in Figure P1, where I
will post updates, errata, and the answers to questions I’ve received from readers.

http://www.cordovaprogramming.com

ptg11524036

Preface xiii

Figure P.1 Apache Cordova 3 Programming Web Site

Additionally, I’ve posted much of the book’s sample code to my GitHub account located at
https://github.com/johnwargo. At a minimum, I’ll post all of the complete applications up there—
potentially adding code snippets if readers ask for them.

Please feel free to use the contact form on the book’s website to provide feedback and/or suggestions
for the next release.

https://github.com/johnwargo

ptg11524036

xiv Acknowledgments

Acknowledgments

I want to thank the following people for their help with this effort:

• The Cordova development team for answering every one of my silly questions as I prepared the
manuscript

• Brian LeRoux from Adobe for his support

• Fil Maj and Hardeep Shoker from Adobe for reviewing and providing feedback on the Cordova
CLI and PhoneGap Build chapters

• Brent Thornton, Bryan Higgins, Ken Wallis, and Jeffrey Heifetz from BlackBerry for helping me
with the BlackBerry content

• Raman Sethi and the SAP Kapsel development team for teaching me all sorts of stuff I didn’t
know about Cordova

• My colleague Marcus Pridham for pointing out what was wrong with my Android plugin code and
showing me how to create the iOS version of the plugin

• My colleague Istvan Nagy for showing me a better way to tell what’s going on with a Cordova
application when it fails (described in Chapter 14)

• Colleagues Damien Murphy, Scott Dillon, and Andrew Lunde for their review of the manuscript

• My managers and other colleagues at SAP for supporting me throughout this process

• Greg Doench and the staff at Addison-Wesley/Pearson Education for helping me write yet another
book; may this one not be my last.

ptg11524036

Chapter 1: The What, How, Why, and More of Apache Cordova 1

1
The What, How, Why, and

More of Apache Cordova

This chapter is your introduction to the Apache Cordova framework: what it is, how developers use it
to develop mobile applications, how it differs from Adobe PhoneGap, why it was created, how it has
changed over time, where it’s going, and more. You could skip this chapter and dig into the more
technical (and fun) stuff in the chapters that follow, but it’s important to understand the heart of what
you’re working with before getting to all of the details.

As I read through support forum posts, it’s clear from many of them that the developers just getting
started with Apache Cordova don’t really “get” what they’re working with. This chapter should answer
many of the initial what, how, and why questions related to Apache Cordova and Adobe PhoneGap.

IInnttrroodduuccttiioonn ttoo AAppaacchhee CCoorrddoovvaa
Apache Cordova (http://cordova.apache.org) is a free, open source framework for building cross-
platform native applications using HTML5. The creators of Apache Cordova wanted a simpler way of
building cross-platform mobile applications and decided to implement it as a combination of native and
web application technologies. This type of mobile application is called a hybrid application.

The initial benefit of Apache Cordova is the native capabilities above and beyond what is normally
supported in the browser. At the time all of this started, the best way to build a mobile application that
worked on multiple mobile devices was to build it using HTML. Unfortunately for mobile developers,
though, many mobile applications needed to do more than HTML and web browsers could support, and
building a web application that interacted with the device camera or the local contacts application
simply wasn’t possible. To get around this limitation, Cordova implements a suite of APIs that extend
native device capabilities (such as the camera, accelerometer, Contacts application, and so on) to a web
application running within the native container.

Apache Cordova consists of the following components:

▪ Source code for a native application container for each of the supported mobile device
platforms. The container renders the HTML5 application on the device (more on what this
means later, I promise).

▪ A suite of APIs that provide a web application running within the container access to native
device capabilities (and APIs) not normally supported by a mobile web browser.

http://cordova.apache.org

ptg11524036

2 Chapter 1: The What, How, Why, and More of Apache Cordova

▪ A set of tools used to manage the process of creating application projects, managing plugins,
building (using native SDKs) native applications, and testing applications on mobile device
simulators and emulators.

To build a Cordova application, you create a web application, package the web application into the
native container, test and debug the application, then distribute it to users (typically through an app
store). That’s all there is to it. The packaging process is illustrated in Figure 1.1; we talk more about
how you package applications later in the chapter.

 NNoottee
When many developers first learn about this technology, they immediately assume that the web
application is somehow translated into the native language for each supported mobile device
platform—converted into Objective-C for iOS or Java for Android, for example—but that’s not
what’s happening here. Some mobile application frameworks take that approach, but for
Cordova, the web application simply runs unmodified within a native application shell.

FFiigguurree 11..11 Apache Cordova Application Packaging Process

Within the native application, the application’s user interface consists of a single screen that contains
nothing but a single web view that consumes the available screen space on the device. When the
application launches, it loads the web application’s startup page (typically index.html but easily
changed by the developer to something else) into the web view, then passes control to the web view to
allow the user to interact with the web application. As the user interacts with the application’s content
(the web application), links or JavaScript code within the application can load other content from within
the resource files packaged with this application or can reach out to the network and pull content down
from a web or application server.

ptg11524036

Chapter 1: The What, How, Why, and More of Apache Cordova 3

For some mobile device platforms, such as bada, Symbian, and webOS, a native application is just a
web application: there’s no concept of a compiled native application that is deployed to devices.
Instead, a specially packaged web application is what is executed as an application on the device.

 AAbboouutt WWeebb VViieewwss
A web view is a native application component that is used to render web content (typically HTML
pages) within a native application window or screen. It’s essentially a programmatically
accessible wrapper around the built-in web browser included with the mobile device.

For some examples, on the BlackBerry Java platform, it’s implemented as a BrowserField
object (using net.rim.device.api.browser.field2). On Android, it’s implemented using a
WebView view (using android.webkit.WebView), and on iOS, it’s a UIWebView (using
System/Library/Frameworks/UIKit.framework).

The web application running within the container is just like any other web application that would run
within a mobile web browser. It can open other HTML pages (either locally or from a web server sitting
somewhere on the network). JavaScript embedded within the application’s source files implements
needed application logic, hiding or unhiding content as needed within a page, playing media files,
opening new pages, performing calculations, and retrieving content from or sending content to a server.
The application’s look and feel is determined by font settings, lines, spacing, coloring, or shading
attributes added directly to HTML elements or implemented through Cascading Style Sheets (CSS).
Graphical elements applied to pages can also help provide a theme for the application. Anything a
developer can do in a web application hosted on a server can also be done within a Cordova application.

A mobile web browser application does not typically have access to device-side applications, hardware,
and native APIs. For example, a web application typically cannot access the Contacts application or
interact with the accelerometer, camera, compass, microphone, and other features, nor can it determine
the status of the device’s network connection. A native mobile application, on the other hand, makes
frequent use of those capabilities. For a mobile application to be interesting (interesting to prospective
application users, anyway), it will likely need access to those native device capabilities.

Cordova accommodates that need by providing a suite of JavaScript APIs that a developer can leverage
to allow a web application running within the Cordova container to access device capabilities outside of
the web context. These APIs were implemented in two parts: a JavaScript library that exposes the
native capabilities to the web application and the corresponding native code running in the container
that implements the native part of the API. The project team would essentially have one JavaScript
library but separate native implementations on each supported mobile device platform.

Prior to Cordova 3.0, these APIs were implemented as shown in Figure 1.2—a single JavaScript
interface that exposed the web application to all of the supported native APIs.

ptg11524036

4 Chapter 1: The What, How, Why, and More of Apache Cordova

FFiigguurree 11..22 Apache Cordova Native Application Architecture Pre-3.0

The result, however, was that your Cordova application included JavaScript and native code for every
Cordova API. If your application didn’t leverage all of the available APIs, you still had the code in your
application for the APIs you weren’t using. You could strip unused APIs from the JavaScript library
and the native container, but that was not fun.

Beginning with Cordova 3.0, each of the Cordova APIs has been broken out into separate plugins; you
can use the Cordova plugin manager (plugman) to add and remove plugins from your Cordova project.
We talk more about plugins and the Cordova tools later in this chapter and throughout the book. This
approach provides the architecture illustrated in Figure 1.3—an application with discrete code for each
plugin and that is packaged with only the needed plugins.

ptg11524036

Chapter 1: The What, How, Why, and More of Apache Cordova 5

FFiigguurree 11..33 Apache Cordova Native Application Architecture Post-3.0

Cordova currently provides the following APIs:

▪ Accelerometer

▪ Camera

▪ Capture

▪ Compass

▪ Connection

▪ Contacts

▪ Device

▪ Events

▪ File

▪ Geolocation

▪ Globalization

ptg11524036

6 Chapter 1: The What, How, Why, and More of Apache Cordova

▪ InAppBrowser

▪ MediaNotification

▪ Splashscreen

▪ Storage

Most of these APIs are described in detail in Chapters 10 through 22 of PhoneGap Essentials
(www.phonegapessentials.com), but only for PhoneGap and Cordova 2.x.

When a developer implements a feature in an application that uses one of the Cordova APIs, the
application calls the API using JavaScript. A special layer within the application translates the Cordova
API call into the appropriate native API for the particular feature. As an example, the way the camera is
accessed on a BlackBerry is different from how it’s done on Android, so this API common layer allows
a developer to implement a single interface that is translated behind the scenes (within the container
application) into the appropriate native API for each supported mobile platform. To take a picture in a
mobile application using Cordova and the default options for the API, the JavaScript code would look
like this:
navigator.camera.getPicture(onSuccess, onFail);

As parameters, the application passes in the names of two callback functions: onSuccess and onFail,
which are called once a picture has been captured or if an error is encountered.

On BlackBerry, the code being executed behind the scenes might look like this:
Player player = Manager.createPlayer("capture://video");

player.realize();

player.start();

VideoControl vc = (VideoControl) player.getControl(

 "VideoControl");

viewFinder = (Field)vc.initDisplayMode(

 VideoControl.USE_GUI_PRIMITIVE,

 "net.rim.device.api.ui.Field");

scrnMain.add(viewFinder);

vc.setDisplayFullScreen(true);

String imageType =

 "encoding=jpeg&width=1024&height=768&quality=fine";

byte[] theImageBytes = vc.getSnapshot(imageType);

Bitmap image = Bitmap.createBitmapFromBytes(

 imageBytes, 0, imageBytes.length, 5);

BitmapField bitmapField = new BitmapField();

bitmapField.setBitmap(image);

scrnMain.add(bitmapField);

On Android, the code being executed by the function might look like this:
camera.takePicture(shutterCallback, rawCallback,

jpegCallback);

And on iOS, the code might look like this:
UIImagePickerController *imgPckr =

 [[UIImagePickerController alloc] init];

http://www.phonegapessentials.com

ptg11524036

Chapter 1: The What, How, Why, and More of Apache Cordova 7

imgPckr.sourceType =

 UIImagePickerControllerSourceTypeCamera;

imgPckr.delegate = self;

imgPckr.allowsImageEditing = NO;

[self presentModalViewController:imgPckr

 animated:YES];

The code samples listed here don’t cover all aspects of the process of taking a picture (such as dealing
with errors or processing the resulting image), but they illustrate how Cordova simplifies cross-platform
mobile development. A developer makes a single call to a common API available across all supported
mobile platforms, and Cordova translates the call into the appropriate code for each target platform.
Cordova eliminates the need for developers to have intimate knowledge of the underlying technologies,
allowing them to focus on their application rather than on how to accomplish the same task on multiple
devices.

WWhhaatt IIss AAddoobbee PPhhoonneeGGaapp??
Adobe PhoneGap is nothing more than an implementation of Apache Cordova with some extra stuff
added to it. At its core is the Cordova container and API plugins described in the previous section. As
Adobe’s primary business is in selling tools and services, the PhoneGap implementation of Cordova
more tightly integrates the framework with Adobe’s other products.

The primary differences between Cordova and PhoneGap are the command-line tools and the
PhoneGap Build service (described later in the chapter). The PhoneGap command-line tools provide a
command-line interface into the PhoneGap Build service; the Adobe PhoneGap Build service is
covered in Chapter 11, “Using PhoneGap Build.”

Throughout the remainder of the book (except in the following “PhoneGap History” section), when I
refer to PhoneGap, I’m talking about a specific capability that is available only in the PhoneGap
version of Cordova. Both versions are free; PhoneGap simply adds some additional capabilities to
Cordova.

PPhhoonneeGGaapp HHiissttoorryy
PhoneGap was started at the 2008 iPhoneDevCamp by Nitobi (www.nitobi.com) as a way to simplify
cross-platform mobile development. The project began with a team of developers working through a
weekend to create the skeleton of the framework; the core functionality plus the native application
container needed to render web application content on the iPhone. After the initial build of the
framework, the PhoneGap project team quickly added support for Android with BlackBerry
following a short time thereafter.

In 2009, PhoneGap won the People’s Choice award at the Web 2.0 Expo LaunchPad competition. Of
course, being a project for geeks, the conference attendees voted for the winner by Short Message
Service (SMS) from their mobile phones.

Over time, PhoneGap has added support for additional hardware platforms and worked to ensure parity
of API features across platforms. During this period, IBM started contributing to the project, as did
many other companies.

In late 2011, Nitobi announced that it was donating PhoneGap to the Apache Foundation. Very quickly
thereafter, Adobe announced that it was acquiring Nitobi. PhoneGap joined the open source Apache
project (www.apache.org) as an incubator project, first as Apache Callback, briefly as Apache

http://www.nitobi.com
http://www.apache.org

ptg11524036

8 Chapter 1: The What, How, Why, and More of Apache Cordova

DeviceReady, and finally (beginning with version 1.4) as Apache Cordova (the name of the street
where the Nitobi offices were located when PhoneGap was created).

The acquisition of Nitobi by Adobe (and Adobe’s subsequent announcement that it would discontinue
support for Adobe Flash on mobile devices) clearly indicates that Adobe saw PhoneGap as an
important part of its product portfolio. The folks at Nitobi who were working on PhoneGap in their
spare time as a labor of love are now in a position to work full time on the project. The result is that
Cordova is one of, if not the, most frequently updated Apache projects. The Cordova team delivers new
releases monthly, which is pretty amazing considering the complexity of the code involved.

CCoorrddoovvaa GGooiinngg FFoorrwwaarrdd
When you look at the project’s description on its Apache project home page
(http://cordova.apache.org/#about), you’ll see that the project team describes itself almost entirely by
the APIs Cordova implements.

The Cordova project’s efforts around API implementation were initially guided by the World Wide
Web Consortium (W3C) Device APIs and Policy (DAP) Working Group (www.w3.org/2009/dap/).
This group is working to “create client-side APIs that enable the development of Web Applications and
Web Widgets that interact with device services such as Calendar, Contacts, Camera, etc.” The plan was
for additional APIs to be added as the Cordova project team gets to them and as new standards evolve,
but that’s not what’s happened lately.

From the middle of the Cordova 1.x code stream through the end of the 2.x releases, the project team
started working on tightening up the framework. They focused primarily on fixing bugs and cleaning up
the project’s code. Where there were previously separate JavaScript libraries for each mobile platform,
they worked toward consolidating them into a single file (cordova.js) and migrating everything from
the PhoneGap to the Cordova namespace. For the 3.0 release, the project team focused on stripping the
APIs out of the core container and migrating them into separate plugins, then creating some cool new
command-line tools to use to manage application projects. The project team should start adding more
new APIs to the framework soon after 3.0 is released.

In May 2012, Brian LeRoux (brian.io) from Adobe published “PhoneGap Beliefs, Goals, and
Philosophy” (http://phonegap.com/2012/05/09/phonegap-beliefs-goals-and-philosophy) in which he
talks about what was (then) driving the project’s direction. At the time, as mobile device browsers
implemented the DAP APIs in a consistent manner, the plan was for Cordova to obsolete itself. The
expectation was that when mobile browsers all support these APIs, there would be no need for the
capabilities Cordova provides and the project would just disappear. A good example of this is how
modern browsers are starting to add support for the camera, as described in Raymond Camden’s blog
post “Capturing camera/picture data without PhoneGap”
(www.raymondcamden.com/index.cfm/2013/5/20/Capturing-camerapicture-data-without-PhoneGap).

However, one of the things I noticed as I finished PhoneGap Essentials (www.phonegapessentials.com)
was that plugins were gaining in prominence in the Cordova space. The APIs provided by Cordova
were interesting and helpful to developers, but developers wanted more. Where there were first only a
few Cordova plugins available, now there are many, and the core APIs are plugins as well. So, Cordova
becomes at its core just a hybrid container, and everything else is done in plugins.

As the browsers implement additional APIs, the core Cordova APIs will become obsolete, but the
Cordova container may live on. Cordova could still obsolete itself, but only in a time when the popular
mobile browsers provide a standard interface to native APIs. As each platform’s OS and API suite are
different, I’m not sure how that would work out. It’s the cross-platform development capabilities of

http://www.w3.org/2009/dap/
http://www.raymondcamden.com/index.cfm/2013/5/20/Capturing-camerapicture-data-without-PhoneGap
http://www.phonegapessentials.com
http://cordova.apache.org/#about
http://phonegap.com/2012/05/09/phonegap-beliefs-goals-and-philosophy

ptg11524036

Chapter 1: The What, How, Why, and More of Apache Cordova 9

Cordova that make it most interesting to the market; there’s limited chance the market will expose
native APIs to the browser in a consistent enough way to keep cross-platform development viable.

SSuuppppoorrtteedd PPllaattffoorrmmss
Apache Cordova currently supports the following mobile device operating system platforms:

▪ Android (Google)—http://developer.android.com/index.html

▪ bada (Samsung)—http://developer.bada.com

▪ BlackBerry 10 (BlackBerry)—https://developer.blackberry.com/

▪ iOS (Apple)—https://developer.apple.com/devcenter/ios/index.action

▪ Firefox OS—https://developer.mozilla.org/en-US/docs/Mozilla/Firefox_OS

▪ Tizen (originally Samsung, now the Linux Foundation)—https://developer.tizen.org

▪ Windows Phone 7 and Windows Phone 8 (Microsoft)—
http://developer.windowsphone.com/en-us

▪ Windows 8 (Microsoft)—http://msdn.microsoft.com

You can find the complete list of supported operating systems plus the specific capabilities that are
supported at http://cordova.apache.org/docs/en/3.0.0/guide_overview_index.md.html#Overview. For
this book, I cover what are considered the most popular smartphone platforms, Android and iOS, plus
some others that I find interesting, such as BlackBerry 10 and Windows Phone 8: BlackBerry because I
love BlackBerry and it still has a chance, and Windows Phone because, while it’s not extremely
popular, it’s cool and different enough that I think it’s interesting.

You’ll notice that Windows 8 as well as Windows Phone 7 and Windows Phone 8 are all listed; as this
book is focused on mobile development, desktop operating systems are not addressed here.

It is important to note that when the Cordova project started, support for different mobile platforms was
added primarily by an independent developer who was interested in the framework and wanted it
running on the devices he or she was working on. Over time, as Cordova became more popular and
mainstream, the mobile device vendors got onboard and helped with the implementation of Cordova on
their platforms. The folks at BlackBerry are heavily involved with the BlackBerry implementation of
Cordova, Intel is involved in the Tizen implementation, and Microsoft has been involved in the
Windows implementation as well. What this means for developers is that even though Cordova is an
open source project, the device OS companies are heavily involved and have a vested interest in making
this project successful. Sadly, only Apple has chosen not to support the framework directly.

CCoorrddoovvaa LLiicceennssee
Apache Cordova has been released under the Apache License, version 2.0. You can find more
information about the license at www.apache.org/licenses/LICENSE-2.0.

http://www.apache.org/licenses/LICENSE-2.0
http://developer.android.com/index.html
http://developer.bada.com
https://developer.blackberry.com/
https://developer.apple.com/devcenter/ios/index.action
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox_OS
https://developer.tizen.org
http://developer.windowsphone.com/en-us
http://msdn.microsoft.com
http://cordova.apache.org/docs/en/3.0.0/guide_overview_index.md.html#Overview

ptg11524036

10 Chapter 1: The What, How, Why, and More of Apache Cordova

WWoorrkkiinngg wwiitthh CCoorrddoovvaa
Now that you know a little bit about Cordova, let’s dig into how to build mobile applications using
the framework. In this section, I describe how to design your web application so it will run in the
container, then explain how to use the available tools to package your web application into a native
mobile application.

DDeessiiggnniinngg ffoorr tthhee CCoonnttaaiinneerr
Cordova applications are web applications running inside of a client-side native application container.
Therefore, web applications running within a Cordova application leverage an HTML5 application
structure rather than that of a traditional server-based web application.

With old school, traditional web applications, a web server serves up either static HTML pages or
dynamic pages to the requesting user agent (the browser). With dynamic pages, a server-side language
or scripting language is used to retrieve dynamic content (from a database, for example) and format it
all into HTML before sending it to the browser. When the browser makes a request, the server retrieves
the containing page and content, massages it all into HTML (or some variant such as XHTML), and
sends it to the browser to be displayed.

In this example, the browser doesn’t need any intelligence with regard to the content; it merely requests
a page and the server does most of the work to deliver the requested content. On the browser, the
application can leverage client-side JavaScript code to allow the user to interact with the content on the
page, but in general, most of the work is done by the server.

With the advent of Web 2.0, a reduced load is placed on the web server and instead, JavaScript code
running within the browser manages the requesting and presentation of data. The web server delivers an
HTML-based wrapper for the web application and JavaScript code delivered with the page dynamically
manages the content areas of the page, moving data in and out of sections of the page as needed.

What allowed Web 2.0 applications to be successful was the addition of the XMLHTTPRequest (XHR)
API in JavaScript. This API allows a web application to submit asynchronous requests to a server and
process the data whenever it returns from the server, without interrupting the user’s activity within the
application.

This approach allows for much more interesting web applications, applications that can easily look and
feel like native desktop applications. The web server is still involved, serving up the pages and the
content to the browser, but it does less direct manipulation of the data. Google Maps
(maps.google.com) and Google Gmail (mail.google.com) are good examples of Web 2.0 applications
available today.

Mobile devices need a slightly different approach. Web 1.0 and 2.0 technologies work great on
smartphones, but Web 1.0 apps caused a lot of data to be transmitted between server and device, and
Web 2.0 apps were cooler but still required constant network connectivity to operate.

With HTML5, web applications can make use of new capabilities that allow an application to operate
more efficiently on a mobile device (or devices with limited connectivity), and they can use a client-
side database to store application data. This functionality makes it easier for mobile devices to operate
as they go in and out of wireless coverage. Additionally, HTML5 supports the addition of a manifest
file that lists all of the files that comprise the web application. When the web application’s index file
loads, the browser reads the manifest file, retrieves all of the files listed in the manifest, and downloads
them to the client device. If a mobile device were to lose network connectivity, then as long as the files
listed in the manifest were available on-device, the application could continue working—using any data
that might be stored locally.

ptg11524036

Chapter 1: The What, How, Why, and More of Apache Cordova 11

To leverage these HTML5 capabilities, though, a web application must be written so it is able to run
completely within the browser container (or, in the case of Cordova applications, within the Cordova
application container). The index.html file is typically the only HTML file in the application, and the
application’s different “screens” are actually just different <div> containers that are switched in and out
as needed by the application. HTML5 applications will still reach out to a server for data as needed,
using XHR to request data asynchronously and store it locally.

 NNoottee
Web applications coded in PHP, ASP.NET, JSP, and the like will not run unmodified in the
Cordova container. Those applications are designed to run on a web server, and the
application’s pages are preprocessed by special software running on the web server before
output (typically HTML) is sent to the browser.

I see a lot of support forum posts where developers ask how to get a server-based web
application built with one of those technologies to run in the Cordova container. There’s no
processor for PHP, ASP.NET, and the other files available in the container, so it simply won’t
work. Those applications must be rewritten so that a standalone web application is running in
the Cordova container that then reaches back to the web server for the dynamic content
generated by the server using one of those technologies (PHP, ASP.NET, and so on).

Web developers must rethink their approach to web development to leverage these capabilities. Instead
of retrieving a web application from a web server, the HTML5 application running in the Cordova
container must be self-contained, making sure it has the files and data it needs to at least launch and
display a UI before optionally reaching out to a remote server for additional content and data. As
mentioned earlier, when a Cordova application launches, it loads the web application’s startup page
(typically index.html) and associated content (CSS files, JavaScript files) before passing control to the
web app. In order for this method to work, the resources the app needs to start have to be located within
the container.

Some Cordova developers load as little as possible within the container and, immediately after startup,
run off to a server to get the “real” content for the application; I see their questions on the support
forums all the time. This approach works, but it’s not the best experience for users and may cause you
problems with app store submissions—some smartphone platforms (Apple iOS, for example) don’t like
it when your app doesn’t contain content and is merely a shell for a web application being hosted by a
web server.

For a great presentation on how to write a web application for Apache Cordova, see if you can track
down Lyza Danger Gardner’s presentation from PhoneGap Day 2013—it was amazing. The videos and
presentations haven’t been posted yet; otherwise I’d provide a link for you here. She did a really good
job of describing the approach you must take to craft a mobile web application that “works” in the
Cordova container.

CCooddiinngg CCoorrddoovvaa AApppplliiccaattiioonnss
As mentioned previously, Cordova applications are built using normal, everyday web technologies
such as HTML, CSS, and JavaScript. Whatever you want your application to do, if you can make it
work using standard web technologies, you can make it work in a Cordova application. Cordova
applications can do more than standard web applications through the specialized JavaScript libraries
provided with the framework discussed earlier.

ptg11524036

12 Chapter 1: The What, How, Why, and More of Apache Cordova

The Cordova project doesn’t currently offer or support any special editor for writing your Cordova
applications; you simply need to dig out your web content editor of choice and start coding. To keep
things simple, you could use default tools like Notepad on Microsoft Windows or TextEdit on a
Macintosh. You could even use something more sophisticated, such as Adobe Dreamweaver
(www.adobe.com/products/dreamweaver.html) or the Eclipse IDE (www.eclipse.org).

Adobe, however, offers a free, open source code editor called Brackets (http://brackets.io) that I’ve
been playing around with. It provides a nice, clean interface for coding your web applications. As it’s
an Adobe product, I expect that you’ll see Cordova and/or PhoneGap integration capabilities in it
before long.

For this book, I primarily coded using the open source Aptana studio (www.aptana.com); it’s an open
source Eclipse-based IDE tailored for web development. It’s lighter-weight than Eclipse and allowed me
to easily format the project source code for importing into this manuscript (two spaces instead of tabs).

BBuuiillddiinngg CCoorrddoovvaa AApppplliiccaattiioonnss
Once you have a completed web application, whether it uses any of the Cordova APIs or not, it has to
be packaged into a native application that will run on-device. Each of the mobile device platforms
supported by the Cordova project has its own proprietary tools for packaging or building native
applications. To build a Cordova application for each supported mobile platform, the application’s
web content (the HTML, CSS, JavaScript, and other files that comprise the application) must be
added to an application project appropriate for each mobile platform, then built using the platform’s
proprietary tools. What’s challenging about this process is that each mobile platform uses completely
different tools, and application projects use different configuration files and most likely a different
project folder structure.

Additionally, some of the supported mobile platform development tools will run only on certain
desktop operating systems. For example:

▪ The Android SDK runs on Linux, Microsoft Windows, and Macintosh OS X.

▪ The BlackBerry SDKs (they have several) run on Microsoft Windows and Macintosh OS X.

▪ The iOS SDK runs only on Macintosh OS X (no surprise there).

▪ The Windows Phone SDK runs only on Microsoft Windows (no surprise there either).

What this means for developers is that to work with the most popular smartphones (you can argue with
me later about whether BlackBerry or Windows Phone are popular), you have to have, at a minimum,
development systems running both Windows and Macintosh OS X. For my Cordova development
work, I use a loaded Macintosh Mini (Intel I7 quad core, 8GB memory, 500GB hard drive) running
VMware Fusion (www.vmware.com/products/fusion/overview.html); this allows me to easily run both
Windows-based and Macintosh-based SDKs and seamlessly share files between both OSs.

In the old days of Cordova development (back in the PhoneGap 1.0 timeframe—back when I started my
previous book), you would use IDE plugins (on Android, iOS, and Windows Phone) and command-line
tools (on Android and BlackBerry), or you would copy a sample application (on bada, Symbian and
webOS) to create a new project. You would start with one of the supported platforms, write the
appropriate web content, then package and test the application using the selected platform’s SDK. Once
you had it all working correctly, you would copy the web content over to a new project for one of the
supported platforms and repeat the process. There was little consistency in project folder structure,
framework JavaScript files (they had different file names on some platforms and were markedly different
for each), and build process across mobile device platforms. This process is highlighted in Figure 1.4.

http://www.adobe.com/products/dreamweaver.html
http://www.eclipse.org
http://www.aptana.com
http://www.vmware.com/products/fusion/overview.html
http://brackets.io

ptg11524036

Chapter 1: The What, How, Why, and More of Apache Cordova 13

Web Application

webOS
Project

webOS
Application

BlackBerry
Project

BlackBerry
Application

BlackBerry
NSK

Android
Application

Android
Project

Symbian
Project

Symbian
Web App

Make

Make

Visual Studio
Windows

Phone
Project

Windows
Phone

Application
V

Android
SDK

Andrrooid
SDKK

webOS
Project

webOS
Application

Xcode
Project

iOS
Application

Xcode
Command
Line Tools

Android
Application

Android
Project

Symbian
Project

Symbian
Web App

Make

Make

Android
SDK

Andrrooid
SDKK

Android
Application

Android
Project

Symbian
Project

Symbian
Web App

Make

webOS
Project

webOS
Application

Make

Android
SDK

Andrrooid
SDKK

Windows PC

LinuxPC

Macintosh

Web Application

HTML Javascript
Files CSS

Web Application

Other
Content

HTML Javascript
Files CSS

Other
Content

HTML Javascript
Files CSS

Other
Content

FFiigguurree 11..44 Cordova Application Build Process

To make things easier, in later versions of the framework, the Cordova development team scrapped the
IDE plugins and implemented a command-line interface for projects across a wider range of supported
mobile device platforms. For some of the mobile platforms (Symbian and webOS, for example), you
may still need to copy a sample project to get started, but the process is simpler and more consistent
now. You use the command-line tools to create new projects, manage (add, remove, list, update)
plugins, and build then test applications using the device emulators and simulators. The Cordova
command-line tools are described in detail in Chapter 4, “Using the Cordova Command-Line
Interface.” You can still do it by hand, but the command-line tools make it much easier.

ptg11524036

14 Chapter 1: The What, How, Why, and More of Apache Cordova

Adobe also offers a cloud-based packaging service for PhoneGap applications called PhoneGap Build.
This service allows you to upload a web application to the Build service servers, and it packages the
application into a PhoneGap container for the following mobile device platforms:

▪ Android

▪ BlackBerry

▪ iOS

▪ Symbian

▪ webOS

▪ Windows Phone

The PhoneGap Build service is a commercial offering from Adobe; it’s free for open source projects,
but paid subscription plans are available for developers building private applications. PhoneGap Build
is covered in Chapter 11.

CCoorrddoovvaa PPlluuggiinnss
As with any developer tool, there are times when the base functionality provided by the solution just
isn’t enough for your particular needs. Every developer, it seems, wants that one thing that’s not
already in there. For those cases, the Cordova development team added the ability to extend Cordova
applications via plugins. Initially, plugins were hacks inserted in the Cordova container by
developers, but over time the Cordova project team solidified a specification for plugins. They even
created tools to help developers manage the plugins used in a Cordova application.

With that in place, developers started creating all sorts of plugins. There’s a Facebook plugin
(https://github.com/phonegap/phonegap-facebook-plugin), Urban Airship plugin for push notifications
(http://docs.urbanairship.com/build/phonegap.html), and one of the most popular plugins,
ChildBrowser, actually became a part of the core Cordova API as inAppBrowser. The Cordova
development team eventually even migrated all the core Cordova APIs into plugins. I’ll show you how
to create your own Cordova plugin in Chapter 13, “Creating Cordova Plugins,” but for now you can
browse a repository of Cordova plugins here: https://github.com/phonegap/phonegap-plugins.

PPuuttttiinngg CCoorrddoovvaa ttoo BBeesstt UUssee
There are people who try to categorize the types of apps you should or should not build with a hybrid
container. I really don’t approve of that approach. The hybrid application approach used by Cordova
has strengths and weaknesses—and you have to assess your particular mobile application needs
against them and decide on a case-by-case basis whether the Cordova approach is the right one for
your application.

Web applications are likely going to be slower than native applications, but an inexperienced developer
can easily build a native application that performs poorly (without even trying very hard, it seems). You
can read about Facebook ditching HTML5 and switching to native for performance reasons
(http://techcrunch.com/2012/12/13/facebook-android-faster), but then you can read how Sencha was
able to build a suitably fast web version of the Facebook application using its HTML5 framework
(www.sencha.com/blog/the-making-of-fastbook-an-html5-love-story).

http://www.sencha.com/blog/the-making-of-fastbook-an-html5-love-story
https://github.com/phonegap/phonegap-facebook-plugin
http://docs.urbanairship.com/build/phonegap.html
https://github.com/phonegap/phonegap-plugins
http://techcrunch.com/2012/12/13/facebook-android-faster

ptg11524036

Chapter 1: The What, How, Why, and More of Apache Cordova 15

Hybrid applications may be slower than native mobile applications in most cases; it’s just the nature of
the technology being used. There are reports out there indicating that in more recent versions of iOS,
Apple limited the performance of JavaScript running in a web view (instead of in the browser). On the
other hand, many games have been created using Cordova, so if Cordova performs well enough for
games, it should be okay for many of the applications you need to write.

A lot of commercial applications available today were built using Cordova; you can find a list of many
of the applications on the PhoneGap website at www.phonegap.com/apps. The framework is used
primarily for consumer applications (games, social media applications, utilities, productivity
applications, and more) today, but more and more enterprises are looking at Cordova for their
employee-facing applications as well. There are many commercial mobile development tools with
Cordova inside and likely more in the works.

So where should you use Cordova? Use it anywhere you feel comfortable using it. Do some proof-of-
concepts of your application’s most critical and complicated features to make sure you can implement it
in HTML and get the performance you need from the framework.

The issues I see are these:

▪ Can you implement the app you want using HTML?—There are so many JavaScript and CSS
frameworks out there to help simplify mobile web development that most things a developer
wants to do in an application can be done in HTML.

▪ Can you get the performance you need from a hybrid application?—That you’ll have to prove
with some testing.

So where does it fail?

Early on, Cordova would fail when you wanted to build an application that needed access to a native
API that wasn’t already exposed through the container. Nowadays, with all of the plugins available,
you’re likely to find one that suits your application’s requirements—if not, write your own plugin and
donate it to the community. Cordova doesn’t (today) have access to the Calendar or email client
running on the device, so if your application has requirements for those features, you may be out of
luck—but don’t forget about plugins.

If your application needs to interface with a particular piece of hardware (either inside the device or
outside), Cordova might not be the best choice for you unless there’s a plugin for the hardware.

If your application requires heavy-duty offline capabilities such as a large database and offline
synchronization, you could run into issues. However, there are several HTML5-based sync engines that
should work within a Cordova container, and there are SQLite plugins for Android
(https://github.com/pgsqlite/PG-SQLitePlugin-Android) and iOS (https://github.com/pgsqlite/PG-
SQLitePlugin-iOS).

Try it out with some common use cases for your application and see what happens. If you are building
an application with a large database and a bunch of heavy data-entry forms, this might not be the best
choice for Cordova, but you’ll have to try it first and see.

GGeettttiinngg SSuuppppoorrtt
One of the things corporations worry about is getting support for the software products they use for
their business applications. An open source project such as Linux wouldn’t be as popular with
companies if there weren’t support options available to them. Since commercial support for Linux is
provided by a wide range of companies, including Red Hat, Canonical, SUSE, and others,

http://www.phonegap.com/apps
https://github.com/pgsqlite/PG-SQLitePlugin-Android
https://github.com/pgsqlite/PGSQLitePlugin-iOS
https://github.com/pgsqlite/PGSQLitePlugin-iOS

ptg11524036

16 Chapter 1: The What, How, Why, and More of Apache Cordova

organizations are much more willing to run their businesses on open source software products.
Cordova is no different.

Although there is no Cordova support area, the best place I’ve found for getting support for the
framework is the PhoneGap area in Google Groups (http://groups.google.com/group/phonegap). A lot
of experienced developers monitor the list of questions, and you can usually get an answer there pretty
quickly. You can even find me up there from time to time answering questions that I can.

There’s also a support forum for PhoneGap Build located at http://community.phonegap.com
/nitobi/products/nitobi_phonegap_build. The forums are supposed to be for questions related to the
PhoneGap Build service, but a lot of developers incorrectly use the forum for general PhoneGap
development questions as well. Please do me a favor and use the Build forums for PhoneGap Build–
related questions and the Google Groups area for questions on any other PhoneGap-related questions.
In my experience, you’ll get a faster and sometimes better response to a PhoneGap development
question in Google Groups.

In early 2011, Nitobi announced availability of commercial support options for PhoneGap, and Adobe
has continued the offering after the acquisition. Support is offered at different levels (from Basic,
currently at $249US per year, to Corporate, at $20,000US per year). There’s even an Enterprise support
option available, pricing for which is not publically available, so you will need to contact Adobe for
pricing. Information on the available support options for PhoneGap can be found at
www.phonegap.com/support.

RReessoouurrcceess
There are many places online where you can find information about how to work with the Cordova
and PhoneGap frameworks. Table 1.1 lists the different websites where you can find information
about Apache Cordova and Adobe PhoneGap.

Table 1.1 AAvvaaiillaabbllee RReessoouurrcceess

RReessoouurrccee LLiinnkk((ss))

Cordova Website http://cordova.io or http://cordova.apache.org
(they both point to the same site).

Cordova Documentation http://docs.cordova.io

Cordova Wiki http://wiki.cordova.io

Cordova Issue Tracker https://issues.apache.org/jira/browse/CB

Cordova Mailing Lists http://cordova.apache.org/#mailing-list

Cordova Twitter Account http://twitter.com/apachecordova

PhoneGap Website http://www.phonegap.com

PhoneGap Wiki http://wiki.phonegap.com

PhoneGap Blog http://www.phonegap.com/blog

PhoneGap Twitter Account https://twitter.com/phonegap

To stay informed about what’s going on with the project, you can sign up for the mailing lists at
http://cordova.apache.org/#mailing-list. If you have some extra time, it is fun to read through the emails
as the development team discusses the implementation of a new feature or tracks down a bug. The dev

http://www.phonegap.com/support
http://cordova.io
http://cordova.apache.org
http://docs.cordova.io
http://wiki.cordova.io
https://issues.apache.org/jira/browse/CB
http://cordova.apache.org/#mailing-list
http://twitter.com/apachecordova
http://www.phonegap.com
http://wiki.phonegap.com
http://www.phonegap.com/blog
https://twitter.com/phonegap
http://groups.google.com/group/phonegap
http://community.phonegap.com/nitobi/products/nitobi_phonegap_build
http://community.phonegap.com/nitobi/products/nitobi_phonegap_build
http://cordova.apache.org/#mailing-list

ptg11524036

Chapter 1: The What, How, Why, and More of Apache Cordova 17

mailing list is used by the developers of the Cordova framework to discuss issues and make decisions
about the Cordova implementation. The Commits mailing list is for tracking commit logs for the
Cordova repositories when new or updated code is added to a version of the framework. The Issues
mailing list is for conversations around bug and feature requests submitted to the Cordova Jira issue and
bug tracking system at http://issues.apache.org/jira/browse/CB.

 CCaauuttiioonn
Please don’t use the Dev list to ask questions about Cordova development—use Google Groups
instead. The dev lists are for the developers building Cordova to discuss feature implementation
and so on, and the Google Groups is set up specifically to provide Cordova developers with
answers to their questions.

Where you’ll spend the majority of your time will be on the Apache Cordova Documentation site,
which is shown in Figure 1.5. The site contains a complete reference to all of the Cordova APIs plus
additional guides you’ll need as you work with the framework.

The documentation is far better than it was when I wrote PhoneGap Essentials, so it’s probably a good
place to start for anything Cordova related.

FFiigguurree 11..55 Apache Cordova Documentation

http://issues.apache.org/jira/browse/CB

ptg11524036

18 Chapter 1: The What, How, Why, and More of Apache Cordova

The API reference shown in Figure 1.5 includes a complete reference for all of the methods, properties,
and events for each of the Cordova APIs. On the API pages, you’ll also find sample source code and
additional information you will need to make use of the APIs.

While you’re looking at the Documentation site, if you scroll down within either the left or right side of
the page, you will see the list of guides shown in Figure 1.6. These guides contain a lot of useful
information a developer needs to work with the framework, including how to create plugins, using the
command-line tools, and most important, the getting-started guides for each of the supported mobile
device platforms.

FFiigguurree 11..66 Cordova Documentation: Guides Section

HHyybbrriidd AApppplliiccaattiioonn FFrraammeewwoorrkkss
The hybrid application approach Cordova uses is not unique to the market. The Cordova project may
have started the trend, but many other products on the market use a similar approach. Here is a list of
some of the products that use a hybrid applications approach. Some are like Cordova, and others are
built with Cordova inside. This is only a subset of the available options in the hybrid mobile
application space:

▪ Appcelerator Titanium

▪ AT&T WorkBench and Antenna Software Volt

▪ BlackBerry WebWorks

ptg11524036

Chapter 1: The What, How, Why, and More of Apache Cordova 19

▪ IBM Worklight

▪ Oracle Application Development Framework (ADF) Mobile

▪ Salesforce Touch

▪ SAP Mobile Platform (this is the product I work on)

▪ Strobe (formerly SproutCore and now part of Facebook)

▪ Tiggr

WWrraapp--UUpp
In this chapter, I’ve given you a thorough (I think) overview of what Apache Cordova and Adobe
PhoneGap are and how to work with the framework and the tools that are available. You now know a
little bit of the history of the framework, where to get support, and what the future looks like for
Cordova. Throughout the rest of the book, I’ll start digging into the technical details of how all of this
works—we’ll dig into the tools and how to use them, talk about developing for some of the most
popular mobile platforms, and even build an application or two.

ptg11524036

20 Chapter 2: Installing the Cordova and PhoneGap Frameworks

2
Installing the

Cordova and PhoneGap
Frameworks

The traditional way of installing Apache Cordova or Adobe PhoneGap is to download the
framework’s files and optionally (depending on which version of the framework you download)
perform some additional configuration. Although Apache Cordova and Adobe PhoneGap are, at their
core, very similar (the differences between the two are described in Chapter 1), the steps performed to
get your development environment ready to work with the frameworks are different.

In this chapter, I walk you through the process of downloading and setting up the framework.
Subsequent chapters illustrate how to install and use the command-line tools as well as how to set up
and use development environments for several of the Cordova-supported mobile device platforms.

 NNoottee
You don’t really need to do the stuff in this chapter if you plan to use the Cordova CLI or the
PhoneGap Build service (described in Chapter 11, “Using PhoneGap Build”) exclusively for your
Cordova development projects. However, there’s still value in having the framework installed so
you can have a local copy of the documentation or source code.

IInnssttaallll iinngg AAppaacchhee CCoorrddoovvaa
Apache Cordova is an open source project, so the framework files are a free download from the
Apache Cordova project website. Point your browser of choice to http://cordova.io. You will be
presented with a page similar to the one shown in Figure 2.1. The big download link at the middle-
right side of the page takes you directly to the download section of the page shown in Figure 2.2.

http://cordova.io

ptg11524036

Chapter 2: Installing the Cordova and PhoneGap Frameworks 21

FFiigguurree 22..11 Apache Cordova Project Home Page

FFiigguurree 22..22 Apache Cordova Current Version Download Folder

Click on the source.zip link to download the most recent version of the Cordova framework. You will
be taken to an Apache download page, which will allow you to select the mirror from which to perform
the software download. To download an earlier version of the framework, click the archive link shown
at the bottom of Figure 2.2. The website will open the archives page shown in Figure 2.3.

ptg11524036

22 Chapter 2: Installing the Cordova and PhoneGap Frameworks

FFiigguurree 22..33 Cordova Archives

The listing shows the framework download file (the .zip file shown in the figure) plus some output files
from cryptographic hash functions used to help identify whether the .zip file has been modified. As you
can see from the screenshot in Figure 2.2, the file access is provided over an HTTPS connection, so it is
not likely that your download can be intercepted and a bogus file substituted. However, if you’re
appropriately paranoid, you can validate the source files using the keys provided. The .sha file is
generated using the Secure Hash Algorithm (SHA), the .md5 file is generated using Message Digest
Algorithm-5 (MD5), and the .asc file contains the PGP signature for the file.

 WWhhyy WWoouulldd YYoouu NNoott WWaanntt tthhee LLaatteesstt VVeerrssiioonn ooff tthhee FFrraammeewwoorrkk??
In most cases, you will likely want to start with the current version of Apache Cordova or Adobe
PhoneGap. The current version is the most up to date and will have the most bug fixes and most
recent documentation. You would want to go into the archives if you needed to support an
obsolete mobile device platform or an older mobile device OS version that is no longer supported

In Apache Cordova 3.0, for example, the project team dropped support for BlackBerry 7 (and
older) devices. The folks at BlackBerry did not have any plans for future updates to the BlackBerr
WebWorks platform for BlackBerry 7 and older devices, and as Cordova leverages WebWorks fo
its BlackBerry support, no further work would be done for that particular OS family. The BlackBer
developers working on Cordova were focused on BlackBerry 10 and BlackBerry PlayBook
support, so the older stuff was dropped from the framework.

If your development project is targeting BlackBerry 7 (or older) devices, grab an older version of
the framework from the archives. Anything before Cordova 3.0 should include BlackBerry 7
support.

ptg11524036

Chapter 2: Installing the Cordova and PhoneGap Frameworks 23

If downloading the file using Safari on later versions of Macintosh OS X, the files will be automatically
extracted after they download. On Windows, or if you are using a different browser on your Macintosh,
you’ll have to manually extract the files.

 NNoottee
The Cordova framework .zip file no longer contains files for several of the supported mobile
device platforms, such as bada, Tizen, Symbian, webOS, and even Windows Phone 7. Even
though the platforms are still supported, the files for those particular OSs were removed after
the Cordova 2.5 release. You will have to manually download the additional platforms if
needed.

A quick search on Google told me I could find the Cordova files for bada at
https://github.com/apache/cordova-bada, for Tizen at https://github.com/apache/cordova-tizen,
and for webOs at https://github.com/apache/cordova-webos.

There is no installer for the Apache Cordova files; once extracted, the Cordova download will expand
to the file listing shown in Figure 2.4. As you can see, the download includes a separate .zip file for
each of the mobile device platforms supported by Cordova plus some additional files, which are
described in Table 2.1.

FFiigguurree 22..44 Apache Cordova Download File Listing

https://github.com/apache/cordova-bada
https://github.com/apache/cordova-tizen
https://github.com/apache/cordova-webos

ptg11524036

24 Chapter 2: Installing the Cordova and PhoneGap Frameworks

Table 2.1 CCoorrddoovvaa AArrcchhiivvee ..zziipp FFiillee:: LLiisstt ooff AAddddiittiioonnaall ..zziipp FFiilleess

..zziipp FFiillee DDeessccrriippttiioonn

cordova-android.zip Contains the files needed to build Cordova applications for the
Android platform.

cordova-app-hello-world.zip Contains a complete Cordova reference Hello World web
application. The application is used as an illustration of how to
set up a Cordova-compatible web application. The structure of a
Cordova web application is discussed in Chapter 5, “Anatomy of
a Cordova Application.”

cordova-blackberry.zip Contains the files needed to build Cordova applications for the
supported BlackBerry platforms: BlackBerry 10 and BlackBerry
PlayBook. Remember, support for BlackBerry 7 and earlier
devices was dropped in Cordova 3.0.

cordova-cli.zip Contains the source files for the new Node.js-based command-
line interface (CLI) for creating, managing and testing Cordova
applications. These tools are described in detail in Chapter 3,
“Installing the Cordova Command-Line Interface,” and Chapter
4, “Using the Cordova Command-Line Interface.”

cordova-docs.zip Contains the complete Cordova documentation files (in HTML
format) in English, Japanese, and Korean. For some reason, the
project team chose to include all of the documentation back to
Cordova 1.5 in this folder structure.

cordova-ios.zip Contains the files needed to build Cordova applications for the
iOS platform.

cordova-js.zip Contains the source files for the Cordova JavaScript layer.

cordova-mobile-spec.zip Contains the files associated with the Mobile Spec Suite—a
suite of tests that are run to validate a Cordova version.

cordova-osx.zip Contains the files needed to build Cordova applications for the
Macintosh OS X platform.

cordova-plugin-* Separate folders for each of the Cordova API plugins. When
using the CLI and adding a plugin to a project, you can point the
CLI to these file folders for the plugin files added to your project.

cordova-wp8.zip Contains the files needed to build Cordova applications for the
Windows Phone 8 platform.

In order to build applications locally for each mobile device platform, you need to extract the .zip file(s)
for each platform. Each .zip file contains a text file called readme.md; you can open the file in any
standard text editor and quickly learn what the files in the folder are used for. In most cases, there are
simply instructions for how to use the files, but in some cases, such as with the Android Cordova
implementation, there are additional instructions you will need to follow to complete the setup.

ptg11524036

Chapter 2: Installing the Cordova and PhoneGap Frameworks 25

 TTiipp
On Macintosh, an .md file will open automatically in the TextEdit application; just double-click on
it, and it opens. The default Windows text editor (notepad.exe) doesn’t understand the .md file
extension, so you can’t just double-click on the file in Windows Explorer to open it. You must
manually open the file from Notepad, or you may want to use a third-party text editor such as
Notepad++ (http://notepad-plus-plus.org), which registers a right-click menu item that allows you
to right-click on an .md file and edit it directly in Notepad++.

An .md file is a text file created using one of the dialects of the Markdown language. Markdown
is essentially a plain text format that can be easily converted to HTML.

To configure development environments for the different supported mobile device platforms, you need
to install the platform’s native software development kit (SDK) or integrated development
environments (IDE). For some platforms, you may also need additional tools such as Java, Ant, make,
and Cygwin. Except for the cost of joining the appropriate developer programs, pretty much all of the
tools you need for local Cordova development are free.

AAnntt--BBaasseedd CCoommmmaanndd--LLiinnee IInntteerrffaaccee
As mentioned in Chapter 1, Cordova 3.0 added a new suite of command-line tools to the framework.
When you expand all of the Cordova framework files for the different mobile device platforms, you
may run across information in the readme.md about using Apache Ant (http://ant.apache.org) to
create new Cordova projects and to debug Cordova applications in a device simulator or emulator.

In older versions of Cordova, you had IDE tools (like plugins for Xcode for iOS and Eclipse for
Android) plus the CLI at your disposal. Unfortunately, the Ant-based CLI was implemented
inconsistently across the different mobile platforms, so you couldn’t use it everywhere, and each
implementation was in a different place, so you didn’t have a single tool you could use anywhere. The
Node.js-based CLI (described in Chapter 3) replaces the Ant-based process and is implemented more
consistently across platforms.

For that reason, I don’t cover the Ant-based tools in this book and instead focus on the Node.js-based
tools. Over time, all of the Ant-based tools should be migrated to Node.js.

IInnssttaallll iinngg AAddoobbee PPhhoonneeGGaapp
The installation process for Adobe PhoneGap is a little different. To access the installation
instructions and archives, point your browser of choice to www.phonegap.com. You will be presented
with a page similar to the one shown in Figure 2.5.

http://www.phonegap.com
http://notepad-plus-plus.org
http://ant.apache.org

ptg11524036

26 Chapter 2: Installing the Cordova and PhoneGap Frameworks

FFiigguurree 22..55 PhoneGap Installation Instructions

Beginning with PhoneGap 3.0, Adobe stopped making a specific download package and instead does
everything through a Node.js package. So, when you click the Download PhoneGap button shown in
the figure, you will be taken to the installation instructions shown in Figure 2.6.

Installation is similar to what is described in greater detail in Chapter 3. To install PhoneGap, the
PhoneGap website tells you that you simply have to install NodeJS (www.nodejs.org), then open a
command prompt and type the following command:
npm install –g phonegap

Experience tells me that there’s a lot more to it, so jump to the next chapter to read about all of the
requirements and issues you will face during the installation and afterwards.

http://www.nodejs.org

ptg11524036

Chapter 2: Installing the Cordova and PhoneGap Frameworks 27

FFiigguurree 22..66 PhoneGap Downloads Page

 TTiipp
The PhoneGap documentation is essentially (most likely exactly—I didn’t check) the same as the
Cordova documentation, so there’s little need to check both sites for information. I used the
PhoneGap documentation only when I was looking for information about some feature that is
unique to the PhoneGap implementation of Apache Cordova.

If you’re looking for an older version of PhoneGap, you can scroll down on the page shown in Figure
2.6 and access the downloads for most earlier versions of the framework.

WWrraapp--UUpp
In this chapter, I showed you how to download and install the Apache Cordova and Adobe PhoneGap
frameworks. We can’t really do anything yet with what we have installed, but in the chapters that
follow, I show you how to develop and test your Cordova applications plus how to configure and use
a local development environment for several of the most popular mobile device platforms.
Immediately following those chapters, I show you how to use the PhoneGap Build service to help
dramatically simplify all of this work.

ptg11524036

28 Chapter 3: Installing the Cordova Command-Line Interface

3
Installing the Cordova

Command-Line Interface

To make it easier for developers to manage their projects, the Cordova project team built a single,
unified command-line interface (CLI) that is expected to eventually work across all of the Cordova-
supported mobile device platforms. This chapter illustrates how to install the Cordova CLI. The
following chapter shows you how to use it to manage your Cordova projects.

The PhoneGap CLI is essentially the Cordova CLI with some additional commands added on. Almost
everything you learn in this chapter easily applies to the PhoneGap CLI as well. You should refer to the
PhoneGap documentation at http://docs.phonegap.com/en/3.0.0/index.html for information about the
additional commands the PhoneGap CLI adds.

IInnssttaallll iinngg tthhee CCLLII
The Cordova CLI is built using JavaScript code that is exposed through the Node JavaScript runtime
engine (www.nodejs.org). Because it is built using JavaScript, it can essentially run anywhere that
Node.js is available (Linux, Macintosh OS X, and Microsoft Windows). The instructions that follow
will help you get the CLI installed on your development workstation; there are separate instructions
for Macintosh OS X and Microsoft Windows; I won’t be covering the Linux install.

 NNoottee
The CLI is a brand new feature for Cordova, so it’s a little finicky about your development
system’s configuration. Be sure to follow all of the steps in the CLI readme.md. In the sections
that follow, I show you all of the steps I had to complete to get this to work on my Macintosh and
Windows systems. In your environment, you may or may not need to follow these steps.

Be prepared to update all of your mobile SDKs and development tools, and be sure to follow all
of the instructions. Be prepared to be patient because the CLI has a lot of required libraries that
must be installed with it.

The CLI has to be able to create new Cordova projects, so it provides the necessary project files, plus it
has to interface with the native SDKs to build projects and load applications in an emulator or
simulator. Therefore, you have to make sure that the appropriate SDKs are installed (depending on
which platforms you’re working with) and that the SDKs are visible to the CLI. For BlackBerry, iOS,
and Windows, for example, the SDKs are installed on the system, so the CLI can easily find what it

http://www.nodejs.org
http://docs.phonegap.com/en/3.0.0/index.html

ptg11524036

Chapter 3: Installing the Cordova Command-Line Interface 29

needs. For Android, there is no installer, so you have to manually configure your system so the CLI can
find the SDK and associated tools.

In the sections that follow, I show you how to install the appropriate tools for Android, BlackBerry 10,
iOS, and Windows Phone required to use the Cordova CLI on Microsoft Windows and Mac OS X.
Chapters 7 through 10 show you in detail how to use the platform-specific capabilities for the different
mobile OSs listed. So, if you’re going to do some Cordova development for a particular mobile OS,
read through the instructions here, then take a look at the appropriate chapter for your particular OS
(Chapter 7 for Android, Chapter 8 for BlackBerry 10, Chapter 9 for iOS, and Chapter 10 for Windows
Phone 8).

AAnnddrrooiidd DDeevveellooppmmeenntt TToooollss
One of the requirements for the Android SDK is the Java Development Kit (JDK). On Macintosh,
you should have Java already available, although you may have to install it first. Open a terminal
window and type javac at the command prompt, and press Enter. If you see a bunch of help text
scroll by, you’re all set. If not, you’ll see instructions on how to download and install the appropriate
Java files for your system.

On Windows, you need to point your browser of choice to http://java.oracle.com and download the JDK.
On the Java home page, select Java SE, then download and install the latest version of the JDK.

At the conclusion of the JDK installation, there’s still one more step to complete: you need to define the
JAVA_HOME environment variable and point it to where the JDK is installed. To create the JAVA_HOME
environment variable, assuming you’re running Windows 7, right-click on the Computer icon (it used
to be called My Computer in older versions of Windows), then select Properties. On the dialog that
appears, select Advanced system settings, as highlighted on the left side of Figure 3.1.

FFiigguurree 33..11 Windows Control Panel: System Settings

http://java.oracle.com

ptg11524036

30 Chapter 3: Installing the Cordova Command-Line Interface

In the dialog that appears, select the Advanced tab, as shown in Figure 3.2, and click the Environment
Variables… button highlighted in the figure.

FFiigguurree 33..22 Windows System Properties

In the dialog that appears, click the New button to add a user variable called JAVA_HOME that points to
where the JDK software is located, as shown in Figure 3.3.

FFiigguurree 33..33 Adding the JAVA_HOME User Variable

ptg11524036

Chapter 3: Installing the Cordova Command-Line Interface 31

To test the configuration, save your changes, open a new terminal window and type set, then press
Enter. You should see a long list of environment variables; look for an entry for your new JAVA_HOME
variable.

With Java installed and configured, it’s time to install the Android SDK. Open your browser of choice
and point it to http://developers.android.com. On the Android developer home page, follow the links to
download the Android SDK; on the current site, it is labeled “Get the SDK.”

There is no installer for the SDK; it ships as a .zip file, so after it downloads, you have to extract the
files to a location that makes sense for you. On Macintosh OS X, when you download .zip files using
the Safari browser, the files are automatically extracted to the Downloads folder for you. Some
developers might drag the extracted folder to the /Applications folder, but on my system I simply left
everything in Downloads.

The SDK download includes the tools you need to build and emulate Android applications, including a
preconfigured version of Eclipse, but does not contain all of the SDK libraries and device emulators
you might need for your applications. There are additional steps you need to follow to download the
SDK libraries and device emulators you will need—follow the instructions located at
http://developer.android.com/sdk/installing/bundle.html to complete this step.

Because there’s no installer for the Android SDK, the CLI won’t know where to find Android SDK
tools, so you have to add some folders to the system path. Specifically, the CLI needs to know where to
find the SDK platform-tools and tools folders.

On Macintosh, there are several ways to update the system path; for my installation, I used TextMate to
modify the paths file by issuing the following command:
mate /etc/paths

Figure 3.4 shows the file open in the editor. I left the existing file contents alone and the file paths for
the platform-tools and tools folders to the file as separate lines.

FFiigguurree 33..44 Editing the Macintosh OS X paths file

http://developers.android.com
http://developer.android.com/sdk/installing/bundle.html

ptg11524036

32 Chapter 3: Installing the Cordova Command-Line Interface

On Windows, you can access the settings you need from the Control Panel. The easiest way to get there
is to right-click on the Computer icon in the Start Menu then select Properties. In the window that
appears, select Advanced system settings, as shown in Figure 3.1. In the Environment Variables dialog,
select the PATH variable and click the Edit button, or simply double-click on the PATH entry. Append
the folder paths for the Android SDK platform-tools and tools folders to the existing path environment
variable, placing a semicolon between each entry, as shown in Figure 3.5.

FFiigguurree 33..55 Windows Environment Variables

After saving your changes, you should be able to open a terminal window and type android to run the
Android SDK Manager, as shown in Figure 3.6. The SDK Manager should look the same regardless of
whether you’re running on Macintosh OS or Windows.

ptg11524036

Chapter 3: Installing the Cordova Command-Line Interface 33

FFiigguurree 33..66 Testing the Android Configuration

If you added the two required paths to the system path and the SDK Manager doesn’t load when you
type android at a command prompt, then the configuration is incomplete and the CLI will not be able
to manipulate Android projects. You’ll need to go back and resolve any issues before continuing.

If you know you will need to develop Cordova applications for Android OS versions beyond the default
ones installed with the Android SDK Manager, now might be a good time to select the required
additional platforms and install those as well.

You can read more about Android development for Apache Cordova in Chapter 7, “Android
Development with Cordova.”

BBllaacckkBBeerrrryy DDeevveellooppmmeenntt TToooollss
To build Cordova applications for BlackBerry, you must register for and install a set of encryption
keys used to sign BlackBerry applications. A BlackBerry application will run in a BlackBerry
simulator but must be signed before it will run on a physical device. To register for a set of keys,
point your browser of choice to https://www.blackberry.com/SignedKeys/codesigning.html and
follow the instructions. The good news is that signing keys are free and can be obtained in 1 to 2
hours. After you request the keys, you will receive several emails with instructions on how to
configure your development environment for them. I describe how to register and use the signing
keys in Chapter 8, “BlackBerry 10 Development with Cordova.”

For Cordova 3, you will use the BlackBerry Native SDK (NSDK) to build Cordova applications. Older
versions of Cordova used the BlackBerry WebWorks SDK, but they’ve switched over to the NSDK.

https://www.blackberry.com/SignedKeys/codesigning.html

ptg11524036

34 Chapter 3: Installing the Cordova Command-Line Interface

It’s possible that by the time you read this that there will be a smaller, command-line tools installation
you can use for Cordova development. Be sure to check the readme at
https://github.com/apache/cordova-cli to make sure of the latest requirements before continuing.

 NNoottee
Cordova 3.0 and higher support development on BlackBerry 10 and the BlackBerry PlayBook
device platforms. Beginning with Cordova 3.0, support for BlackBerry 7 devices has been
dropped, so if you want to develop for older BlackBerry devices, you need to use Cordova 2.9 or
earlier.

To install the NSDK, point your browser to http://developer.blackberry.com/native and follow the
instructions to download and install the appropriate software depending on whether you will be
developing for BlackBerry 10 or the BlackBerry PlayBook platform. The NSDK installation requires
that you execute a script or batch file (depending on whether you’re running on Macintosh OS X or
Windows) to properly configure the system environment for command-line use. Be sure to follow the
complete installation instructions on the BlackBerry Developers website. If you don’t complete this
step, you may see the following error during installation of the CLI:
WARNING: Your system does not meet requirements to create blackberry projects. See error
output below.

The BB10NDK environment variable QNX_HOST is missing. Make sure you run `source <path to
bb10ndk>/bbndk-env.sh`. Even better, add `source`ing that script to your .bash_profile or
equivalent so you don't have to do it manually every time.

SKIPPING blackberry bootstrap.

The BlackBerry device simulators for BlackBerry 10 and the PlayBook use a VMWare virtual machine
for the simulators. For Macintosh installations, you need to acquire and install a VMWare Fusion
(www.vmware.com/products/fusion/overview.html) license before you can install the simulators. For
Windows, you can use the free VMWare player application, which is available at
www.vmware.com/products/player. Simply install the player application then install the BlackBerry 10
device simulator software.

You can read more about BlackBerry 10 development for Apache Cordova in Chapter 8.

iiOOSS DDeevveellooppmmeenntt TToooollss
Before you can do much around iOS development, you must join the Apple iOS Developer program.
You can find information about the program at https://developer.apple.com/programs/ios; there’s a
yearly fee and different capabilities available to you depending on which program you choose.

Next, you want to open the Macintosh App Store, search for “xcode,” and install the Xcode IDE, as
shown in Figure 3.7.

http://www.vmware.com/products/fusion/overview.html
http://www.vmware.com/products/player
https://github.com/apache/cordova-cli
http://developer.blackberry.com/native
https://developer.apple.com/programs/ios

ptg11524036

Chapter 3: Installing the Cordova Command-Line Interface 35

FFiigguurree 33..77 Macintosh App Store Xcode Entry

Xcode is a huge install, so find something else to do for a while as it downloads. Once the installation
has completed, you need to launch Xcode and install Xcode command-line tools. With Xcode open,
open the Xcode menu and select Preferences. In the dialog that appears, select Downloads, then the
Components tab, shown in Figure 3.8.

FFiigguurree 33..88 Xcode Preferences Dialog

ptg11524036

36 Chapter 3: Installing the Cordova Command-Line Interface

If you have the command-line tools installed as shown in Figure 3.8, you’re all set. If not, there will be
a button on the far right you can click to complete the installation. This is another large download, so be
prepared for this to take a while. With that complete, you’re still not done: there are a few more steps to
complete for your Xcode configuration.

The Xcode command-line tools have their own license agreement that you must agree to before they
can be used. You can’t agree to the terms during installation; instead you must open a Macintosh
Terminal window and execute the following command:
xcodebuild -license

If you receive an error, then the Xcode command line hasn’t been installed correctly, and you’ll have to
go back and resolve the problem before continuing. If installed correctly, you should see a screen
similar to the one shown in Figure 3.9.

FFiigguurree 33..99 Xcode License Agreement

Press the space bar repeatedly until you have read the entire agreement. When you reach the end of the
agreement, you will see a screen similar to the one shown in Figure 3.10. If you agree with the terms of
the agreement, type the word “agree” and press the Enter key. If you don’t, then you will not be able to
use the Xcode command-line tools, and the Cordova CLI will not work for iOS development on the
system—sorry.

ptg11524036

Chapter 3: Installing the Cordova Command-Line Interface 37

FFiigguurree 33..1100 Agreeing to the Xcode License Agreement

If you skip this process, during the installation of the Cordova CLI, you will receive the error message
shown in Figure 3.11.

FFiigguurree 33..1111 Cordova CLI Installation Error

ptg11524036

38 Chapter 3: Installing the Cordova Command-Line Interface

If you intend to use the CLI to build and test Cordova applications, you may have one last step to
complete first. At this stage of the installation process, if you attempted to test a Cordova application on
iOS using the CLI, you may get the following error:
[Error: An error occurred while emulating/deploying the ios project.Error: ios-sim was not
found. Please download, build and install version 1.5 or greater from
https://github.com/phonegap/ios-sim into your path. Or 'brew install ios-sim' using
homebrew: http://mxcl.github.com/homebrew/

This happens because the tools needed for the CLI to launch the iOS simulator aren’t (currently)
included with the Cordova download or the CLI, so you have to install them manually. The error
message provides you with two options. I didn’t have Homebrew installed, so I chose to install directly
from Github. I downloaded the project files from https://github.com/phonegap/ios-sim, opened a
Terminal window, navigated to the folder where I’d extracted the ios-sim download, then issued the
following command in the terminal:
rake install prefix=/usr/local/

The command will build the tool and install it in a place where it can be easily accessed by the CLI.

You can read more about iOS development for Apache Cordova in Chapter 9, “iOS Development with
Cordova.”

WWiinnddoowwss PPhhoonnee DDeevveellooppmmeenntt TToooollss
If you will be doing Windows Phone development for Cordova, you first need a system running
Microsoft Windows (the development tools won’t run on Linux or Macintosh OS X), plus you need to
install the Microsoft Windows Phone SDK. You can download the SDK from the Windows Phone Dev
Center located at http://developer.windowsphone.com. You can use version 8 of the SDK for both
Windows Phone 8 and Windows Phone 7.5 applications, so if you’re developing for those two OSs,
you have all you need in that version. Windows Phone applications are built using Visual Studio, and
there’s a free Visual Studio Express download available in the dev center. For Windows Phone 8
applications, you need to install Visual Studio Express 2012, which is included with the SDK. After
you install the SDK, you need to register with Microsoft for a free license key for Visual Studio
Express.

The Windows Phone development tools have some hefty system requirements, so be sure to check out
the requirements for the particular version of Visual Studio you will be using for your Cordova
development and make sure your system exceeds the minimum requirements. Failure to do so will
cause some stress, as the system will not be as responsive as you may expect.

 WWaarrnniinngg
The Windows Phone emulators place a pretty big load on the system running them. Microsoft
has enhanced the tools to help reduce the system requirements, but when you launch an
emulator for the first time, you’ll get warnings for some system BIOS settings you need to
change to enhance performance.

When I wrote PhoneGap Essentials, I found that I couldn’t even run the emulators in a VMWare
virtual machine, even on the most modern and fastest system I had. For this book, I decided to
upgrade one of my lab systems, install Windows 8, and dedicate it to Windows Phone
development so I wouldn’t have to deal with potential performance issues.

You can read more about Windows Phone 8 development for Apache Cordova in Chapter 10,
“Windows Phone 8 Development with Cordova.”

https://github.com/phonegap/ios-sim
http://developer.windowsphone.com

ptg11524036

Chapter 3: Installing the Cordova Command-Line Interface 39

CCLLII IInnssttaallllaattiioonn
The CLI is written in JavaScript and therefore uses Node.js as a runtime execution engine. The CLI
currently requires Node.js 0.10 and higher, so if you already have it installed, make sure you update it
to the latest version. To install Node.js, point your browser of choice to www.nodejs.org, then
download and install the software. Node.js will install in your system path, so you can open a
terminal window and type node to launch the Node.js application.

During installation, the CLI retrieves some code from GitHub (www.github.com), so you will need to
have Git installed on your development workstation. If you’re running on Linux or Macintosh OS X,
you can install Git using the Node.js package manager (npm) by opening a terminal window and
typing:
npm install –g git

On Windows, you will have to download Git tools and install them on your development workstation
from http://git-scm.com.

Once you’ve completed the installation, open a terminal window (Mac OS X) or command prompt
(Windows), type git, and press Enter. A bunch of text should scroll by, and then you should see a
screen similar to the one shown in Figure 3.12.

FFiigguurree 33..1122 Testing the Git installation

If you receive an error message indicating that the git command couldn’t be found, then the Git
installation didn’t complete successfully, and you will need to resolve the error before continuing.

With Git and Node.js installed, you’re ready to install the Cordova CLI; to install the CLI, you have
two options.

If you downloaded the Cordova framework from the Cordova website (described in Chapter 2), you can
navigate to the folder that contains the framework files and extract the contents of the cordova-cli.zip

http://www.nodejs.org
http://www.github.com
http://git-scm.com

ptg11524036

40 Chapter 3: Installing the Cordova Command-Line Interface

file. Once the files are extracted, open a terminal window and navigate to the folder that contains the
extracted files, then issue the following command:
npm install

The other option is to pull the latest version of the CLI from the Internet using npm. On Windows, open
a command prompt and issue the following command:
npm install –g cordova

The –g in the command tells npm to install the Cordova CLI globally—if you did not use this
parameter, the CLI would be available only from the current folder.

On Macintosh, you must do more to complete the installation. The previous command may work, but if
you receive the EACCESS error shown in Figure 3.13, you will have to try a different approach.

FFiigguurree 33..1133 Cordova CLI Installation Access Error

To get around this error, you need to install Cordova with sudo by using the following command:
sudo npm install –g cordova

Sudo allows you to execute programs with a higher access level, so when you issue the command, you
should be prompted for your password before the installation begins.

The CLI installation installs a ton of stuff, so be prepared to watch a lot of information go scrolling by.
When it is all done, you will see a message summarizing what was installed; if you scroll back up
through the listing, you will see how much stuff was installed during the process.

ptg11524036

Chapter 3: Installing the Cordova Command-Line Interface 41

 WWaarrnniinngg
In my experience with the CLI, a lot can go wrong with the installation, but you won’t be able to
tell because it will seem to have installed correctly. To remedy this, you should scroll back
through the entire installation history shown in the terminal and look for errors.

That’s it—that’s all there is to installing the Cordova CLI. To test the installation, open a terminal
window, type cordova at the prompt, and press Enter. If everything installed correctly, you should see
a screen similar to the one shown in Figure 3.14.

FFiigguurree 33..1144 Cordova Help Screen

If you’re interested in using the PhoneGap CLI, it installs basically the same way; you can install from
the Internet using the following command:
npm install –g phonegap

The PhoneGap CLI will likely be a bit behind the Cordova CLI, so don’t expect the two to be at the
same version number or to have all of the same features. Features are typically flushed out in the
Cordova CLI, then migrated into the PhoneGap CLI later.

WWrraapp--UUpp
In this chapter, I showed you how to install the Cordova CLI on Windows and Macintosh OS X. With
these tools in place, you’re ready to begin writing your own Cordova applications. In the next chapter, I
show you how to use the CLI to manage your Cordova projects.

ptg11524036

42 Chapter 4: Using the Cordova Command-Line Interface

4
Using the Cordova

Command-Line Interface

As mentioned in Chapter 2, included with the framework files for most of the supported mobile
device platforms are scripts that you can use to create new projects and test/debug applications. The
problem with these scripts is that they’re specific to each mobile device platform and therefore can’t
be used to manage a cross-platform project in its entirety.

To make it easier for developers to manage their projects, the Cordova project team built a single,
unified command-line interface (CLI) that works across all of the Cordova-supported mobile device
platforms. This chapter illustrates how to use the Cordova CLI to manage Apache Cordova application
projects.

AAbboouutt tthhee CCLLII
Because Cordova applications are web applications and can be coded using any text editor, and the
mobile device manufacturers use different integrated development environments (IDE) and project
structures for building native applications, there wasn’t a single, simple way to create and manage
Cordova applications for multiple mobile device platforms. With earlier versions of Cordova,
developers had to create multiple projects, one for each mobile device platform, and copy the web
application code between the projects. In Cordova 3.0, the project also migrated all of the Cordova
APIs to plugins, so managing your Cordova projects, web content, and installed plugins could be quite
difficult.

Beginning with Cordova 3.0 (actually, the CLI was available in prerelease form in Cordova 2.7), the
project added a CLI that provides a suite of commands a developer can use to

▪ Create cross-platform Cordova application projects

▪ Add support for each of the Cordova supported mobile device platform

▪ List supported mobile device platforms

▪ Remove support for a mobile device platform

▪ Add a plugin to a project; this can be a core Cordova plugin, a third-party plugin, or a plugin
you’ve created yourself

▪ List plugins installed in a project

ptg11524036

Chapter 4: Using the Cordova Command-Line Interface 43

▪ Remove a plugin from a project

▪ Prepare, compile, and build projects

▪ Serve an application project’s web content via a web server

▪ Launch an application in the appropriate mobile device simulator

With these commands in place, a developer can manage the complete lifecycle of a Cordova
application. Each of these options is described throughout the remainder of the chapter.

TTrroouubblleesshhoooottiinngg tthhee CCLLII
It’s never good to start a chapter with troubleshooting information, but when working with the CLI,
there will be times when you wish you could tell more about what’s happening behind the scenes when
a command is running. Right after Cordova 2.8 was released, the project team added a verbose mode to
the CLI. To enable verbose mode, add a -d or --verbose to any CLI command.

For example, the following Cordova command returns nothing; it does its work and quits:
cordova build android

In general, as long as the command works before returning nothing to the terminal window, that’s okay,
but when working with a command that fails silently or fails with an unclear error message, it’s useful
to be able to see exactly what’s happening with the command.

If you issue the following command instead:
cordova -d build android

the terminal window will fill with more than 100 lines of text (which I won’t list here) that shows the
status of every step performed by the CLI during processing of the command. Some of the information
is provided by the CLI commands, but some is generated by any third-party tool called by the CLI.

 NNoottee
It’s interesting to see how many different programs are called by the CLI as it does its work. The
default terminal on Macintosh will change the contents of the terminal window title bar with every
external program called by a script. For some longer running processes, it's fun to watch the title
bar to see how much stuff is really going on.

CCLLII CCoommmmaanndd SSuummmmaarryy
Table 4.1 provides a summary of the available CLI commands; the sections that follow describe the
operations in greater detail.

ptg11524036

44 Chapter 4: Using the Cordova Command-Line Interface

Table 4.1 CCoorrddoovvaa CCLLII CCoommmmaanndd SSuummmmaarryy

CCLLII CCoommmmaanndd DDeessccrriippttiioonn

Help Displays information about the available CLI commands

Create Creates a Cordova project and associated project folders and files

Platform Manages the mobile device platforms associated with a Cordova project

Plugin Manages the installation and uninstallation of Cordova plugins

Prepare
Copies the web application content from the Cordova project’s www
folder into the project’s mobile platform project folders

Compile Packages web applications into native Cordova applications

Build
Prepares then packages web applications into native Cordova
applications

Emulate
Runs a Cordova application in one or more mobile device platform’s
device simulators

Run
Runs a Cordova application in one or more mobile device platform’s
devices

Serve
Serves the web application content so it can be accessed via a web
browser

UUssiinngg tthhee CCLLII
In this section, I show you how to use the commands exposed through the Cordova CLI. I cover the
mechanics of the commands and what happens when each is executed. Look to Chapter 6, “The
Mechanics of Cordova Development,” for more information about the Cordova application project
files.

To learn more about what commands are available in the CLI, you can open a terminal window (or
Windows command prompt—I’m just going to call it a terminal window going forward) and get help
by typing:
cordova help

You can also check the CLI version number by using the following command:
cordova –v

or
cordova –version

CCrreeaattiinngg aa CCoorrddoovvaa PPrroojjeecctt
Before you can do any Cordova development, you must first create an application project. To help
you, the Cordova CLI includes a create command, which is used to create new projects.

To create a new Cordova project, open a terminal window and navigate to the folder where you want
the project folder created, then issue the following command:
cordova create project_folder

ptg11524036

Chapter 4: Using the Cordova Command-Line Interface 45

This creates a simple Cordova project structure and web content files you need for the application. You
can also specify an application ID and application name using the following command:
cordova create project_folder app_id app_name

What this does is create the same project folder but also writes the application ID to the application’s
configuration file and allows you to have an application name, which is different than the application
folder name. For example, to create a project in a folder called myapp but with an application name of
Hello, you would issue the following command:
cordova create myapp com.cordovaprogramming.hello Hello

Let me show you an example. I’m going to create a sample application project called Test. To do so, I
navigate to the location where I want to create the project and issue the command shown in Figure 4.1.

FFiigguurree 44..11 Cordova CLI – Creating a New Project

Notice that the command doesn’t tell you anything about what happened; it simply runs and returns to
the command prompt.

 NNoottee
All of the Cordova CLI commands operate against the current folder. The create command
creates a folder structure for your Cordova projects, and the remaining commands must be
issued from within the project folder created by create.

The CLI will run and will create the folder structure shown in Figure 4.2. The folder structure organizes
the Cordova project in a way that simplifies the process of using this application across multiple mobile
device platforms. Notice that the www folder is separate; this allows you to create a single web
application that’s shared across multiple mobile device platforms. I talk more about the web project
structure and files in the next chapter.

The merges folder contains web application assets (HTML, CSS, and JavaScript files plus images,
videos, and more) that differ across mobile device platforms. If you had, for example, a CSS file with
two versions, one for Android and another for iOS, you could use the folder structure in the merges
folder to store each file in a mobile device platform–specific location and have the appropriate file
copied into the project folder at build time. You would place your Android-specific files (and
subfolders) in merges/android and your iOS-specific files in merges/ios.

ptg11524036

46 Chapter 4: Using the Cordova Command-Line Interface

FFiigguurree 44..22 New Cordova Project Folder

The platforms folder is used to store a separate folder for each mobile device platform being supported
by this application. I talk more about this in the next section. The plugins folder is used to store the
source code files for each plugin used by the application. I talk more about this later as well.

In the sections that follow, I describe the remaining CLI commands. The create command creates a
new project in a subfolder of the folder from where the command was issued. The remaining commands
must be issued from a terminal window pointing within the project folder. In this section, I created a
project called test, and the CLI created a folder called test for the project. In order for me to issue CLI
commands which manipulate the test project, I must use the cd command to change directory into the
test folder before using any of the remaining commands.

 CCoorrddoovvaa CCLLII LLaazzyy LLooaaddiinngg
Instead of preloading everything the Cordova CLI needs, the CLI uses a process called lazy
loading to download the requisite project files to create Cordova projects and add platform
support to a project. The files are downloaded only when you need them.

When you create a project, the CLI downloads the default HelloWorld project, extracts it, and
copies it to the appropriate project folder. When you add a platform to a project, the CLI
downloads a preconfigured project, extracts it, and copies it to the platform folder.

As interesting as this approach is, I encountered a lot of problems with this feature as I worked
with the prerelease and even production versions of the CLI. In a lot of my testing, the CLI would
attempt to download the files it needed, and the download or the extraction would fail—but the
mechanism the CLI uses to determine if the download was successful would tell the CLI that the
files it needed were actually there. The CLI checks for the existence of the downloaded files

ptg11524036

Chapter 4: Using the Cordova Command-Line Interface 47

folder and, if the folder exists, simply assumes everything it needs is in there.

I pushed on the CLI development team to modify the lazy load process to leverage the
appropriate proxy settings that might be set on the system running the CLI. This fixed some of
the problems with downloading the files on a corporate network. The check for the existence of
the download files is still broken, but the development team has promised a fix for the next
version.

The CLI uses a folder called .cordova for storing its lazy-loaded files. The folder is located
immediately under your user’s home folder (c:\users\user_name\ on Windows,

/users/user_name/.cordova on Macintosh). You can see an example of the folder structure in
Figure 4.3. On Macintosh, the folder is hidden, so you can’t view it in Finder without first
reconfiguring the system to show hidden files and folders in Finder.

FFiigguurree 44..33 CLI .cordova Folder Structure

If you get an error when creating a project or adding a platform, repeat the process using the –d
debug flag and look for an indication of what is happening. If you see a message that says the
CLI has the files it needs and is skipping the download, take a look in the folder name mentioned
in the error message. If there are no files located in the specified location, you should whack the
empty folder and try again.

ptg11524036

48 Chapter 4: Using the Cordova Command-Line Interface

PPllaattffoorrmm MMaannaaggeemmeenntt
The project structure we’ve created so far has only a few empty folders plus a web application
project. It doesn’t know anything about the different mobile device platform it needs to support. The
Cordova CLI provides a platform command that allows you to manage the project files for each of
the mobile device platforms your application supports.

AAddddiinngg PPllaattffoorrmmss
To add support for a particular mobile device platform to your Cordova application, you must open a
terminal window and navigate into the Cordova project folder. Then, to add a project file for a
particular mobile device platform, you must issue the following command:
cordova platform add platform_name

 WWaarrnniinngg
The development tools used to create projects for the particular platform must be installed on
the system and visible to the CLI before adding a platform. The CLI uses the platform’s native
tools to create a new project, so if the tools are not available to the CLI, the command will not
work.

For example, if you wanted to add an Android project to your Cordova application, you would issue the
following command from within the Cordova project folder:
cordova platform add android

You can also specify multiple target mobile device platforms in a single command, as shown in the
following example:
cordova platform add android blackberry ios

The command doesn’t return anything to the terminal window on success, so unless you see an error
reported, the command worked. Let me show you an example. Using the test project we created in the
previous section, I must first change to the test directory, then issue the platform command, as shown
in Figure 4.4.

FFiigguurree 44..44 Cordova CLI: Adding iOS Support to a Cordova Project

If you take a look at Figure 4.5, you’ll see that my project has some new folders and files. In this case,
the platforms folder now contains an iOS folder and a complete Xcode project called
HelloCordova.xcodeproj. At this point, you could fire up Xcode, open the project, and run the
application in the iOS simulator.

ptg11524036

Chapter 4: Using the Cordova Command-Line Interface 49

FFiigguurree 44..55 Cordova Project Folder with iOS Platform Added

The Xcode application project is called HelloCordova because I didn’t specify an app name when I
created the project. If I’d created the project using the second form of create (described previously),
like this:
cordova create test com.cordovaprogramming.hello Hello

the Xcode project would have been named Hello.xcodeproj.

To add support for Android, I executed the command shown in Figure 4.6.

FFiigguurree 44..66 Cordova CLI: Adding Android Support to a Cordova Project

If you now take a look at the test folder we’ve been working with, you will see that the project’s
platforms folder now contains an android folder with a complete Android project inside, as shown in
Figure 4.7.

ptg11524036

50 Chapter 4: Using the Cordova Command-Line Interface

FFiigguurree 44..77 Cordova Project Folder with Android Platform Added

You can open the Android project in a properly configured version of Eclipse (an Eclipse instance with
Android Development Tools [ADT] installed) and run and debug the application in the Android
emulator. I show you how to do this in Chapter 7, “Android Development with Cordova.”

LLiissttiinngg PPllaattffoorrmmss
The Cordova CLI provides a mechanism for listing the platforms that are defined within a Cordova
project. Simply issue any of the following commands in a terminal window inside of the root folder
of a Cordova project:
cordova platforms

cordova platform ls

cordova platform list

The CLI will return a JavaScript Object Notation (JSON) array containing the names of each of the
platforms defined within the project:
['android', 'ios', 'blackberry10']

You can see an example of this output in Figure 4.8.

ptg11524036

Chapter 4: Using the Cordova Command-Line Interface 51

FFiigguurree 44..88 Cordova CLI: Listing Project Platforms

This feature isn’t that useful for developers to use directly, since all they have to do is open the project
folder and see what subfolders exist within the project’s platforms folder. However, for automated
processes, this function is more useful. Since the result is returned as a JSON array, it would be easy for
a Node.js application to parse the resulting array, determine if an expected platform were missing and
add it.

RReemmoovviinngg PPllaattffoorrmmss
If you decide that you no longer need to support a particular mobile platform for your application,
you can remove it by issuing the following command:
cordova platform remove platform_name

You can also use the shortcut rm instead of remove to remove platforms:
cordova platform rm platform_name

So, for my test project, if I want to remove the project files for the iOS project, I would issue the
following command:
cordova platform remove ios

You can see the results of this operation in Figure 4.9.

FFiigguurree 44..99 Cordova CLI: Removing Platforms

The command doesn’t return anything to the terminal window on success, so unless you see an error
reported, the command worked.

ptg11524036

52 Chapter 4: Using the Cordova Command-Line Interface

PPlluuggiinn MMaannaaggeemmeenntt
The ability to manage a Cordova project’s plugin configuration is one of the biggest features of the
CLI. Instead of manually copying around plugin files and manually editing configuration files, the
CLI does it all for you.

AAddddiinngg PPlluuggiinnss

To use the CLI to add a plugin to an existing project, open a terminal window, navigate to the Cordova
project folder, and issue the following command:
cordova plugin add path_to_plugin_files

As an example, to add the Camera plugin to a Cordova application, you could use the following
command:
cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-plugin-camera.git

This connects to the Apache Git repository and pulls down the latest version of the plugin. You can find
a list of the core Cordova plugin locations at
http://cordova.apache.org/docs/en/3.0.0/guide_cli_index.md.html#The%20Command-line%20Interface.

In general, the plugin git location shown in the previous example uses the following format:
https://git-wip-us.apache.org/repos/asf/cordova-plugin-<plugin-name>.git

where <plugin-name> refers to the short name for the plugin.

The CLI can pull plugin code from most any location; if the system can access the location where the
plugin files are located, you can install the plugin using the CLI. If you have plugins installed locally,
say, for example, if you were working with a third-party plugin or one you created yourself and the files
were stored on the local PC, you could use the following command:
cordova plugin add c:\dev\plugins\my_plugin_name

 WWaarrnniinngg
Installing plugins using the CLI is the only supported way to add plugins to a Cordova project.
With previous versions of the framework, plugins were added by the developer manually
copying files around and modifying configuration files. If you try to use that approach with
Cordova 3.0 and beyond, you run the risk of corrupting your Cordova project.

The command doesn’t return anything to the terminal window on success, so unless you see an error
reported, the command worked.

Beginning with Cordova 3.1, plugins can be installed directly from the plugin repository just by
specifying the plugin name. So, to add the console plugin to your application, you would issue the
following command from a terminal window pointing at your Cordova project folder:
cordova plugin add org.apache.cordova.console

The CLI checks the repository for a plugin matching the name specified, pulls down the plugin code,
and installs it into your project.

Figure 4.10 shows a Cordova project folder structure after a plugin has been added using the CLI.
Notice that each plugin has a unique namespace built using the Reverse-DNS name convention plus the
plugin name. All of the Apache Cordova core plugins are referred to by the plugin name added to the

http://cordova.apache.org/docs/en/3.0.0/guide_cli_index.md.html#The%20Command-line%20Interface

ptg11524036

Chapter 4: Using the Cordova Command-Line Interface 53

end of org.apache.cordova.core. So, for the Camera plugin we just added to the project, you can
refer to it via the CLI as org.apache.cordova.core.camera. This approach to plugin naming helps
reduce potential for name conflicts across similar plugins created by different organizations.

FFiigguurree 44..1100 Cordova Project Plugins Folder Content

Plugins have separate folders for the source code for the plugin for each supported mobile device
platform. Additionally, some JavaScript files are consumed by Cordova applications in the www folder.
There is a lot more to know about plugins; I dig deeper into the plugin project folder structure when I
cover plugin development in Chapter 13, “Creating Cordova Plugins.”

LLiissttiinngg PPlluuggiinnss
To view a list of the plugins installed in a Cordova project, open a terminal window, navigate to a
Cordova project folder, then issue the following command:
cordova plugins

The CLI will return the list as a JSON array, as shown here:
['org.apache.cordova.core.camera',

 'org.apache.cordova.core.device-motion',

 'org.apache.cordova.core.file']

In this case, the Cordova project has the Cordova core Camera, Accelerator (device-motion), and File
plugins installed.

RReemmoovviinngg PPlluuggiinnss
To remove a plugin from a Cordova project, open a terminal window, navigate to a Cordova project
folder. then issue the following command:
cordova plugin remove plugin_name

ptg11524036

54 Chapter 4: Using the Cordova Command-Line Interface

You can also use the shortcut rm instead of remove to remove plugins:
cordova plugin rm plugin_name

So, for a project that has the Cordova core File plugin installed, you would remove it from a project by
issuing the following command:
cordova plugin remove org.apache.cordova.core.file

The command doesn’t return anything to the terminal window on success, so unless you see an error
reported, the command worked.

The CLI will essentially reverse the plugin installation process by removing configuration file entries
that point to the plugin plus removing the plugin’s folder from the project’s plugins folder.

BBuuiilldd MMaannaaggeemmeenntt
The CLI has built-in integration with mobile device platform SDKs, so you can use the CLI to
manage the application build process.

PPrreeppaarree
The CLI prepare command copies a Cordova project’s web application content from the www and
merges folders into the appropriate platforms folders for the project. This process is described in
detail in Chapter 6. You will use this command whenever you make changes to a Cordova web
application’s content (in the www or merges folder). The prepare command is called automatically
before many of the operations described throughout the remainder of this chapter.

To use the prepare command, open a terminal window, navigate to a Cordova project folder, then
issue the following command:
cordova prepare

This copies the web application content into the appropriate folders for each of the mobile device
platforms that have been added to the project.

To prepare a specific platform’s files, use the following command:
cordova prepare platform_name

So, to prepare the Android platform folder, use the following command:
cordova prepare android

The command doesn’t return anything to the terminal window on success, so unless you see an error
reported, the command worked.

CCoommppiillee
In Figure 4.7, you can see that there’s a cordova folder in each platform’s folder structure. Within that
folder are platform-specific build scripts used to compile a native application for that platform. The
compile command initiates a compilation process by calling the build script for one or more mobile
platforms.

To use the compile command, open a terminal window, navigate to a Cordova project folder, then
issue the following command:
cordova compile

ptg11524036

Chapter 4: Using the Cordova Command-Line Interface 55

To compile a specific platform’s native application, use the following command:
cordova compile platform_name

So, to compile the Android version of an application, use the following command:
cordova compile android

The command doesn’t return anything to the terminal window on success, so unless you see an error
reported, the command worked.

BBuuiilldd
The build command is similar to compile except that it first calls prepare before calling compile.

To use the build command, open a terminal window, navigate to a Cordova project folder, then issue
the following command:
cordova build

To build a specific platform’s native application, use the following command:
cordova build platform_name

So, to build the Android version of an application, use the following command:
cordova build android

The command doesn’t return anything to the terminal window on success, so unless you see an error
reported, the command worked.

RRuunnnniinngg CCoorrddoovvaa AApppplliiccaattiioonnss
The CLI has built-in integration with mobile device platform simulators, so you can launch Cordova
applications directly onto simulators or physical devices. Chapters 7 through 10 provide more
detailed information about the simulators, how to configure and launch them, as well as what is
required to work with physical devices from the CLI. The following sections provide a high-level
overview of the relevant commands.

EEmmuullaattee
The CLI emulate command automates the process of building an application and deploying it onto a
mobile device simulator. The command first prepares the application, executes the build process, then
deploys the resulting native application package to the simulator.

To run a Cordova application on the default simulator for each of the platforms configured in the
project, issue the following command:
cordova emulate

To emulate the application on a single device platform emulator, Android for example, you would issue
the following command:
cordova emulate android

The CLI is supposed to launch the simulator automatically for you; this works well for iOS but doesn’t
work for BlackBerry, and I had mixed results trying this on Android.

ptg11524036

56 Chapter 4: Using the Cordova Command-Line Interface

For the BlackBerry platform, additional steps must be followed to define simulator targets for the
emulate command; refer to Chapter 8, “BlackBerry 10 Development with Cordova,” for additional
information.

RRuunn
The CLI run command automates the process of building an application and deploying it onto a
physical device. The command first prepares the application, executes the build process, then deploys
the resulting native application package to a connected device.

To run a Cordova application on a physical device for each of the platforms configured in the project,
issue the following command:
cordova run

To run the application on a single device, Android for example, you would issue the following
command:
cordova run android

For the BlackBerry and Windows Phone 8 platforms, additional steps must be followed before you can
run an application on a device. Refer to Chapter 8 for additional information on configuring a
BlackBerry device and Chapter 10, “Windows Phone 8 Development with Cordova,” for Windows
Phone 8.

SSeerrvvee

When working with a mobile web application, many developers find that it’s better to test the
application in a desktop browser before switching to the mobile device. This is especially important
when it comes to Cordova applications because an extra packaging process has to happen before the
application can be run on a device or simulator.

The CLI includes a serve command, which a developer can use to launch a local web server that hosts
a particular platform’s web content. It doesn’t expose any of the Cordova APIs to the browser, so all
you can really test using this option is your web application’s UI. You must issue the CLI prepare
command before launching the server to make sure your web content is up to date.

To use the serve command, open a terminal window, navigate to a Cordova project folder, then issue
the following command:
cordova serve platform_name

To serve up a Cordova project’s Android web application content, you would issue the following
command:
cordova serve android

Figure 4.11 shows the serve command in action. Once the command loads, it will show you what URL
you must use to access the web server. Simply open your browser of choice and navigate to the
specified URL to access the application content.

ptg11524036

Chapter 4: Using the Cordova Command-Line Interface 57

FFiigguurree 44..1111 Launching a Web Server using the CLI

When running this process on Microsoft Windows, you may receive a security warning similar to the
one shown in Figure 4.12. You need to click the Allow access button to allow the web server to start.

FFiigguurree 44..1122 Windows Security Alert

By default, the server will respond to port 8000, as shown in Figure 4.11. If you want to use a different
port, you can pass the port number to the CLI, as shown in the following example:
cordova serve platform_name port_number

So, for the Android example shown previously, to serve the Android platform’s content on port 8080,
you would use the following command:
cordova serve android 8080

ptg11524036

58 Chapter 4: Using the Cordova Command-Line Interface

WWrraapp--UUpp
In this chapter, I showed you how to utilize the Cordova CLI to manage your Cordova application
projects. The capabilities provided by the CLI dramatically simplify the cross-platform development
process and managing your Cordova application’s plugin configuration.

In the next chapter, I discuss the structure of a Cordova application. In Chapter 5, I describe the process
of building and debugging your Cordova applications.

ptg11524036

Chapter 5: Anatomy of a Cordova Application 59

5
Anatomy of a

Cordova Application

Now that we have Cordova and/or the command-line interface installed, it’s time to talk about Cordova
applications and Cordova application development. In this chapter, I show you what makes a web
application a Cordova application and give you a tour of the sample application the Cordova team
provides.

As mentioned at the beginning of the book, a Cordova application can do anything that can be coded in
standard, everyday HTML, CSS, and JavaScript. There are web applications and Cordova applications,
and the distinction between them can be minor or considerable.

The sections in this chapter highlight different versions of the requisite HelloWorld application found in
almost any developer book, article, or training class. For the purpose of highlighting aspects of the
applications’ web content, rather than how they were created, the steps required to create the
applications are omitted. Refer to the chapters that follow for specific information on how to create and
test and debug Cordova application projects for several of the supported mobile platforms.

HHeelllloo WWoorrlldd!!
As with any self-respecting developer book, we’re going to start with the default HelloWorld
application, then build on it to highlight different aspects of a Cordova application. The following
HTML content (Listing 5.1) describes a simple web page that displays some text on a page.

Listing 5.1 HelloWorld1 Application

<!DOCTYPE HTML>
<html>
<head>
 <title>HelloWorld1</title>
</head>
<body>
 <h1>Hello World</h1>
 <p>This is a sample Cordova application</p>
</body>
</html>

ptg11524036

60 Chapter 5: Anatomy of a Cordova Application

If you package that page into a Cordova application and run it on a smartphone device or device
emulator (in this case, an Android emulator), the app will display a simple splash screen, and then you
will see something similar to what is shown in Figure 5.1.

FFiigguurree 55..11 HelloWorld1 Application Running on an Android Emulator

This is technically a Cordova application because it’s a web application running within the Cordova
native application container. If I hadn’t cropped the image, you would see that the web application
consumes the entire screen of the emulated Android device. Even though I’m running a web
application, because it’s running within a native application, there’s no browser UI being displayed and
no access to browser features. It’s simply a native application rendering web content.

There is, however, nothing Cordova-ish about this application. It’s running in the Cordova native
container, but it isn’t leveraging any of the APIs provided with the Cordova framework. Therefore, any
web application can be packaged into a Cordova application; there’s nothing forcing you to use the
Cordova APIs. If you have a simple web application that just needs a way to be deployed through a
smartphone’s native app store, then using Cordova is one way to accomplish that goal.

CCoorrddoovvaa IInniittiiaalliizzaattiioonn
Now let’s take the previous example application and add some Cordova-specific stuff to it. The
HellowWorld2 application, shown in Listing 5.2, has been updated to include code that recognizes
when the Cordova application has completed initialization and displays an alert dialog letting you know
Cordova is ready.

ptg11524036

Chapter 5: Anatomy of a Cordova Application 61

Listing 5.2 HelloWorld2 application

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1, minimum-scale=1,
 width=device-width;" />
 <script type="text/javascript" charset="utf-8"
 src="cordova.js"></script>
 <script type="text/javascript" charset="utf-8">
 function onBodyLoad() {
 document.addEventListener("deviceready",onDeviceReady,
 false);
 }
 function onDeviceReady() {
 navigator.notification.alert("Cordova is ready!");
 }
 </script>
 </head>
 <body onload="onBodyLoad()">
 <h1>HelloWorld2</h1>
 <p>This is a sample Cordova application.</p>
 </body>
</html>

 WWaarrnniinngg
If you copy the code from any of the listings in this chapter and try it in your own Cordova
applications, you may notice that there are some extra carriage returns in the middle of some of
the HTML. This was done to make the code render cleanly in the printed edition of the book. To
download clean versions of all of the projects in this book, access the Code section of the book’s
website at www.cordovaprogramming.com or download it from Github at
https://github.com/johnwargo/cordova-programming-code.

http://www.cordovaprogramming.com
https://github.com/johnwargo/cordova-programming-code

ptg11524036

62 Chapter 5: Anatomy of a Cordova Application

On the iPhone simulator, the application will display the screen shown in Figure 5.2.

FFiigguurree 55..22 HelloWorld2 Application Running on an iOS Simulator

Within the <Head> section of the web page are two new entries: meta tags that describe the content type
for the application and viewport settings. The content type setting is a standard HTML setting and
should look the same as it would for any other HTML5 application.

The following viewport settings tell the embedded web browser rendering the content how much of the
available screen real estate should be used for the application and how to scale the content on the
screen:
<meta name="viewport" content="user-scalable=no, initial-scale=1, maximum-scale=1, minimum-
scale=1, width=device-width;" />

ptg11524036

Chapter 5: Anatomy of a Cordova Application 63

In this case, the HTML page is configured to use the maximum height and width of the screen (through
the width=device-width and height=device-height attributes) and to scale the content at 100%
and not allow the user to change that setting in any way (through the initial-scale=1, maximum-
scale=1, and user-scalable=no attributes).

 NNoottee
The viewport and associated attributes are not required. If they’re omitted, the browser will
revert to its default behavior, which may (or may not, who knows?) result in the application’s
content either consuming less of the screen area available to it or else zooming beyond it.
Because there’s not much content in the HelloWorld2 application, it could, for example,
consume only the upper half of the screen on some devices. You may also find that on some
platforms, the settings have no effect—all the more reason to test your Cordova applications on
a variety of mobile devices before release.

There’s also a new script tag in the code that loads the Cordova JavaScript library:
<script type="text/javascript" charset="utf-8" src="cordova.js"></script>

This script tag loads the core Cordova API library and makes any core Cordova capabilities available
to the program. Remember, though, that with Cordova 3, the core APIs have all been migrated to
plugins. The cordova.js file contains some basic housekeeping functions.

The JavaScript code in a Cordova application does not have immediate access to the Cordova APIs
after the web application has loaded. The native Cordova application container must complete its
initialization process before it can respond to calls JavaScript made using the Cordova APIs. To
accommodate this delay in API availability, a web developer building Cordova applications must
instruct the container to notify the web application when the Cordova APIs have completed
initialization. Any application processing that requires the use of the APIs should be executed by the
application only after it has received its notification that the APIs are available.

In the HelloWorld2 application, this notification is accomplished through the addition of an onload
event defined in the page’s body section:
<body onload="onBodyLoad()">

Within the onBodyLoad function, the code registers an event listener that instructs the application to
call the onDeviceReady function when the device is ready, when the Cordova application container has
finished its initialization routines and fired its deviceready event:
document.addEventListener("deviceready", onDeviceReady, false);

In this example application, the onDeviceReady function simply displays a Cordova alert dialog (which
is different than a JavaScript alert dialog; I show you the difference in Chapter 12.) letting the user
know everything’s okay:
navigator.notification.alert("Cordova is ready!")

In production applications, this function could update the UI with content created through API calls or
do whatever other processing is required by the application. You’ll see an example in Listing 5.3.

Remember, most of the Cordova APIs have been removed from the container and implemented as
plugins. So, to utilize the Cordova alert method, you must add the dialogs plugin to your application by
opening a terminal window to your Cordova project folder and issuing the following command:
cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-plugin-dialogs.git

ptg11524036

64 Chapter 5: Anatomy of a Cordova Application

 TThhee CCoorrddoovvaa NNaavviiggaattoorr
Many of the APIs implemented by Cordova are instantiated from the Navigator object.
Unfortunately, it’s not consistent: some do and some do not. Be sure to check the API
documentation before calling an API.

LLeevveerraaggiinngg CCoorrddoovvaa AAPPIIss
Now that we know how to configure an application to wait until the Cordova APIs are available, let’s
build an application that actually uses the Cordova APIs, as illustrated in the HelloWorld3 application
shown in Listing 5.3.

Listing 5.3 HelloWorld3 application

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1, minimum-scale=1,
 width=device-width;" />
 <script type="text/javascript" charset="utf-8"
 src="cordova.js"></script>
 <script type="text/javascript" charset="utf-8">
 function onBodyLoad() {
 document.addEventListener("deviceready", onDeviceReady,
 false);
 }
 function onDeviceReady() {
 br = "
";
 //Get the appInfo DOM element
 var element = document.getElementById("appInfo");
 //Replace it with specific information about the device
 //running the application
 element.innerHTML = 'Cordova Version: ' +
 device.cordova + br +
 'Platform: ' + device.platform + br +
 'Model: ' + device.model + br +
 'OS Version: ' + device.version;
 }
 </script>

 </head>
 <body onload="onBodyLoad()">
 <h1>HelloWorld3</h1>
 <p>This is a Cordova application that makes calls to the
 Cordova APIs.</p>

ptg11524036

Chapter 5: Anatomy of a Cordova Application 65

 <p id="appInfo">Waiting for Cordova Initialization to
 complete</p>
 </body>
</html>

Figure 5.3 shows the HelloWorld3 application running on the BlackBerry Q10 simulator.

FFiigguurree 55..33 HelloWorld3 Application Running on a BlackBerry Q10 Simulator

In this version of the HelloWorld application, the code in the onDeviceReady function has been
updated so the program updates a portion of the application’s content with an ID of appInfo with
information about the device running the application and the version of Cordova used to build the
application. Device-specific information is available via the Cordova device API
(http://cordova.apache.org/docs/en/3.0.0/cordova_device_device.md.html#Device), and this sample
application uses a subset of the available methods in this API.

In order for me to be able to call the Device API, I had to add the Device API plugin to the project
using the CLI command:
cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-plugin-device.git

http://cordova.apache.org/docs/en/3.0.0/cordova_device_device.md.html#Device

ptg11524036

66 Chapter 5: Anatomy of a Cordova Application

EEnnhhaanncciinngg tthhee UUsseerr IInntteerrffaaccee ooff aa CCoorrddoovvaa
AApppplliiccaattiioonn
As you can see from the application examples highlighted so far, the Cordova framework doesn’t do
anything to enhance the user interface (UI) of a Cordova application. The framework provides access to
device-specific features and applications and leaves it up to developers to theme their applications
however they see fit. Web developers should use the capabilities provided by HTML, CSS, and even
JavaScript to enhance the UI of their Cordova applications as needed. I’m not going to cover mobile
web UI design anywhere in this book.

As Android- and iOS-based smartphones became more popular, web developers found themselves
needing to be able to build web applications that mimic the look and feel of native applications on these
mobile platforms. To accommodate this need, many open source and commercial JavaScript mobile
frameworks were created to simplify this task, such as jQuery Mobile (www.jquerymobile.com), Dojo
Mobile (www.dojotoolkit.org/features/mobile), and Sencha Touch (www.sencha.com/products/touch).

 AAddoobbee TTooppccooaatt
To make it easy for web developers to create good-looking Cordova applications, some
developers at Adobe created a small, fast CSS library called Topcoat (http://topcoat.io), which
you can use to apply a simple and clean UI to your Cordova applications. Topcoat is a clean
wrapper around some common web application UI elements with a library of images and button
styles you can use in your application. It’s not a full HTML5 framework like Sencha Touch or
jQuery Mobile, but it’s very useful for creating clean, simple, fast UIs for your web applications.

Although not directly related to Cordova development, the use of these frameworks is very common for
Cordova applications, so it’s useful to highlight them here. In this section, I discuss how to enhance the
UI of a Cordova application using jQuery Mobile (jQM), an offshoot of the popular jQuery project. The
jQuery and jQM libraries work together to provide some pretty useful UI elements and theming for any
mobile web application.

In the HelloWorld4 application shown in Listing 5.4, I took the HelloWorld3 application and applied an
enhanced UI to the application using the jQuery Mobile framework. When running, the application
should have a common look across each supported device.

Listing 5.4 HelloWorld4 application

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1, minimum-scale=1,
 width=device-width;" />
 <link rel="stylesheet" href="css/jquery.mobile-1.3.1.css" />
 <script type="text/javascript" charset="utf-8"
 src="js/jquery-2.0.2.js"></script>
 <script type="text/javascript" charset="utf-8"
 src="js/jquery.mobile-1.3.1.js"></script>
 <script type="text/javascript" charset="utf-8"
 src="cordova.js"></script>

http://www.jquerymobile.com
http://www.sencha.com/products/touch
http://www.dojotoolkit.org/features/mobile
http://topcoat.io

ptg11524036

Chapter 5: Anatomy of a Cordova Application 67

 <script type="text/javascript" charset="utf-8">
 function onBodyLoad() {
 document.addEventListener("deviceready", onDeviceReady,
 false);
 }
 function onDeviceReady() {
 br = "
";
 //Get the appInfo DOM element
 var element = document.getElementById("appInfo");
 //Replace it with specific information about the device
 //running the application
 element.innerHTML = 'Cordova Version: ' +
 device.cordova + br +
 'Platform: ' + device.platform + br +
 'Model: ' + device.model + br +
 'OS Version: ' + device.version;
 }
 </script>

 </head>
 <body onload="onBodyLoad()">
 <div data-role="page">
 <div data-role="header" data-position="fixed">
 <h1>Hello World 4</h1>
 </div>
 <div data-role="content">
 <p>This is a Cordova application that makes calls to
 the Cordova APIs and uses the jQuery Mobile
 framework.</p>
 <p id="appInfo">Waiting for Cordova Initialization to
 complete</p>
 </div>
 <div data-role="footer" data-position="fixed">
 <h1>Cordova Programming</h1>
 </div>
 </div>
 </body>
</html>

ptg11524036

68 Chapter 5: Anatomy of a Cordova Application

Figure 5.4 shows the HelloWorld4 application running on the Android emulator.

FFiigguurree 55..44 HelloWorld4 Application Running on an Android Emulator

ptg11524036

Chapter 5: Anatomy of a Cordova Application 69

Figure 5.5 shows the same application running on an iOS simulator.

FFiigguurree 55..55 HelloWorld4 Application Running on an iOS Simulator

ptg11524036

70 Chapter 5: Anatomy of a Cordova Application

Figure 5.6 shows the same application running on a BlackBerry 10 simulator.

FFiigguurree 55..66 HelloWorld4 Application Running on a BlackBerry 10 Simulator

Notice that the application looks similar across platforms. In a more complicated application, as you
navigate deeper into the application, the jQM framework will automatically add mobile device platform
features to the application, such as a back button on iOS and support for the escape key and menu on
Android and BlackBerry applications.

In this version of the application, some additional resources have been added to the page’s header:
<link rel="stylesheet" href="css/jquery.mobile-1.3.1.css" />

<script type="text/javascript" charset="utf-8"

 src="js/jquery-2.0.2.js"></script>

<script type="text/javascript" charset="utf-8"

 src="js/jquery.mobile-1.3.1.js"></script>

ptg11524036

Chapter 5: Anatomy of a Cordova Application 71

The first line points to a CSS file provided by the jQM framework. It contains the style information
used to render the iPhone-ish UI shown in Figure 5.6. Next come references to the jQuery and jQuery
Mobile JavaScript libraries that are used to provide the customized UIs plus additional capabilities to
the application. The files referenced in the example application are the full versions of the CSS and
JavaScript files. These files are used during testing of the application and should be replaced with the
min versions of the files, as shown in the following code snippet, before rolling the application into
production.
<link rel="stylesheet" href="css/jquery.mobile-1.3.1.min.css" />

<script type="text/javascript" charset="utf-8"

 src="js/jquery-2.0.2.min.js"></script>

<script type="text/javascript" charset="utf-8"

 src="js/jquery.mobile-1.3.1.min.js"></script>

The min versions are compressed, so comments, white space, line breaks, and so on are removed from
the files. Compression allows the files to take up less space within the packaged application, helping to
reduce the overall file size for the application, and enables these resources to load more quickly when
the user launches the application.

The body of the HTML page has been updated to include several HTML div tags wrapped around the
content for the application. These divs include a data-role attribute that is used by jQM to define
specific areas of the content page, which are then styled appropriately depending on which role is
assigned.

In Listing 5.4, the content in the section of the page given the header data-role is styled with a
gradient background and forced to the top of the page by the data-position="fixed" attribute.
Similarly, the content in the section of the page given the footer data-role is styled with a gradient
background and forced to the bottom of the page by the data-position="fixed" attribute. The page
content defined within the data-role="content" div will be rendered between the header and footer,
with the middle section scrollable as needed to display all of the content within the section. All of this is
illustrated in Figures 5.4, 5.5, and 5.6.

These examples only lightly cover the capabilities of jQM; there’s so much more you can do with this
framework to enhance the user experience within your Cordova applications. Refer to the jQM online
documentation or several of the new books on jQM, such as Sams Teach Yourself jQuery Mobile in 24
Hours (ISBN: 0672335948), for additional information about the capabilities provided by the
framework.

TThhee GGeenneerraatteedd WWeebb AApppplliiccaattiioonn FFiilleess
Now that I’ve shown you how a Cordova application is crafted, let’s take a look at the Cordova
application generated by the Cordova CLI. As shown in Chapter 3, “Installing the Cordova
Command-Line Interface,” when the CLI generates a new Cordova application project, it creates a
simple HelloCordova web application and places it in the project’s www folder. You can see an
example of the generated application files in Figure 5.7.

ptg11524036

72 Chapter 5: Anatomy of a Cordova Application

FFiigguurree 55..77 CLI-Generated Web Application Files

The project folder contains a web application folder structure that is designed to separate the different
types of files into separate folders. For example, the web application’s CSS files should be placed in the
css folder, JavaScript files in the js folder, and so on.

The application’s index.html file is shown in Listing 5.5; it contains many of the same HTML elements
and attributes as the other examples shown throughout the chapter. One difference is that the
application loads the cordova.js and other resources at the end of the file rather than at the beginning, as
I have shown previously. What this approach does is allow the application to complete loading its
HTML content and display the content on the screen before loading the JavaScript files. If you’re
loading a bunch of JavaScript in your application, it may take some time, so this approach at least
allows something to be displayed on the screen as the application’s supporting JavaScript code is
loaded.

Listing 5.5 Contents of the HelloCordova index.html file

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8" />
 <meta name = "format-detection" content = "telephone=no"/>
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1, minimum-scale=1,
 width=device-width;" />
 <link rel="stylesheet" type="text/css"
 href="css/index.css" />
 <title>Hello Cordova</title>
 </head>
 <body>
 <div class="app">

ptg11524036

Chapter 5: Anatomy of a Cordova Application 73

 <h1>Apache Cordova</h1>
 <div id="deviceready">
 <p class="status pending blink">Connecting to Device</p>
 <p class="status complete blink hide">Device is Ready
 </p>
 </div>
 </div>
 <script type="text/javascript" src="cordova.js"></script>
 <script type="text/javascript" src="js/index.js"></script>
 <script type="text/javascript">
 app.initialize();
 </script>
 </body>
</html>

What the application does is display a simple page with the Cordova logo and some blinking text,
“Connecting to Device,” centered beneath the logo. The JavaScript code, in the index.js file shown in
Listing 5.6, is called by the application through the call to app.initialize() at the very end of the
index.html.

Listing 5.6 Contents of the index.js file

var app = {
 initialize: function() {
 this.bind();
 },
 bind: function() {
 document.addEventListener('deviceready',
 this.deviceready, false);
 },
 deviceready: function() {
 //Note that this is an event handler so the scope is
 //that of the event so we need to call app.report(),
 //and not this.report()
 app.report('deviceready');
 },
 report: function(id) {
 console.log("report:" + id);
 //Hide the .pending <p> and show the .complete <p>
 document.querySelector('#' + id + ' .pending').className
 += ' hide';
 var completeElem =
 document.querySelector('#' + id + ' .complete');
 completeElem.className =
 completeElem.className.split('hide').join('');
 }
};

ptg11524036

74 Chapter 5: Anatomy of a Cordova Application

The JavaScript code registers the deviceready listener you’ve seen in the HelloWorld3 and HelloWorld4
applications earlier in the chapter. When the deviceReady function executes, it writes some information to the
console (this is described in Chapter 6, “The Mechanics of Cordova Development”), then updates the page
content to indicate that the Cordova container is ready.

This application is much more complicated than it needs to be; as you can see from my previous
examples, you can easily do this with much less code. However, it’s apparently the way the Cordova
team wants to highlight how to build Cordova applications.

 NNoottee

In the examples I provide throughout the chapter, I deliberately simplified the application code to
make it easier to teach you what a Cordova application looks like. The sample application generated
by the CLI is structured more like modern HTML5 applications.

The approach you take when building your web applications is up to you: there’s no right or wrong
approach. I think the CLI-generated application is more complicated than it needs to be, but as
features are added to an application, it may be easier to use the approach highlighted in this section.

Figure 5.8 shows the sample HelloCordova application running on an Android emulator. When
building your Cordova applications, you can start with this sample application and add in your custom
code, or you can rip out the HTML and CSS files and start from scratch.

FFiigguurree 55..88 HelloCordova Application Running on an Android Emulator

ptg11524036

Chapter 5: Anatomy of a Cordova Application 75

WWrraapp--UUpp
In this chapter, I showed you what makes an application a Cordova application plus showed you the
sample application that the Cordova CLI creates for you. You now have the building blocks necessary
to start building your own Cordova applications.

In the following chapters, I show you how to develop, test, and debug your Cordova applications.
Chapter 6 provides general guidance on how to work with Cordova applications, and the chapters that
follow provide specific guidance for several of the more popular smartphone platforms.

ptg11524036

76 Chapter 6: The Mechanics of Cordova Development

6
The Mechanics of

Cordova Development

Each of the mobile platforms supported by Cordova has a process and tools you can use to test and, in
the unlikely event your code has bugs, debug Cordova applications. In general, you can load a
Cordova application into a device simulator or emulator, provided as part of the mobile platform’s
SDK, or you can load an application onto a physical device. There are also third-party solutions you
can use to test your Cordova applications within a desktop browser interface.

Some processes and capabilities apply across all supported mobile device platforms. In this chapter, I
address the mechanics of Apache Cordova development. I begin the chapter by addressing some of the
issues a Cordova developer must deal with, then cover the development process and some of the tools
you can use to test and debug your Cordova applications.

CCoorrddoovvaa DDeevveellooppmmeenntt IIssssuueess
Before we start discussing how to develop Cordova applications, let’s address some of the issues that
you will face as you work with the framework. The Cordova project is supported by developers from
all over the world, developers who may have experience with only one or a small number of mobile
platforms, developers who have a strong opinion about how something should be done. The problem
is that when you take development projects written by different people and try to collect them into a
single framework, you will likely bump up against some inconsistencies. Add the fact that every
mobile platform supported by Cordova is different and has different ways of doing things, and you
have a difficult task to make everything work cleanly and seamlessly.

In the predecessor to this book, I used this section of the chapter to highlight all of the issues I’d
encountered while learning (at the time) PhoneGap and later writing the book. Back then, there were a
bunch of issues, and they created some interesting problems for developers. The good news is that over
time, the Cordova development team has done an amazing job in eliminating most of them. All that’s
left are two, and they’re not that complicated.

DDeeaalliinngg wwiitthh AAPPII IInnccoonnssiisstteennccyy
Figure 6.1 shows the supported feature matrix from the PhoneGap website (the Cordova team doesn’t
seem to publish a matrix); you can find the page at http://phonegap.com/about/feature/. As you can
see, the table is pretty complete; there are some gaps, but it’s more full than empty. If a particular
feature you want to use in your application is supported only on some mobile platforms, then you’ll

http://phonegap.com/about/feature/

ptg11524036

Chapter 6: The Mechanics of Cordova Development 77

have to make special accommodation within your application for platforms that do not support the
particular API.

FFiigguurree 66..11 Cordova-Supported Feature Matrix

 CCaauuttiioonn
Keep in mind that the table is not updated as often as the API is, so you may want to validate through
the API documentation or through actual testing of an API whether or not it works on a platform where
there’s an X in Figure 6.1.

If your application uses an API that isn’t supported on all of the mobile devices that your application
will target, then your application’s code can use the Device API discussed in Chapter 5. Your
application should use device.platform and, as necessary, device.version to determine which
platform and OS the application is running on and disable any unsupported feature if the application is
running on a device that doesn’t support the API. Another option is to simply wrap the call to a
particular API with a JavaScript try/catch block and deal directly with any failures that occur.

ptg11524036

78 Chapter 6: The Mechanics of Cordova Development

AApppplliiccaattiioonn GGrraapphhiiccss
Each mobile platform and, often, different versions of a particular device OS have different
requirements for application icons and splash screens. Developers building Cordova applications for
multiple device platforms must be prepared to create a suite of graphics for their application that
addresses the specific requirements for each target device platform and/or device OS. For application
icons, the PhoneGap project maintains a wiki page listing the icon requirements for the different
supported operating systems here: https://github.com/phonegap/phonegap/wiki/App-Icon-Sizes.

Additionally, for some devices on some carriers (older BlackBerry devices, for example), mobile
carriers apply a specific theme to the OS to help distinguish themselves in the market. Any application
icon designed for one of these devices will need to accommodate, as best as possible, rendering
pleasantly within different themes. Fortunately, with the merges capabilities described later in this
chapter, you have the ability to easily merge the appropriate graphics files (and other content as needed)
into your project depending on which mobile platform you are building for.

DDeevveellooppiinngg CCoorrddoovvaa AApppplliiccaattiioonnss
Now it’s time to start working through the process of how to create Cordova applications. In this
section I describe the process for coding a Cordova application. In later sections, I show you how to
test and debug applications.

WWoorrkkiinngg wwiitthh aa SSiinnggllee MMoobbiillee DDeevviiccee PPllaattffoorrmm
It’s possible that some developers will work with only a single mobile platform. If you are such a
developer, all you have to do is open up a terminal window and issue the following commands (which
are described in Chapter 4, “Using the Cordova Command-Line Interface”):
cordova create app_name

cd app_name

cordova platform add platform_name

cordova prepare platform_name

 WWaarrnniinngg
This isn’t necessarily the right way to do single-platform development, as I’ll describe later—I’m
just trying to describe a potential process here.

In this example, app_name refers to the name of the application you are creating and platform_name
refers to the mobile device platform you will be working with. So, if you were creating a BlackBerry
application called lunch_menu, you would issue the following commands:
cordova create lunch_menu

cd lunch_menu

cordova platform add blackberry

cordova prepare blackberry

You can also specify more information about your application by using the following:
cordova create lunch_menu com.cordovaprogramming.lunchmenu "Lunch Menu"

cd lunch_menu

https://github.com/phonegap/phonegap/wiki/App-Icon-Sizes

ptg11524036

Chapter 6: The Mechanics of Cordova Development 79

cordova platform add blackberry

cordova prepare blackberry

At this point, the command-line interface (CLI) would create the Cordova project folder shown in
Figure 6.2, and all you need to do at this point is open your code editor of choice and start coding and
testing your new Cordova application.

FFiigguurree 66..22 Cordova Application Project Folder Structure: BlackBerry Application

The BlackBerry platform project folder contains a copy of the web application files you need to work
with.

 NNoottee
If you later decide to add additional mobile device platforms to your project, you need to
manually copy the application’s web content files from the BlackBerry project’s www folder,
highlighted in Figure 6.2, over to the www folder within the overall Cordova (not BlackBerry)
project shown in the figure. The content that follows describes how multiplatform Cordova
projects differ and why this is important.

ptg11524036

80 Chapter 6: The Mechanics of Cordova Development

WWoorrkkiinngg wwiitthh MMuullttiippllee MMoobbiillee DDeevviiccee PPllaattffoorrmmss
Because Cordova is all about cross-platform mobile development, you’re probably going to want to
target multiple mobile device platforms. In that case, if you were building an app for Android and
iOS, for example, you would open a terminal window and do something like the following:
cordova create lunch_menu

cd lunch_menu

cordova platform add android ios

At this point, you’d have a new Cordova project structure with projects for both Android and iOS, as
shown in Figure 6.3. As discussed in Chapter 4, there’s a separate folder called www contains the
application’s core web content files, the content files that are shared across both the Android and iOS
projects.

FFiigguurree 66..33 Cordova Application Project Folder Structure

In this scenario, you will work with the web content stored in the www folder, shown at the bottom of
the folder structure in Figure 6.3. When you have the web application content in that folder ready for
testing, you use the CLI to copy the code into the platforms sub-folders (android and ios), shown in the
figure.

What I do while working on a Cordova project is keep my web content files open in an HTML editor
such as Adobe Brackets (www.brackets.io) or Aptana Studio (www.aptana.com), then use the CLI to
manage my mobile device platform projects for me. As I edit the files, I add the web content to the
.html file and my application’s code to the application’s .js files. When I’m ready to test (and debug)
the applications, I switch over to a terminal window that I keep open and pointed to the Cordova
project’s root folder (the lunch_menu folder I created a while back) and issue some commands. If I
want to switch to the Android IDE and test the Android application, I issue the following command:
cordova prepare android

http://www.brackets.io
http://www.aptana.com

ptg11524036

Chapter 6: The Mechanics of Cordova Development 81

Or, if I will be testing and debugging both the Android and iOS versions of the application, I issue the
following command:
cordova prepare android ios

What this command does is copy all of the project files from the www folder into the appropriate folder
for each specified mobile platform project, as shown in Figure 6.4. In this example, it copies the content
files to the Android project’s assets/www folder and the iOS project’s www folder. The contents of the
config.xml file should be applied to the platform-specific config.xml file located in the target directory.

FFiigguurree 66..44 Copying Web Content to the Platform Projects Folders

Now, any self-respecting mobile web project may have some icons, screen graphics, CSS, and/or
JavaScript files that are unique to each target platform. Since each mobile device has its own theme and
icon requirements, it’s likely that at a minimum of those will be required. In older versions of Cordova,
you had to manage all of that manually; with the CLI, that’s all taken care of for you.

Notice the merges folder shown in Figure 6.3; Cordova uses that folder structure to provide you with a
place to store the web application resources that are unique to each target platform. When you issue the
Cordova prepare commands shown earlier, the CLI copies the custom content for each of the
platforms into the appropriate web content folder for each platform’s project folder, as shown in
Figure 6.5.

ptg11524036

82 Chapter 6: The Mechanics of Cordova Development

FFiigguurree 66..55 Copying Web Content and Platform-Specific Content to the Platform Projects Folders

As shown in the figure, custom content for the Android platform stored in the merges\android folder is
copied into the Android platform project’s assets\www folder. Custom content for iOS applications is
copied from merges\ios to the iOS project’s www folder.

With all of the application’s content copied into the appropriate project folders, you open the
appropriate IDE (Eclipse for Android and Xcode for iOS) and begin the testing process. For
information on how to import the Cordova projects to each IDE and use the platform’s debugging tools,
refer to Chapters 7 through 10.

TTeessttiinngg CCoorrddoovvaa AApppplliiccaattiioonnss
You can also skip the IDEs entirely and test the applications directly from the command line; I show
you how in the following sections.

RRuunn aa CCoorrddoovvaa AApppplliiccaattiioonn oonn aa DDeevviiccee SSiimmuullaattoorr
Most mobile device manufacturers provide a software program that emulates or simulates a mobile
device. This allows developers to easily test their mobile applications when they don’t have a
physical device. Performance isn’t usually the same, but it looks and acts like a real device much as it
can. In some cases, what’s provided is generic and simply mimics the capabilities of the specific OS
version, while for other mobile platforms it might mimic specific devices. Either way, there’s a
software-only solution available that developers can use to test Cordova applications in an almost

ptg11524036

Chapter 6: The Mechanics of Cordova Development 83

real-world scenario (I’ll explain “almost real-world” in the following section). Google, for example,
provides Android emulators, and Apple and BlackBerry provide simulators of their devices.

 SSiimmuullaattoorr vvss.. EEmmuullaattoorr
There is a technical difference between the two that I’m not going to get into here. In order to
make things simpler for me (and you), I’m going to dispense with calling out whether I’m
referring to an emulator or simulator for the remainder of the book and simply refer to either as
simulators. If you see that word going forward, know that I mean either emulator or simulator.

To run a Cordova application using a device simulator, you would use the following command:
cordova emulate device_platform

Replace the value for device_platform with the name of the mobile device platform you wish to
emulate (android, blackberry10, ios, wp8, and so on). For example, to run the application on a
BlackBerry 10 simulator, you would issue the following command:
cordova emulate blackberry10

In this example, the CLI will prepare the files, build the application using the platform’s command-line
tools, then launch the appropriate simulator and run the application. You saw examples of the device
simulators and emulators in the screenshots found in Chapter 5, “Anatomy of a Cordova Application.”

RRuunn aa CCoorrddoovvaa AApppplliiccaattiioonn oonn aa PPhhyyssiiccaall DDeevviiccee
Before you deploy your application to mobile users, you should perform final testing on a physical
device. As good as these options are, there is always something that doesn’t work quite right on a
simulator. To test an application on a physical device, connect the device to your development system
using a USB cable, then issue the following command:
cordova run device_platform

For example, to run the application on an Android device, issue the following command:
cordova run android

Behind the scenes, the CLI will execute the prepare command described earlier, then call the
particular platform’s command-line tools to package the application and deploy it to the device that is
connected to the system. Within seconds (or as much as a few minutes in the case of some platforms),
the application will appear on the device’s screen.

 WWaarrnniinngg
For many mobile device platforms, applications will not run on physical devices without first
being registered with the manufacturer (Windows Phone 8) or signed by an appropriate signing
authority (BlackBerry 10, iOS). I’m deliberately omitting the details of this process from this
chapter, as it differs across the different supported mobile device platforms and would add some
bulk to this manuscript. I cover this topic a little bit in the chapters that deal with each mobile
device platform separately (Chapters 7 through 10).

Before testing Cordova applications on a physical device, make sure you have followed the
manufacturer’s instructions for configuring the appropriate environment to do so.

ptg11524036

84 Chapter 6: The Mechanics of Cordova Development

LLeevveerraaggiinngg CCoorrddoovvaa DDeebbuuggggiinngg CCaappaabbiilliittiieess
As you test your Cordova applications, you’re likely to run into issues that you must resolve. The
purpose of this section is to highlight some of the debugging capabilities that are available to you
outside of an IDE.

UUssiinngg Alert()
One of the simplest, and most annoying, ways to debug a Cordova application is to use the JavaScript
alert() function to let you know what part of the code you’re running or to quickly display the
contents of a variable. I’ve always called this approach the “poor man’s debugger,” but it works quite
well for certain types of application debugging tasks. If you see an event that’s not firing within your
application or some variable that’s not being set or read correctly, you can simply insert an alert()
that displays a relevant message and use that to see what’s going on.

As I started working with PhoneGap and PhoneGap Build, I noticed that there were many times when
the deviceready event wasn’t firing in my applications. I would write my application and start testing
it only to find that none of the PhoneGap APIs were working. In some cases, it was because the
PhoneGap Build service wasn’t packaging the phonegap.js file with the application (that’s what
happens when you use a beta product). In other cases, it was simply because I had some stupid typo in
the application that I couldn’t see.

 WWaarrnniinngg
Cordova fails silently when it encounters a JavaScript error, so if you have a typo in your code,
the code will simply not run.

What I started doing in my then PhoneGap, now Cordova, applications was to add a call to alert() in
the onBodyLoad and onDeviceReady functions of all of my applications during development. In
Chapter 5, I provided a listing for the HelloWorld3 application, but the real HelloWorld3 application
code is shown in Listing 6.1. In this version of the application, you can see the calls to alert in the
onBodyLoad and onDeviceReady. Once I was certain that the application worked correctly, I would
remove the alerts.

Listing 6.1 The “Real” HelloWorld3 application

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1, minimum-scale=1,
 width=device-width;" />
 <script type="text/javascript" charset="utf-8"
 src="Cordova.js"></script>
 <script type="text/javascript" charset="utf-8">
 function onBodyLoad() {
 alert("onBodyLoad!");
 document.addEventListener("deviceready", onDeviceReady,

ptg11524036

Chapter 6: The Mechanics of Cordova Development 85

 false);
 }
 function onDeviceReady() {
 alert("onDeviceReady!");
 br = "
";
 //Get the appInfo DOM element
 var element = document.getElementById("appInfo");
 //Replace it with specific information about the device
 //running the application
 element.innerHTML = 'Cordova Version: ' +
 device.cordova + br +
 'Platform: ' + device.platform + br +
 'Model: ' + device.model + br +
 'OS Version: ' + device.version;
 }
 </script>

 </head>
 <body onload="onBodyLoad()">
 <h1>HelloWorld3</h1>
 <p>This is a Cordova application that makes calls to the
 Cordova APIs.</p>
 <p id="appInfo">Waiting for Cordova Initialization to
 complete</p>
 </body>
</html>

When I was writing all of the sample applications for PhoneGap Essentials, I even go as far as to put an
alert at the beginning of every function in the application. As I learned how and when each event fired,
I used the alerts to help me tell what was going on. Now, there are easier ways to do that, which I show
you in the next section, but this was just a simple approach to help me as I got started with each API.

 WWaarrnniinngg
Those of you who know a little bit about the Cordova APIs might be asking, Why did he use
alert() rather than the Cordova navigator.notification.alert() function?

Well, in the onBodyLoad() function, it is highly likely that cordova.js hasn’t loaded yet, so I can’t
be sure that the Cordova navigator.notification.alert()will even be available. I could
have used navigator.notification.alert() in the onDeviceReady() function because
the only time that function runs is when the Cordova deviceready event has fired, but for some
reason I just kept the two alerts consistent.

WWrriittiinngg ttoo tthhee CCoonnssoollee
The problem with using the approach described in the previous section is that when you fill your
buggy code with alerts, you’re constantly interrupting the application flow to dismiss the alerts as
they come up. For a simple problem, this approach works pretty well, but when debugging more
troublesome errors, you need an approach that allows you to let the application run then analyze what

ptg11524036

86 Chapter 6: The Mechanics of Cordova Development

is happening in real time or after the application or a process within the application has completed,
without interrupting the application. Cordova applications can do this through the JavaScript console
object implemented by the WebKit browser-rendering engine.

Using the console object, developers can write messages to the browser’s console that can be viewed
outside of the running program through capabilities provided by the native SDKs or device simulators.
The console object has scope at the window level, so it’s essentially a global object accessible by any
JavaScript code within the application. WebKit supports several options; the most common ones used
are listed here:

▪ console.log("message");

▪ console.warn("message");

▪ console.error("message");

Beginning with Cordova 3.0, the console has been removed from the core Cordova APIs and is instead
available as a plugin. To add console capabilities to your Cordova project, you must open a terminal
window, navigate to the project folder, and issue the following command:
cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-plugin-console.git

Now, let’s take a look at a sample application that illustrates the use of this feature, as shown in Listing
6.2

Listing 6.2 Example Application That Writes to the Console

<!DOCTYPE html>
<html>
 <head>
 <meta name="viewport" content="width=device-width,
 height=device-height, initial-scale=1.0,
 maximum-scale=1.0, user-scalable=no;" />
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <script type="text/javascript" charset="utf-8"
 src="cordova.js"></script>

 <script type="text/javascript" charset="utf-8">

 function onBodyLoad() {
 document.addEventListener("deviceready", onDeviceReady,
 false);
 }
 function onDeviceReady() {
 //Just writing some console messages
 console.warn("This is a warning message!");
 console.log("This is a log message!");
 console.error("And this is an error message!");
 }

 </script>
 </head>
 <body onload="onBodyLoad()">

ptg11524036

Chapter 6: The Mechanics of Cordova Development 87

 <h1>Debug Example</h1>
 <p>Look at the console to see the messages the application
 has outputted</p>
 </body>
</html>

As you can see from the code, all the application has to do is call the appropriate method and pass in the
text of the message that is supposed to be written to the console.

Figure 6.6 shows the messages highlighted in the Xcode console window. This window is accessible
while the program is running on an iOS simulator, so you can debug applications in real time.

FFiigguurree 66..66 Cordova iOS Application Output Log in Xcode

On some platforms, the console will display log, warning, or error messages differently, making it
easier for developers to identify a warning versus an error message. To illustrate this, Figure 6.7 shows
the contents of the Android LogCat (described in Chapter 7, “Android Development with Cordova”).
Notice that the different console message types are color coded, making it easier for you to spot a
particular type of message.

FFiigguurree 66..77 Cordova Android Application LogCat Output in Eclipse

ptg11524036

88 Chapter 6: The Mechanics of Cordova Development

Remember I mentioned in the previous section that the JavaScript code in a Cordova application fails
silently? Well, you can also wrap the code in a try/catch block so your application will at least have the
chance to write its error to the console, as shown in the following example:
try {

 console.log("Validating the meaning of life");

 someBogusFunction("42");

} catch (e) {

 console.error("Hmmm, not sure why this happened here: " +

 e.message);

}

Notice that in Figure 6.7, the Android LogCat shows you the line number where the console message
was generated. This helps you identify information about where the application is failing. You could
also use an alert here, but that’s slightly less elegant.

DDeebbuuggggiinngg aanndd TTeessttiinngg UUssiinngg EExxtteerrnnaall TToooollss
There’s a very active partner community supporting Cordova with additional tools for Cordova
developers. In this section, I introduce a couple of the more popular tools that help developers test
and debug Cordova applications. This is by no means a complete list of options; refer to the
PhoneGap Tools page (http://phonegap.com/tool) for information on additional tools that might be
available. Some built-in debugging tools are also available with several of the mobile SDKs. These
tools are covered in the individual chapters for each mobile OS (Chapters 7 through 10).

DDeebbuuggggiinngg AApppplliiccaattiioonnss wwiitthh WWeeiinnrree
Web Inspector Remote (weinre) is a community-built remote debugger for web pages. It was donated
to the PhoneGap project and is currently implemented as part of the PhoneGap Build service. You
can find the download files and instructions at http://people.apache.org/~pmuellr/weinre/docs/latest.

For Cordova development, it allows you to remotely debug a web application running in a Cordova
container on a physical device or a device simulator. Weinre consists of a debug server, debug client,
and debug target. The debug server runs on Macintosh or Windows, and the debug client runs in any
compatible desktop browser.

To configure weinre, you need to perform a series of steps. The process begins with the server
installation. Weinre is Node.js-based, and since we already have Node installed for the Cordova CLI,
you can install the server using the following command:
npm install –g weinre

Unfortunately, on Macintosh weinre may not like your security configuration, so even though it’s not
recommended, you may have to install weinre using sudo using the following command:
sudo npm install –g weinre

After the installation completes, you should see a message similar to the following:
weinre@2.0.0-pre-HH0SN197 /usr/local/lib/node_modules/weinre

├── underscore@1.3.3

├── coffee-script@1.3.3

├── nopt@1.0.10 (abbrev@1.0.4)

└── express@2.5.11 (qs@0.4.2, mime@1.2.4, mkdirp@0.3.0, connect@1.9.2)

http://phonegap.com/tool
http://people.apache.org/~pmuellr/weinre/docs/latest

ptg11524036

Chapter 6: The Mechanics of Cordova Development 89

With the installation completed, you can start weinre by issuing the following command in the terminal
window:
weinre

When the server starts, it will indicate that it is running by displaying a message in the terminal window
similar to the following:
2013-06-22T17:00:50.564Z weinre: starting server at http://localhost:8080

 NNoottee

There are some command-line options you can pass to the weinre server at startup. I chose not
to cover them here, but you can find detailed information on the weinre website at
http://people.apache.org/~pmuellr/weinre/docs/latest/Running.html.

With the weinre server started, you use a browser-based client application to interact with the server
and Cordova client application. Open your browser of choice (I recommend using Safari or Chrome)
and point it to the URL shown on the server console when the weinre server started. For my
development environment, I simply use:
http://localhost:8080

The browser will connect to the weinre server and open the weinre debug client, which will display a
page similar to the one shown in Figure 6.8.

FFiigguurree 66..88 Weinre Debug Client Startup Page

With the server and client running, you can now connect a Cordova application to the debug server by
adding the following script tag to body section of the Cordova application’s index.html file:
<script src="http://debug_server:8080/target/target-script-min.js"></script>

http://people.apache.org/~pmuellr/weinre/docs/latest/Running.html

ptg11524036

90 Chapter 6: The Mechanics of Cordova Development

You need to replace the debug_server portion of the URL with the correct host name or IP address for
the debug server (the system running the weinre server). This makes the application into a weinre debug
target and provides the Cordova application with the code needed to upload information to the weinre
server as the application runs.

When using weinre with a device simulator, you can usually point the Cordova application to the local
weinre server instance using
<script src="http://localhost:8080/target/target-script-min.js"></script>

The Android emulator, however, does not have the ability to connect to host-side resources using
localhost, so for the Android emulator you must use the host address http://10.0.2.2, as shown in the
following example:
<script src="http://10.0.2.2:8080/target/target-script-min.js"></script>

When using weinre to debug a Cordova application running on a physical device, the device must be
able to connect to your debug server. That means that the device must be able to “see” the server on the
local network (most likely over a Wi-Fi connection), or the system running the weinre server must have
a public facing IP address. Using a server host name of localhost will not work on a physical device;
you must use an actual host name or IP address that is visible to the device.

 WWaarrnniinngg

Be sure to remove the weinre script tag from your Cordova application before releasing it into
production. The application will likely hang if attempting to connect to debug server that isn’t
available.

After you have added the script tag to the Cordova application’s index.html file, run the application in
the simulator or on a device. Nothing special will appear on the device screen—you can’t tell that the
weinre debug client is running. However, if you switch to the browser running the weinre debug client
and click the first link, shown in Figure 6.8 (the one labeled “debug client user interface”), you will
initially see a page similar to the one shown in Figure 6.9.

FFiigguurree 66..99 Weinre Debug Client

ptg11524036

Chapter 6: The Mechanics of Cordova Development 91

In this example, the figure is indicating that no targets have connected yet, but as soon as I start my
Cordova application, as long as it can connect to the weinre server, the debug client page will update
and display the content shown in Figure 6.10.

FFiigguurree 66..1100 Weinre Debug Client with an Application Connected

The debug client provides the means to view and optionally manipulate many of the page elements and
other aspects of your application’s web content.

At this point, the different buttons across the top of the debug client are available to provide you with
information about the debug target. For example, in Figure 6.11 you see the contents of the Elements
page; it shows you the current HTML5 content running within the debug target.

FFiigguurree 66..1111 Weinre Debug Client Resources Area

ptg11524036

92 Chapter 6: The Mechanics of Cordova Development

One of the cool features of weinre is that as you highlight the different code sections shown in Figure
6.11, weinre will highlight the corresponding content within the web application. So, for the
HelloWorld3 application shown in Figure 6.11, highlighting the paragraph tag <p id=
"appInfo">_</p> reveals, in the debug target, the section of the page shown in Figure 6.12. In this
example, I kept the content of the paragraph tag collapsed in the debug client. You can click the black
triangle to the left of the <p> element to see the complete HTML content.

FFiigguurree 66..1122 Weinre Target Highlighting HTML Content

ptg11524036

Chapter 6: The Mechanics of Cordova Development 93

Using the debug client, you can access the following content areas:

▪ Elements: The HTML, CSS, and JavaScript code for the application

▪ Resources: Local resources used by the application, such as databases, local storage, and
session storage

▪ Network: Information about requests made using the XMLHTTPRequests (XHR)

▪ Timeline: Events that occur within the target application

▪ Console: Information written to the console using the console object described earlier in the
chapter

The available documentation for Weinre is pretty light, but since the project’s capabilities are based on
the Google Chrome Developer Tools, you can find additional information on the Google Code website
at http://code.google.com/chrome/devtools/docs/overview.html.

TTeessttiinngg AApppplliiccaattiioonnss UUssiinngg tthhee RRiippppllee EEmmuullaattoorr
The Ripple Emulator is a tool you can use to help with the initial testing of your Cordova application.
Ripple is a browser-based emulator that can be used to emulate several different systems. Originally
created by Tiny Hippos, which was then acquired by Research In Motion (now called BlackBerry),
Ripple is now an incubator project at Apache. The problem with Ripple is that it’s been in beta for a
very long time (almost two years by my counting), and the emulator is way behind on its Cordova
support (supporting Cordova 2.0 when Cordova 2.8 was just released). Because of those limitations, I
don’t go into too much detail about how Ripple works.

Ripple emulates the execution of the Cordova APIs within the browser container. You can use Ripple
for quick testing of Cordova application features and UI during development, then switch to
packaging/building Cordova applications and testing them on actual devices or device simulators for
more thorough testing. Ripple is not designed to replace testing on real devices or simulators.

Since Ripple was a BlackBerry project for a while, it has a lot of features that help BlackBerry
developers. You can, for example, test your BlackBerry WebWorks applications using Ripple, then
package them into WebWorks applications directly from the browser. You can learn more about
Ripple’s capabilities at
https://developer.blackberry.com/html5/documentation/getting_started_with_ripple_1866966_11.html.

The emulator installs as a Google Chrome plugin, so you will need to install Chrome from
www.google.com/chrome before you begin. Because Ripple is an incubator project and may become a
full Apache project at any time, any URL I give you now may be invalid by the time you read this. So,
to install Ripple, you should point your browser to http://emulate.phonagep.com. Follow the links on
that page to download and install Ripple in your instance of the Chrome browser.

Once you have Ripple installed, you must enable file access for Ripple. In Chrome, open the settings
page, then select the Extensions section. In the list of plugins that appears, enable the “Allow access to
file URLs” option, shown in Figure 6.13.

https://developer.blackberry.com/html5/documentation/getting_started_with_ripple_1866966_11.html
http://www.google.com/chrome
http://code.google.com/chrome/devtools/docs/overview.html
http://emulate.phonagep.com

ptg11524036

94 Chapter 6: The Mechanics of Cordova Development

FFiigguurree 66..1133 Enabling Ripple File Access in the Chrome

Once the browser is configured, open your application’s index.html file in the browser. You can press
Ctrl-O on Windows or Command-O on Macintosh to open the File Open dialog. Once the page has
loaded, you need to enable Ripple for the selected page. To do this, click the Ripple icon to the right of
the browser’s address bar to open a window allowing you to enable Ripple for the loaded page. You can
also append ?enableripple=true to the end of any URL to enable Ripple emulation for that page.

With Ripple enabled, the browser will display a page that prompts you to identify which type of
emulation you wish to enable, as shown in Figure 6.14. As you can see, Ripple can emulate Apache
Cordova plus several other platforms and frameworks. Click the Cordova 2.0 button to continue.

FFiigguurree 66..1144 Ripple Emulation Platform Selection Page

At this point, Ripple will display a page with the content from the index.html file rendered within the
boundaries of a simulated smartphone screen, as shown in Figure 6.15. Wrapped around the simulated
smartphone are properties panes that can be used to configure options and status for the simulated
smartphone, such as simulated device screen resolution, accelerometer, network, geolocation, and more.

ptg11524036

Chapter 6: The Mechanics of Cordova Development 95

FFiigguurree 66..1155 Ripple Emulator Running a Cordova Application

You can click on each of the tabs to expand the options for the tab and make changes to the simulated
device’s configuration. At this point, you would simply click around within the simulated smartphone
screen and interact with the options presented within your application. When you find a problem or a
change you want to make within the Cordova application, simply return to your HTML editor, make the
necessary changes, write the changes to disk, then reload the page in the Chrome browser to continue
with testing.

WWrraapp--UUpp
Hopefully by now, you have an inkling of how to build and debug Cordova applications. In the four
chapters that follow, I show you how to use the platform-specific development tools and debugging
capabilities.

ptg11524036

96 Chapter 7: Android Development with Cordova

7
Android Development

with Cordova

Google offers developers a robust suite of tools they can use to develop applications for the Android
platform. Even though the Cordova CLI takes care of most of the process of creating, managing, and
testing applications, there will be times when you want to have more control over the process. Even
though the CLI can launch a Cordova application in the Android platform emulator, when you
encounter problems with an application, and you want to know more about what’s going on, you’ll
need to use the development tools that come with the Android Development Tools (ADT).

Instructions for using the CLI to create and manage Android projects can be found in Chapter 4, “Using
the Cordova Command-Line Interface.” In this chapter, I show you how to configure ADT and use it to
help you test and debug your Cordova applications.

If you’re not developing for Android or you plan on using only the CLI and/or PhoneGap Build to build
and test your applications, then you can likely skip this chapter. However, there are some cool tools
included with ADT, so what you’ll learn in this chapter should simplify your Android application
testing and debugging efforts.

WWoorrkkiinngg wwiitthh tthhee AAnnddrrooiidd DDeevveellooppmmeenntt TToooollss
In Chapter 3, I briefly showed how to install the Android Development Tools, but I really didn’t
cover the topic too deeply or show you how to use them. By default, ADT ships with a preconfigured
version of the open-source Eclipse IDE. You can use this IDE to edit, compile, run, and debug
Android Java applications; you can learn more about and download ADT at the Android Developer
web site at http://developer.android.com/sdk/index.html.

If you’re already using Eclipse for other development work, you can add ADT to an existing Eclipse
installation using instructions found at http://developer.android.com/sdk/installing/installing-adt.html.
The process is pretty easy and doesn’t take a lot of time. Be sure to check the system requirements to
make sure the version of Eclipse you are using is compatible before attempting to add ADT. Google is
really good about keeping up with Eclipse and supports a wide range of Eclipse versions.

ADT includes command-line tools a developer can use to interact with a device or emulator from the
command line. This mechanism is one of the tools the Cordova CLI uses to interact with the Android
platform. I’m not going to spend any time on the command-line tools here, though.

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/installing/installing-adt.html

ptg11524036

Chapter 7: Android Development with Cordova 97

UUssiinngg tthhee AADDTT IIDDEE
To start the ADT IDE, navigate to the folder where you extracted the Android SDK and launch the
Eclipse application located in the eclipse folder. The application will be called eclipse on Macintosh
OS and Eclipse.exe on Microsoft Windows. When you first start ADT, you will see a screen similar
to the one shown in Figure 7.1.

FFiigguurree 77..11 Android Development Tools (ADT) IDE

DDeeaalliinngg wwiitthh AADDTT IIDDEE MMeemmoorryy PPrroobblleemmss
When I first started working with ADT on my Windows laptop, I ran into a lot of problems with the
IDE crashing whenever I tried to open Cordova project files or add plugins to Eclipse. After many
hours of troubleshooting and searching on the web, I finally located the problem. By default, the
Eclipse instance in ADT is configured to utilize a limited amount of system memory; ADT was
crashing simply because it didn’t have the memory it needed to do the things it wanted to do.

There are several ways to increase the amount of memory consumed by different parts of Eclipse. You
can pass memory configuration settings as command-line options to Eclipse when you start it, or you
can make some simple updates to ADT’s eclipse.ini file. I chose to use the latter approach. I’m not sure
what the exact settings need to be; your mileage will vary, but I simply opened up the eclipse.ini file
and cranked up the memory settings highlighted in bold in Listing 7.1. If you have problems with
random crashes in ADT, increase those memory settings and see if they go away.

Listing 7.1 Contents of the Android Development Tools eclipse.ini File

-startup
plugins/org.eclipse.equinox.launcher_1.3.0.v20120522-1813.jar
--launcher.library
plugins/org.eclipse.equinox.launcher.win32.win32.x86_64_1.1.200.v20120913-144807
-product
com.android.ide.eclipse.adt.package.product
--launcher.XXMaxPermSize
512M
-showsplash
com.android.ide.eclipse.adt.package.product

ptg11524036

98 Chapter 7: Android Development with Cordova

--launcher.XXMaxPermSize
512m
--launcher.defaultAction
openFile
-vmargs
-XX:MaxPermSize=512m
-Dosgi.requiredJavaVersion=1.6
-Xms512m
-Xmx1024m
-Declipse.buildId=v22.0.1-685705

EEddiittiinngg CCoorrddoovvaa AApppplliiccaattiioonn CCoonntteenntt FFiilleess
Android applications are built using Java, but developers can also code portions of their applications
in C or C++. Since Android supports only those limited options for application development, ADT
does not include tools specifically designed to help with debugging web applications such as those
that run within the Cordova container. So, you won’t be able to step through an application’s
JavaScript code, set breakpoints, configure watch expressions, and so on, within the ADT IDE. To
debug Android applications, you need to use the debugging approaches highlighted in Chapter 6,
“The Mechanics of Cordova Development.” However, these debugging approaches can be enhanced
using some of the tools described later in this chapter.

 NNoottee
During the book’s technical review process, Damien pointed out that Google offers a Chrome
plugin that enables remote debugging of Android Cordova applications. Unfortunately, there was
no time available to add content about this feature to the manuscript, so I will read up on this
capability and post updated content to my personal blog at www.johnwargo.com and the book’s
website at www.cordovaprogramming.com.

Although the CLI is optimized for editing a Cordova application’s web application source code in the
www folder rather than within one of Cordova project’s platform folders, you will likely use an
external web content editor such as Adobe Dreamweaver, Adobe Brackets, or some other tool. Since
ADT is configured for editing Java and C applications, it doesn’t include editors to help with editing the
HTML, CSS, and JavaScript files your Cordova application will use. Because of this limitation, if you
want to use Eclipse to edit your Cordova application content, you need to install web content editing
capabilities into ADT. The default tools for web content editing in Eclipse are from the Eclipse Web
Developer Tools Project, and you can install them in ADT in a few minutes.

Within ADT, open the Help menu and select Install New Software. ADT displays the Install wizard,
shown in Figure 7.2. In the Work With dropdown field shown in the figure, select the Juno option. Juno
is the version of Eclipse that ADT is currently using—you may find yourself using a newer version, so
look for the entry that points to http://download.eclipse.org/releases/ instead of
http://download.eclipse.org/eclipse/updates/. After you make the selection, the list of options will
populate: scroll down and select Eclipse Web Developer Tools, as highlighted in the figure, and step
through the wizard to complete the installation.

http://www.johnwargo.com
http://www.cordovaprogramming.com
http://download.eclipse.org/releases/
http://download.eclipse.org/eclipse/updates/

ptg11524036

Chapter 7: Android Development with Cordova 99

FFiigguurree 77..22 Eclipse Available Software Wizard

IImmppoorrttiinngg tthhee CCoorrddoovvaa PPrroojjeecctt
Assuming you followed the instructions in Chapter 4 to create an Android project, you should have a
Cordova application project in a folder structure similar to the one shown in Figure 7.3. If you
haven’t already copied over the project’s web content from the www folder to the Android project’s
folder, be sure to issue the Cordova prepare command now to complete that process:
cordova prepare android

ptg11524036

100 Chapter 7: Android Development with Cordova

FFiigguurree 77..33 Cordova Project Folder Structure

With the project folder in place, you must import the project into ADT before you can work with it. To start the
import process, in the ADT IDE open the File menu, then select Import. The ADT IDE displays the Import
wizard, shown in Figure 7.4. Expand the Android option and select Existing Android Code Into Workspace, as
shown in the figure, then click the Next button.

ptg11524036

Chapter 7: Android Development with Cordova 101

FFiigguurree 77..44 ADT IDE Import Wizard

ADT displays the next page in the Wizard, shown in Figure 7.5. In this dialog, you need to populate the
Root Directory field with the location where the Cordova project’s Android project files are located.
Click the Browse button and navigate to the Android folder, highlighted in Figure 7.3, then click the
OK button. The Wizard should automatically add the HelloCordova project to the list of available
projects, as shown in Figure 7.5.

ptg11524036

102 Chapter 7: Android Development with Cordova

FFiigguurree 77..55 ADT IDE Import Projects

When you click the Finish button, ADT should complete the import process and open the imported
project into the IDE, as shown in Figure 7.6. Since the Cordova project consists of both a native Java
Android application plus the web content that executes within the application, you will see a blending
of a default Android project structure plus the Cordova www folder discussed in previous chapters.

 WWaarrnniinngg
Any changes you make to the web application content stored in the Android project’s www folder
will not be propagated back to the Cordova project’s main www folder. The CLI doesn’t currently
have a mechanism to do so (who knows, perhaps there will be one by the time you read this). If,
during your debugging of the application, you make changes to the web application in ADT, you
need to manually copy those changes back to the Cordova project’s root www folder.

To make this easier, you could add an External Tool to ADT that triggers a copy of the web
content files back to the Cordova project’s www folder.

ptg11524036

Chapter 7: Android Development with Cordova 103

FFiigguurree 77..66 ADT IDE Imported Project

RRuunnnniinngg YYoouurr CCoorrddoovvaa AApppplliiccaattiioonn
Now that the Cordova project has been imported, you probably want to run it to see how it works.
The ADT IDE doesn’t have any Android run configurations defined by default, so you have to add at
least one before you begin. In the ADT IDE, open the Run menu and select Run Configurations. The
IDE displays a dialog similar to the one shown in Figure 7.7.

In the dialog, select Android Applications, then click the New button, highlighted in the figure. Define
the settings for the Run Configuration, assigning an application to it, and determine parameters around
how it launches one or more Android device emulators when it runs. If you don’t have any emulator
devices defined (by default, you won’t), click the Manage button to open the Android Virtual Device
(AVD) Manager to create and manage the system’s emulator definitions.

ptg11524036

104 Chapter 7: Android Development with Cordova

FFiigguurree 77..77 ADT IDE Run Configurations

With one or more Run Configurations defined, you can click the Run button, shown at the bottom of
the figure, to launch the emulator and run your application. You can also close this dialog, then run the
application on the selected Android emulator by making the appropriate selection from the Run menu
or by right-clicking on the application project in the Project Explorer (shown on the left side of Figure
7.6), selecting Run As, then selecting Android Application.

ADT will launch the selected Android emulator (this will take a very long time—be patient, the
Android emulators are not known for being fast), then compile, package, and deploy the Cordova
application to the emulator.

AADDTT DDeebbuuggggiinngg TToooollss
As the ADT IDE processed everything and launched your Cordova application, you may have noticed
a lot of information scrolling by on certain parts of the screen. ADT includes utilities that allow a
developer to monitor activity on an emulator or physical device. This functionality is provided by the
Console and LogCat views in the IDE. LogCat is part of the IDE but can also run through the
command line or as a standalone utility.

ADT opens the LogCat window automatically, but if it gets closed for any reason, you can open it by
opening the Window menu, selecting Show View, then selecting Other. The ADT IDE will display a
dialog similar to the one shown in Figure 7.8. Expand the Android option to see the list of views
available to you. Select LogCat (not the deprecated one shown in the figure) and click the OK button to
open the view.

ptg11524036

Chapter 7: Android Development with Cordova 105

FFiigguurree 77..88 ADT IDE Show View Dialog

The console window shows messages generated by the ADT IDE as it prepares the Cordova application
and deploys it to the emulator. You can see an example of the console’s output in Figure 7.9. If the
ADT IDE has trouble building, packaging, or deploying your application, it lets you know in the
console window. If you’ve launched the app in the emulator, but nothing seems to be happening, take a
look at the console.

FFiigguurree 77..99 ADT IDE Console Window

LogCat, on the other hand, interacts directly with an Android emulator or physical device (I show you
how to debug on a physical device a little later). The LogCat window shows a multitude of messages as
the emulator completes its startup process and as you interact with any part of the Android OS. Look to

ptg11524036

106 Chapter 7: Android Development with Cordova

LogCat for any error messages when you’re having trouble with an emulator or device or a running an
Android application.

Also, if you remember from Chapter 6, I mentioned you could have your Cordova applications write
information to the console object as your application runs; on Android, those console object
messages are displayed within the LogCat window. If you take a look at Figure 7.10, you’ll see LogCat
displaying the output from the sample application highlighted in Listing 6.2.

FFiigguurree 77..1100 ADT IDE LogCat Window

In the LogCat window, you can filter messages based on their type. Notice the debug button shown on
the upper-right corner of Figure 7.10; when you click the button, a drop-down appears, allowing you to
select which level of message (verbose, debug, info, warning, and error) are displayed in the view.

DDeebbuuggggiinngg OOuuttssiiddee ooff tthhee AADDTT IIDDEE
If you don’t want to use the ADT IDE, you can run the ADT debugging tools outside of the IDE. The
standalone version of LogCat and associated tools can be found in the Android Debug Monitor
(ADM) utility, which is started by navigating to the Android SDK’s Tools folder and executing the
monitor.bat (on Windows) or monitor (on Macintosh OS) application.

When the ADM launches, it displays a window similar to the one shown in Figure 7.11. I’m not going
to cover all of the options available here, but you can see that there’s a lot of information available. The
lower half of the application’s window displays the same LogCat window from the ADT IDE. In the
figure, you can see that I’ve connected the ADM to an Android device emulator; I show you how to
connect to a physical device a little later.

ptg11524036

Chapter 7: Android Development with Cordova 107

FFiigguurree 77..1111 Android Debug Monitor Application

You should spend some time poking around within the ADM—there’s a lot of power in what it
provides developers.

GGrraabbbbiinngg aa SSccrreeeennsshhoott
While not critical for developers, it’s sometimes useful to be able to pull a screenshot off of an
emulator or physical device. If you take a look at Figure 7.11, within the Device area in the upper-left
corner of the ADM, you will see a little camera icon. With a device connected, you can click that
button and grab a screen capture from the connected device. When you click the button, the ADM
displays a screen similar to the one shown in Figure 7.12 (I’ve cropped the image to reduce the
amount of space used for the figure). In this example, you’re seeing a portion of the screen from my
Google Nexus 7 tablet.

You can use the buttons along the top of the screen to refresh, rotate, save and copy the image. Using
this feature is a quick and simple way to grab a screen image for documentation or support purposes
and frees you from having to perform the screen capture on the device and transfer it to your PC.

ptg11524036

108 Chapter 7: Android Development with Cordova

FFiigguurree 77..1122 Android Emulator Screenshot

DDeebbuuggggiinngg oonn aa PPhhyyssiiccaall DDeevviiccee
The ADM can also interact with a physical device just as it can with a device emulator. Initial testing
of an application can be done on an emulator, but before any application is released, it should be
tested on a representative sample of the physical devices the application is expected to run on.

To use a physical device with ADM, you must connect the device to the computer system running
ADM using a USB cable. Before you can do that, you must enable USB debugging on the device. The
way you enable this setting varies depending on which type of Android device you are using. On some
devices, enabling developer options is accomplished by simply opening the on-device Android settings
application and making some selections. On other devices, it’s a little harder. You’re just going to have
to figure this one out on your own, sorry.

ptg11524036

Chapter 7: Android Development with Cordova 109

 WWaarrnniinngg
In order to be able to test on a live device, your computer system must be able to recognize an
Android device when it’s connected to the system via a USB cable. If you connect a device and
it’s not recognized by the system, you must resolve any connectivity issues before continuing.

In my testing on Windows, I had to manually install the Google USB driver from the SDK
Manager and then, in Windows Device Manager, force the installation of the right driver. You
can read about the steps at www.johnwargo.com/index.php/mobile-development/nexus-7-setup-
on-windows1.html.

For Samsung devices, you may need to download and install the USB drivers separately before
the device is picked up correctly by Windows. See http://developer.samsung.com/android/tools-
sdks/Samsung-Andorid-USB-Driver-for-Windows for additional information.

For a Google Nexus 7 tablet, for example, you have to take some special steps before you can even
access the developer settings. To enable developer mode on the Nexus 7, you have to open the settings
application and select About Tablet (it is the very last item on the list of options on the Settings page).
On the About Tablet page, scroll down until you see the Build number item in the list. Tap on the Build
number item seven times to enable the developer options on the device. As you tap, Android will pop
up a little window indicating how many more times you need to tap to enable developer mode.

With that process completed, when you open the Settings application, you should be able to scroll down
to the bottom of the list of options and see a Developer options option available, as shown in Figure
7.13.

FFiigguurree 77..1133 Developer Options Enabled in the Android Settings Application

Click on Developer options and you will see a screen similar to the one shown in Figure 7.14; from
here you can enable USB debugging, as shown at the bottom of the figure.

http://www.johnwargo.com/index.php/mobile-development/nexus-7-setupon-windows1.html
http://www.johnwargo.com/index.php/mobile-development/nexus-7-setupon-windows1.html
http://developer.samsung.com/android/toolssdks/Samsung-Andorid-USB-Driver-for-Windows
http://developer.samsung.com/android/toolssdks/Samsung-Andorid-USB-Driver-for-Windows

ptg11524036

110 Chapter 7: Android Development with Cordova

FFiigguurree 77..1144 Enabling USB Debugging

With USB debugging enabled, launch the ADM, then connect the Android device to the computer system
using a USB cable. After the necessary device drivers initialize (see the preceding warning for information
about how to deal with driver issues), ADM should connect to your device and show the connected device
in its list of connected devices, as shown in Figure 7.15.

FFiigguurree 77..1155 Android Debug Monitor

ptg11524036

Chapter 7: Android Development with Cordova 111

In ADM, you have access to many of the same capabilities with a physical device as you do with a
device emulator, but there are differences. Refer to the Android documentation for more information
about the capabilities of ADM with a physical device. ADM is a good way to pull files from or push
files to a device for testing purposes. However, much of the file structure is protected, so you won’t be
able to access all file locations.

WWrraapp--UUpp
In this chapter, I showed you how to use the free tools available from Google that help simplify
Android development for Cordova. Although the Android tools do not directly assist with debugging
Cordova applications, by using these tools, you can more easily determine what’s going on within
your Cordova applications.

ptg11524036

112 Chapter 8: BlackBerry 10 Development with Cordova

8
BlackBerry 10 Development

with Cordova

Of all of the platforms that Cordova supports, the BlackBerry 10 platform most closely aligns with
the Cordova approach. The hybrid application approach has been a core application type for
BlackBerry for quite some time, and for BlackBerry devices, Cordova is built on top of it. In this
chapter, I show you how to use the BlackBerry command-line tools to test and debug BlackBerry
Cordova applications.

One of the cool things about BlackBerry development is that the BlackBerry SDK automatically
integrates a web inspector like weinre into the simulator; I show you how to use it here.

The Cordova team announced that it is dropping support for legacy BlackBerry devices (devices
running BlackBerry Device Software 7 and earlier), so I cover only BlackBerry 10 here. To work with
legacy BlackBerry devices, you need to use Cordova version 2.9 or earlier.

CCoonnffiigguurriinngg YYoouurr EEnnvviirroonnmmeenntt ffoorr BBllaacckkBBeerrrryy
DDeevveellooppmmeenntt
Before you can get started with BlackBerry development for Cordova, you must first configure your
development environment. I showed you how to install the BlackBerry Native SDK (NDK) in
Chapter 3, but I omitted some BlackBerry-specific configuration details from that chapter; I describe
them here.

As a reminder, before you can build BlackBerry applications that will run on BlackBerry devices, you
must first obtain and install a set of free signing keys from BlackBerry. Open your browser of choice
and point it to https://www.blackberry.com/SignedKeys to request a set of keys. You eventually will
receive a series of emails from BlackBerry, extract the key files to a location on your system’s hard
drive, and follow the instructions in the emails to activate your keys.

You need to register the keys using the instructions found at
https://developer.blackberry.com/html5/documentation/signing_setup_bb10_apps_2008396_11.html.
You can register the keys using the Momentics IDE included with the SDK installation, or you can use
the command line by issuing the following command:
blackberry-signer -register -csjpin <csj pin>

 -storepass <KeystorePassword> <client-RDK-xxxxxx.csj file>

 <client-PBDT-xxxxx.csj file>

https://www.blackberry.com/SignedKeys
https://developer.blackberry.com/html5/documentation/signing_setup_bb10_apps_2008396_11.html

ptg11524036

Chapter 8: BlackBerry 10 Development with Cordova 113

In this example, you replace the items in brackets with the following information:

▪ <csjpin>: The PIN you provided BlackBerry when you requested the signing keys.

▪ <KeystorePassword>: The password you want used to secure the keystore created during this
process. This is the password you will use to unlock your signing keys whenever you sign a
BlackBerry application.

▪ <client-RDK-xxxxxx.csj file>: The path pointing to the client-RDK-xxxxxx.csj file you
received from BlackBerry.

▪ <client-PBDT-xxxxx.csj file>: The path pointing to the client-PBDT-xxxxx.csj file you
received from BlackBerry.

For the NDK, the files you need are located in the BlackBerry NDK installation folder. For my
development system, I installed the NDK in c:\bbndk, so the blackberry-signer file is located in
C:\bbndk\host_10_1_0_132\win32\x86\usr\bin. So, I opened a terminal window and navigated to that
folder, then issued the following command:
blackberry-signer -register -csjpin 987456321

 -storepass my_keystore_password c:\dev\keys\client-RDK-123456.csj

 client-PBDT-12345.csj

If this works correctly, the system should respond with the following:
Info: CSK file created.

Info: Developer certificate created in

 C:\Users\jwargo\AppData\Local\Research In Motion\author.p12

Info: Successfully registered with server.

Info: Successfully registered with server.

Additional steps must be completed before you can test Cordova applications on a physical BlackBerry
10 device, but I cover those later in the chapter.

As shown in Chapter 3, “Installing the Cordova Command-Line Interface,” you can add support for a
particular mobile device platform to a Cordova project using the following command:
cordova platform add platform_name

When adding support for BlackBerry to an existing project, you would use the following:
cordova platform add blackberry10

However, when you run the command, you may receive an error message similar to the following:
blackberry-nativepackager cannot be found on the path. Aborting.

This happens because one or more of the tools you need to add BlackBerry support to a Cordova
project or to use the BlackBerry native SDK cannot be found on the system path. Before you can use
any of the BlackBerry 10 NDK command-line tools, you must first add some BlackBerry 10 NDK
configuration information to your environment’s configuration. The easiest way to do this is to execute
the bbndk-env command that’s included with the NDK. The command updates your system path with
some additional folders and sets several environment variables the BlackBerry 10 NDK needs to find
its files, as shown in Figure 8.1.

ptg11524036

114 Chapter 8: BlackBerry 10 Development with Cordova

FFiigguurree 88..11 Setting Up the BlackBerry 10 NDK Environment

On Windows, I simply added the BlackBerry 10 NDK installation folder (c:\bbndk\) to the Windows
system path. Then, whenever I open a terminal window to work on a BlackBerry project, I simply
execute the bbndk-env.bat file before issuing any commands that affect the BlackBerry 10 portion of a
project. You could automate this by adding the call to the batch file to the system’s autoexec.bat file,
but I didn’t take the time to do this.

On Macintosh OS, you need to run a shell script called bbndk-env.sh to set up the BlackBerry 10
development environment. You can add the BlackBerry 10 NDK installation path to the system path,
then execute the script manually as needed, or you can configure your system to execute the script
when opening new terminal windows.

Now when you add the BlackBerry 10 platform to your Cordova project, the process should run
properly and not return any errors to the terminal window.

CCoonnffiigguurriinngg aa BBllaacckkBBeerrrryy CCoorrddoovvaa PPrroojjeecctt
A BlackBerry Cordova project is configured through the BlackBerry 10 project’s config.xml file,
shown in Listing 8.1. A BlackBerry hybrid application conforms to the WWC Widget Specification
(www.w3.org/TR/widgets), and the config.xml is the standard file used to configure a widget. To
access a BlackBerry project’s config.xml file, navigate to the Cordova project’s
platforms\blackberry\www folder and open the file with your XML or text editor of choice.

I’m not going to describe all of the possible settings for the BlackBerry config.xml; you can find
detailed documentation from BlackBerry at
https://developer.blackberry.com/html5/documentation/config_doc_elements.html. I do, however,
describe some of the options, but first take a look at the file in Listing 8.1.

http://www.w3.org/TR/widgets
https://developer.blackberry.com/html5/documentation/config_doc_elements.html

ptg11524036

Chapter 8: BlackBerry 10 Development with Cordova 115

Listing 8.1 BlackBerry 10 Project Config.XML

<?xml version="1.0" encoding="UTF-8"?>
<!--
 Licensed to the Apache Software Foundation (ASF) under one
 or more contributor license agreements. See the NOTICE file
 distributed with this work for additional information
 regarding copyright ownership. The ASF licenses this file
 to you under the Apache License, Version 2.0 (the
 "License"); you may not use this file except in compliance
 with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing,
 software distributed under the License is distributed on an
 "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 KIND, either express or implied. See the License for the
 specific language governing permissions and limitations
 under the License.
-->
<!--
 Widget Configuration Reference:
 http://docs.blackberry.com/en/developers/deliverables/15274/
-->

<widget xmlns="http://www.w3.org/ns/widgets"
 xmlns:rim=http://www.blackberry.com/ns/widgets
 version="1.0.0.1" id="default.app.id">

 <name>WebWorks Application</name>
 <author>John M. Wargo</author>
 <description>
 A sample Apache Cordova application that responds to the
 deviceready event.
 </description>
 <license href="http://opensource.org/licenses/alphabetical">
 </license>

 <!-- Expose access to all URIs, including the file and http protocols -->
 <access subdomains="true" uri="file:///store/home" />
 <access subdomains="true" uri="file:///SDCard" />
 <access subdomains="true" uri="*" />

 <icon src="res/icon/blackberry/icon-80.png" />
 <rim:splash src="res/screen/blackberry/splash-1280x768.png" />
 <rim:splash src="res/screen/blackberry/splash-720x720.png" />
 <rim:splash src="res/screen/blackberry/splash-768x1280.png" />

 <content src="index.html" />

 <rim:permissions>

ptg11524036

116 Chapter 8: BlackBerry 10 Development with Cordova

 <rim:permit>use_camera</rim:permit>
 <rim:permit>read_device_identifying_information</rim:permit>
 <rim:permit>access_shared</rim:permit>
 <rim:permit>read_geolocation</rim:permit>
 <rim:permit>record_audio</rim:permit>
 <rim:permit>access_pimdomain_contacts</rim:permit>
 </rim:permissions>

</widget>

The config.xml name, author, and description elements describe the application to the BlackBerry
user. The name element defines the name that appears on the device home screen and the application
list. Author and description are not critical but are useful to set. The author is displayed in
application security prompts (you can see an example in Figure 8.4), and the description should
appear in the application details screen within device options.

The content element defines the name of the web content file that is launched when the container
starts. This value is set to index.html by default, but you can change it to any valid src reference. If
your web application’s main page is in a file called rabbit.html, you would set the src value for content
to rabbit.html, as in the following example:
<content src="rabbit.html" />

The most important aspect of the config.xml is the rim:permissions element; it is used to list the
different application permissions the application requires. If your application uses a restricted capability
and you don’t have it listed as a rim:permit element, then the part of the application that leverages that
capability will not function. Your application’s not going to tell you what’s wrong—it just won’t work
correctly.

There’s a lot you can do with the settings in the config.xml, but it’s way beyond the scope of this book
to cover all options. Refer to the BlackBerry developer documentation for more information on this
topic.

DDeeffiinniinngg BBllaacckkBBeerrrryy 1100 TTaarrggeettss
Before you can test and debug a BlackBerry 10 Cordova application using a device simulator or a
physical device, you must first configure your Cordova development environment for each of the
devices you will use (whether they are a simulator or a physical device); each one is referred to as a
target. Fortunately, the targets you define are global to your Cordova configuration, so you only have
to create them once, and you can use them for any Cordova project you work with.

If you take a look at the .cordova folder in your default user’s folder, you will see a file called
blackberry10.json. This file contains the global list of targets defined for your Cordova development
environment. Initially, it points to an empty list of target objects:
{

 "targets": {}

}

As you’ll see in the sections that follow, as you add targets to the system, this file gets updated with the
appropriate settings for each. The Cordova CLI emulate and run commands use this information to
locate the appropriate targets when executing Cordova applications.

ptg11524036

Chapter 8: BlackBerry 10 Development with Cordova 117

The files you need to create BlackBerry targets are installed into your Cordova project when you add
support for BlackBerry 10. The sections that follow illustrate how to define targets for the BlackBerry
10 simulator as well as a physical BlackBerry 10 device.

DDeeffiinniinngg aa BBllaacckkBBeerrrryy 1100 SSiimmuullaattoorr TTaarrggeett
To define a BlackBerry 10 simulator target, first launch the appropriate device simulator, then
navigate to the project’s platforms/blackberry10/cordova folder and execute the following
command:
target add target_name ip_addr –t simulator

As you can see, the process needs to know the IP address of the simulator; fortunately, the simulator
displays its IP address at the bottom of the simulator window, as shown in Figure 8.2.

FFiigguurree 88..22 BlackBerry 10 Device Simulator

Assuming the simulator’s IP address is 192.168.215.128 and the Cordova project was created on
Windows in c:\users\jwargo\dev\test\, you would open a terminal window, then navigate to
c:\users\jwargo\dev\test\platforms\blackberry10\cordova\ and issue the following command:

ptg11524036

118 Chapter 8: BlackBerry 10 Development with Cordova

target add bb10-sim 192.168.216.128 –t simulator

After the completion of that command, the blackberry10.json file is updated to include the settings for
the target:
{

 "targets": {

 "z10-sim": {

 "ip": "192.168.216.128",

 "type": "simulator"

 }

 },

 "defaultTarget": "z10-sim"

}

When you start the BlackBerry 10 device simulator, you can select which device type the simulator
simulates. You can define separate targets for each simulator type and define the default simulator to
use via the defaultTarget variable defined in the blackberry10.json file.

DDeeffiinniinngg aa BBllaacckkBBeerrrryy 1100 DDeevviiccee TTaarrggeett
To define a BlackBerry 10 target using a physical device, the process is similar to what was shown in
the previous section, but additional setup steps must be completed before you can create the target.

To test and debug your BlackBerry 10 Cordova applications, you must first enable debug Development
Mode on the device. To do this, open the device’s Settings application, then open the Security and
Privacy section of the application. At the bottom of the list of options displayed, select the
Development Mode option. The device will open a screen similar to the one shown in Figure 8.3. At the
top of the screen, set the Use Development Mode option to On, as shown in the figure. You may also
want to set the IP address for the device. If you will be testing on multiple devices, you need to make
sure that the IP addresses are unique across devices and define a separate target for each device.

ptg11524036

Chapter 8: BlackBerry 10 Development with Cordova 119

FFiigguurree 88..33 Enabling Development Mode Options on a BlackBerry Device

With those settings in place and the device physically connected to the computer system using a USB
cable, you can now create the target. The settings for a physical device are a little different as the
current version of the BlackBerry command line tools requires the device password as well as the
device PIN. In Cordova 3.1, the BlackBerry development team will be implementing PIN detection to
their command line tools.

Assuming the Cordova project was created on Windows in c:\users\jwargo\dev\test\, you would
open a terminal window then navigate to
c:\users\jwargo\dev\test\platforms\blackberry10\cordova\ and issue the following
command:
target add target_name ip_address –t device –p device_password –pin device_pin

For my particular configuration, the command is
target add z10-device 169.254.254.253 –t device –p abcdef –pin 2AB09876

ptg11524036

120 Chapter 8: BlackBerry 10 Development with Cordova

which adds settings for the device to the system’s blackberry10.json file, as shown here:
{

 "targets": {

 "z10-sim": {

 "ip": "192.168.216.128",

 "type": "simulator"

 },

 "z10-device": {

 "ip": "169.254.254.253",

 "type": "device",

 "password": "abcdef",

 "pin": "2AB09876"

 }

 },

 "defaultTarget": "z10-sim"

}

To change the configuration so the physical device is the default target, issue the following command in
the terminal window:
target default z10-device

To see a list of the defined targets on the system, issue the following command:
target

The system will respond with the list of targets, as shown here:
 z10-sim

* z10-device

The asterisk marks the default target.

DDeebbuuggggiinngg oonn aa DDeevviiccee SSiimmuullaattoorr
Cordova applications for BlackBerry don’t use the BlackBerry Momentics IDE for managing
applications; instead, everything is done via the Cordova CLI. To run a Cordova application in the
BlackBerry 10 simulator, first start the simulator, then navigate to the Cordova project folder and
issue the following command:
cordova emulate blackberry10

The CLI will build the BlackBerry 10 project, load it into the simulator, then launch the application.
You can also navigate to the project’s platforms/blackberry10/cordova folder and run the application
using the run command found in that folder. The simulator must be running before you issue the
command—the CLI won’t launch it for you. The process of building and deploying the Cordova
application takes quite some time, so be patient.

The default Cordova project used in this example enables security settings for all of the available
plugins, although none are enabled in this project. Because BlackBerry is a secure platform, when the
application first launches, you are prompted to allow access to the different Cordova APIs, as shown in
Figure 8.4. These settings are described in “Configuring a BlackBerry Cordova Project,” earlier in the
chapter. Just click the OK button to continue.

ptg11524036

Chapter 8: BlackBerry 10 Development with Cordova 121

FFiigguurree 88..44 Cordova Application Security Prompt

BlackBerry 10 Cordova projects enable the BlackBerry Web Inspector by default. When a Cordova
application launches in the simulator, it lets you know if Web Inspector is enabled, as shown in
Figure 8.5.

ptg11524036

122 Chapter 8: BlackBerry 10 Development with Cordova

FFiigguurree 88..55 BlackBerry 10 Simulator Web Inspector Warning

To disable the Web Inspector, you must build the application in release mode. You can do this by
opening a terminal window, navigating to the Cordova project’s platforms\blackberry10\cordova\
folder, and issuing the following command:
build --release --keystorepass your_keystore_password

I show you how to use the Web Inspector a little later. When you click OK, the application opens and
displays its web content, as shown in Figure 8.6.

ptg11524036

Chapter 8: BlackBerry 10 Development with Cordova 123

FFiigguurree 88..66 Cordova HelloCordova Application Running in the BlackBerry 10 Simulator

At this point, the application is running on the simulator, and you can interact with the application as
you would on a physical device.

 NNoottee
For some reason, the BlackBerry 10 device simulator has difficulty rendering the background
image in the default Cordova HelloWorld application. I experienced this on two different
computers but didn’t experience the same issue on a physical device. All the more reason to
use the simulator for initial testing, but do all final testing on physical devices.

ptg11524036

124 Chapter 8: BlackBerry 10 Development with Cordova

UUssiinngg tthhee BBllaacckkBBeerrrryy SSiimmuullaattoorr CCoonnttrroolllleerr
Some things happen on a physical device that you can’t easily map to a simulator; examples are
determining the device location, responding to phone calls, orientation changes, and so on. To help
developers manage such issues while working with a simulator, the BlackBerry simulator includes a
separate controller program you can use to manipulate the simulator as its running. The controller is
installed alongside the device simulator as a separate icon; double-click the icon to the program, and
it opens in a window similar to the one shown in Figure 8.7.

FFiigguurree 88..77 BlackBerry Simulator Controller

The controller automatically connects to a running simulator; otherwise, you can use options in the
Connection menu to disconnect and connect manually. Use the Device menu to access the available
options for manipulating the simulator. For example, there’s an option for setting GPS position; when
you select that option, a new window appears, as shown in Figure 8.8.

FFiigguurree 88..88 BlackBerry Simulator Controller: GPS Settings

ptg11524036

Chapter 8: BlackBerry 10 Development with Cordova 125

Set the appropriate location information and click the Apply button to apply the settings to the
simulator. If your Cordova application that’s running in the simulator were watching the simulated
device’s location, it would automatically register the change and react as you’ve coded within your
application.

The Controller can do a lot more for you as you work with your BlackBerry Cordova applications. Take
a few moments and poke around in the Device menu to see what other options are available to you.

UUssiinngg tthhee BBllaacckkBBeerrrryy WWeebb IInnssppeeccttoorr
Since the hybrid application approach is a standard option for BlackBerry development, debugging
Cordova applications is much easier than on some other platforms. The built-in tools allow a Cordova
developer to more easily understand what’s going on within the web application running in the
Cordova native container. The Web Inspector provides critical capabilities in this area and works with
the device simulator as well as physical devices.

As described previously, by default Web Inspector is enabled for Cordova applications built using the
Cordova CLI. When a Cordova application with Web Inspector enabled runs in the BlackBerry 10
Simulator, you can fire up a browser and watch the application as it runs within the container,
highlighting HTML elements, evaluating expressions, stepping through code, and more. To
demonstrate, I created a simple Cordova application with a little bit of JavaScript code and launched it
within the simulator. When the application runs in the simulator, it renders the screen shown in Figure
8.9 (cropped for brevity’s sake).

FFiigguurree 88..99 Console Application Used to Demonstrate the BlackBerry Web Inspector

To use the Web Inspector to debug this application, open the Google Chrome browser and enter the
following URL:
http://device_IP_Address:1337

The device_IP_Address refers to the IP address of the device simulator or physical device running the
application. So, for the simulator shown in the figure, use the following:

ptg11524036

126 Chapter 8: BlackBerry 10 Development with Cordova

http://192.168.216.128:1337

When you press enter, the browser connects to the browser running on the device and opens a screen
similar to the one shown in Figure 8.10. To debug a Cordova application, select the option highlighted
in the figure; the web resource at local:///index.html is the start page for the web application running
within the Cordova container. The other options shown in the figure are for the browser and browser
chrome running on the device.

FFiigguurree 88..1100 BlackBerry Web Inspector Start Page

After you make that selection, the browser should open a page similar to the one shown in Figure 8.11.

FFiigguurree 88..1111 BlackBerry Web Inspector: Elements Page

Using the different options shown across the top of the browser page shown in Figure 8.11, you have
access to a tremendous amount of information about the application. For Cordova application
debugging, there are a couple of features here that are quite useful.

ptg11524036

Chapter 8: BlackBerry 10 Development with Cordova 127

If you click on the Sources icon (located in the list of icons across the top of the page shown in Figure
8.11), you are presented with the page shown in Figure 8.12. The Web Inspector disables debugging by
default, but you can turn it on here, as shown in the figure. Enable the appropriate radio button on the
page and click the Enable Debugging button to continue.

FFiigguurree 88..1122 BlackBerry Web Inspector: Enabling JavaScript Debugging

Next, the Web Inspector displays a list of source files for your application; you can select any of them to
open a debug session using that source file. In Figure 8.13, I selected the Cordova application’s index.html
file because, for this simple example, that’s where all of my code is located.

In this interface, I can set breakpoints (as I have in line 18, shown in Figure 8.13), define watch
expressions, view the call stack, inspect variables, and more.

ptg11524036

128 Chapter 8: BlackBerry 10 Development with Cordova

FFiigguurree 88..1133 BlackBerry Web Inspector: JavaScript Debugging

In this example, I clicked the Click Me button shown in Figure 8.9 and stepped through a few lines of
code. When the Web Inspector hits a breakpoint, you can step through your code in different ways
using the buttons highlighted at the top right of Figure 8.13. At this point, the Web Inspector works like
any other debugger you’ve worked with in the past.

To round out this example, Figure 8.14 shows the console page, which displays the output of the code.
Here I can view the output of calls to the console object. Unlike the Apple debugger, the Web
Inspector uses colored icons for warning and error log entries and even color-codes the error output so
it can be more easily located during a debugging session.

FFiigguurree 88..1144 BlackBerry Web Inspector Console Window

ptg11524036

Chapter 8: BlackBerry 10 Development with Cordova 129

As you can see, the BlackBerry Web Inspector is a pretty powerful tool for debugging Cordova
applications.

DDeebbuuggggiinngg oonn aa PPhhyyssiiccaall DDeevviiccee
When working with a physical device, the Web Inspector capabilities are still supported, so the
information in the previous section still applies. In general, to run the application on a device, you
must connect the device to the computer, then navigate to the Cordova project folder and issue a CLI
command. You can connect the device via USB cable, or if the device is on the same network as your
development computer, you can connect over Wi-Fi as well.

The first time you run the application on a device, you have to generate a debug token and deploy it to
the device. To learn more about Debug Tokens on BlackBerry, refer to
https://developer.blackberry.com/html5/documentation/runnning_unsigned_apps_using_a_debug_token
_1866987_11.html. So, the first time you run an application on a BlackBerry device, you should use the
following command:
cordova run blackberry10 -k keystore_password

This command instructs the CLI to create the debug token, deploy it to the device, then package the
application and deploy it to the device as well. If everything works correctly, after quite a long wait (it
really is quite a long wait), you should see the Cordova application running on the device.

On subsequent runs, after the debug token has been installed on the device, you can run the application
on a device using following command:
cordova run blackberry10

If you have multiple targets defined, you can launch the application on a specific target by issuing the
following command:
cordova run blackberry10 --target target_name

To run the application on whichever device is currently connected, issue the following command:
cordova run blackberry10 --device

WWrraapp--UUpp
This chapter has demonstrated how to use the command-line tools provided by BlackBerry to run and
debug Cordova applications on both a device simulator and physical device. The broad spectrum of
available tools provided by BlackBerry provides the Cordova developer with some additional
capabilities not available on other platforms.

https://developer.blackberry.com/html5/documentation/runnning_unsigned_apps_using_a_debug_token_1866987_11.html
https://developer.blackberry.com/html5/documentation/runnning_unsigned_apps_using_a_debug_token_1866987_11.html

ptg11524036

130 Chapter 9: iOS Development with Cordova

9
iOS Development

with Cordova

For developers building Cordova applications for the iOS platform, Apple provides a suite of tools
used to design, package, and deploy iOS applications. Even though the Cordova CLI takes care of
most of the process of creating, managing, and testing iOS applications, there will be times when you
want to have more control over the process. The CLI can launch a Cordova application in the iOS
simulator, but when you encounter problems with an application and you want to know more about
what’s going on, you need to use the development tools that Apple provides.

In this chapter, I show you how to use Xcode, Apple’s tool for iOS development, to run and debug
Cordova applications for iOS devices. I also show you how to use the Safari browser to debug Cordova
applications.

WWoorrkkiinngg wwiitthh XXccooddee
Assuming you’ve used the Cordova CLI to create a project and added the iOS platform to it, working
with a Cordova application in Xcode is pretty straightforward. When you have your web application’s
content all ready, issue the following CLI command to copy the web application source code over to
the iOS project folder:
cordova prepare ios

Instead of having to import the Cordova project into the IDE as you do for Android and BlackBerry, the
Cordova CLI creates a project that can be opened directly in Xcode. Simply start Xcode, open the
project, and go to work. When the project opens, you should see a screen similar to the one shown in
Figure 9.1. From here, you can run the application in any of the iOS simulators as you would for any
other iOS application.

ptg11524036

Chapter 9: iOS Development with Cordova 131

FFiigguurree 99..11 Cordova Project Open in Xcode

DDeebbuuggggiinngg iiOOSS AApppplliiccaattiioonnss
iOS applications are written in Objective-C, a variant of C that was used by NeXT to develop
applications for the NeXTSTEP operating system back in the 1980s. Xcode lets you edit HTML5
source files, but because iOS applications are written in C, Xcode doesn’t have the ability to debug
web applications running in the Cordova container. You can use weinre or the console object to help
debug applications, as described in Chapter 6, “The Mechanics of Cordova Development,” to debug
your iOS applications.

When you run an iOS application in Xcode, the IDE opens a console window at the bottom of the
screen where you can see messages generated by the simulator as well as the Cordova application.
Using the application from Listing 6.2, you can see the output from the code that uses the console
object written to the IDE console screen in Figure 9.2.

ptg11524036

132 Chapter 9: iOS Development with Cordova

FFiigguurree 99..22 Xcode Console Output Window

Notice that the Warning and Error messages are tagged with additional text so you can identify them
more clearly. Unfortunately, Xcode doesn’t color-code them as the Android IDE does; perhaps Apple
will add more robust capabilities in the future.

Greater debugging capabilities exist when working with a physical device; refer to the next section for
additional information.

DDeebbuuggggiinngg oonn aa PPhhyyssiiccaall DDeevviiccee
There are a few differences between debugging on a simulator and debugging on a physical device,
so at some point in your development process, you are going to want to run your app on a device.
Apple has some pretty sophisticated processes you must follow before you can run an application on
a physical device. As there are hundreds of books and websites dedicated to iOS development, I’m
not going to dig into the details here. You can find detailed instructions on the Apple Developer’s
website at http://tinyurl.com/op9lvv3. You have to follow the instructions provided there before you
can work with a physical device.

Once you’ve completed the setup of your device, you can connect it to the computer running Xcode
with a USB cable and run the application on the device directly from Xcode. In this environment,
Xcode provides the same debugging capabilities for a physical device as it does for the simulators.

UUssiinngg tthhee SSaaffaarrii WWeebb IInnssppeeccttoorr
Beginning with iOS 6, Apple added some capabilities to Safari (on both the desktop and in iOS) that
allow a web application to be remotely debugged in the desktop Safari browser. The cool thing about
this capability is that it works with the UIWebView used within a Cordova application. You can find
detailed information about this remote debugging capability on Apple’s web site at
http://tinyurl.com/c9yqebs.

The first thing you must do is enable the developer menu in the desktop version of Safari for Macintosh
OS (this process doesn’t work on Windows and probably never will). Open Safari application
preferences and select the Advanced tab, as shown in Figure 9.3. Enable the checkbox at the bottom of
the figure labeled “Show Develop menu in menu bar.”

http://tinyurl.com/op9lvv3
http://tinyurl.com/c9yqebs

ptg11524036

Chapter 9: iOS Development with Cordova 133

FFiigguurree 99..33 Safari Preferences on Macintosh OS X

With that change in place, close preferences, and you should see a new Develop menu option in Safari.

Next, you need to open Settings on your iOS device and select the Safari option, then click the
Advanced option at the bottom of the Settings screen. On the screen that appears, enable the Web
Inspector option, shown in Figure 9.4.

FFiigguurree 99..44 Safari Advanced Settings on iOS

ptg11524036

134 Chapter 9: iOS Development with Cordova

With those settings in place, launch the simulator or connect the device to the computer with a USB
cable, then launch the Cordova application. You can run the Cordova application from Xcode or
preload the application on the device and run it manually from the device’s home screen.

With the Cordova application running, switch to your desktop computer and fire up the Safari browser
(remember, this works only on Macintosh OS X) and open the Develop menu. You should see your
simulator or iOS device listed in the menu that appears. Figure 9.5 shows an example: my iPhone,
appropriately named “John’s iPhone,” appears as an option in the menu. You can also see the
HelloCordova application running; select the index.html file, as shown in the figure.

FFiigguurree 99..55 Connecting the Remote Web Inspector to the Cordova Application

Safari connects to the remote application, then opens a new window, shown in Figure 9.6. From this
new window, you have access to the code running within the Cordova container and the ability to
interact with different parts of the application.

ptg11524036

Chapter 9: iOS Development with Cordova 135

FFiigguurree 99..66 Safari Remote Web Inspector Window

Figure 9.6 shows the contents of the index.html file. You can expand the different parts of the page and
even edit the contents on the fly. Right-click on any of the divs within the HTML file, and you can
select an option that allows you to edit the content. In Figure 9.7, you can see that I’ve inserted a new
paragraph tag into the file while the application is running.

FFiigguurree 99..77 Updating HTML Content in the Web Inspector

ptg11524036

136 Chapter 9: iOS Development with Cordova

In real time, on the device, the Cordova application will update to show the new content, as shown in
Figure 9.8.

FFiigguurree 99..88 Modified Cordova Application

Very important to Cordova developers and something that’s not available on most other platforms is the
ability to set breakpoints and step through the JavaScript code in a Cordova application. Figure 9.9
shows the application’s index.js with some breakpoints set.

ptg11524036

Chapter 9: iOS Development with Cordova 137

FFiigguurree 99..99 Web Inspector JavaScript Debugger

Figure 9.10 shows an evaluation window you can use to evaluate expressions. When you type any
object value or expression and press Enter, the log evaluates the expression and displays the results. In
this example, I’m retrieving the value of the document.title variable.

FFiigguurree 99..1100 Web Inspector Log

Although I’m not quite sure why you would need this ability, you can also execute the JavaScript
alert() function remotely, which displays the alert on the connected device’s screen, as shown in
Figure 9.11.

ptg11524036

138 Chapter 9: iOS Development with Cordova

FFiigguurree 99..1111 Remote JavaScript Alert Displayed in a Cordova Application

I’ve only skimmed the surface of what you can do with the Web Inspector. Before you go too far with
iOS development for Cordova, spend some time with this tool to understand all it can do for you.
You’ll likely save time and frustration by using a tool like this for your testing and troubleshooting.

WWrraapp--UUpp
In this chapter I’ve shown you how to test and debug your iOS Cordova applications in an iOS
simulator and on a physical device. Using these tools should help simplify the development process and
allow you to more quickly identify issues with your applications.

ptg11524036

Chapter 10: Windows Phone 8 Development with Cordova 139

10
Windows Phone 8

Development with Cordova

Cordova provides good support for the Windows platform, supporting Windows desktop, Windows
Phone 7, and Windows Phone 8. In this chapter, I show you how to use the Microsoft development
tools to build and test Cordova applications for Windows Phone 8. The developer tools for Windows
Phone are free and pretty easy to use; I found that for the different platforms highlighted in the book,
developing for Windows Phone 8 was the easiest.

GGeettttiinngg SSttaarrtteedd wwiitthh WWiinnddoowwss PPhhoonnee
DDeevveellooppmmeenntt
To develop, test, and deploy Windows Phone 8 applications, you need to download and install a copy
of Visual Studio 2012. There’s a free version for Windows Phone development called Visual Studio
Express 2012 for Windows Phone, which can be downloaded from the Microsoft website at
http://developer.windowsphone.com.

You can use the Windows Phone SDK version 8 for Windows Phone 8 and Windows Phone 7.5
development. The Windows 8 SDK requires a 64-bit version of Windows 8 Professional and at least 4
GB of RAM; I wouldn’t try to do Windows Phone development in a virtual machine (VM). Older
versions of the SDK can be used for Windows Phone 7.5 and 7.1 applications; you’ll be able to run
those development tools on a Windows 7 or Windows 8 system, and they don’t have a 64-bit
requirement.

 WWaarrnniinngg
Pay special attention to the hardware and software requirements for Visual Studio, as the use of
the device emulators puts quite a strain on your system, and if you don’t have a beefy enough
system, you may find that the emulators won’t work or will be too slow to be useful.

When I worked on PhoneGap Essentials, I found that I couldn’t run any of the Windows Phone
development tools in a Windows VM, and only one of my lab machines had the horsepower to
run the emulators. For this manuscript, I upgraded one of my lab systems to a brand new quad
core processor and a lot of memory to make sure it would perform for me. Even with that, when I
first started the emulator on that system, I received specific instructions on how to configure my
system’s BIOS for optimal performance of the emulator.

http://developer.windowsphone.com

ptg11524036

140 Chapter 10: Windows Phone 8 Development with Cordova

Next, you must follow some administrative steps to be able to deploy Windows Phone applications into
the Windows Phone Store or onto a physical device. To help you get started with the process, take a
look at “How to deploy and run a Windows Phone app” on Microsoft’s website at
http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff402565(v=vs.105).aspx.

First, you need to create a Microsoft Account. Accounts are free and can be obtained at
https://signup.live.com. Next, you need to register as a member of the Windows Phone Dev Center at
https://dev.windowsphone.com/join. Joining the program isn’t free, but it doesn’t cost that much. With
your registration, you get the ability to deploy your applications to a physical device and into the
Windows App Store.

CCoonnffiigguurriinngg aa WWiinnddoowwss 88 DDeevviiccee ffoorr AApppplliiccaattiioonn
TTeessttiinngg
The Visual Studio development environment allows you to easily deploy and test Windows Phone
applications onto a Windows Phone emulator. However, before you can test your applications on a
physical device, you must register the device with Microsoft. You can find specific instructions for
the process at http://msdn.microsoft.com/en-us/library/windowsphone/develop
/ff769508(v=vs.105).aspx.

First, you need to power on the device and connect it to your Windows 8 desktop via a USB cable.
Since each registered device has to have a unique name, open Windows Explorer on your desktop
system and change the name of the device to something you know is unique, perhaps using your initials
in the device name.

In Windows 8, bring up the All Apps view and, under Windows Phone 8 SDK, open t Windows Phone
Developer Registration. You will see a screen similar to the one shown in Figure 10.1.

FFiigguurree 1100..11 Windows Phone Developer Registration: Locked Device

In this example, my Windows Phone device is locked, so I have to unlock the device and click the
Retry button to allow it to connect to the device. After you unlock your device, you should see a screen
similar to the one shown in Figure 10.2.

http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff402565(v=vs.105).aspx
https://signup.live.com
https://dev.windowsphone.com/join
http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff769508(v=vs.105).aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff769508(v=vs.105).aspx

ptg11524036

Chapter 10: Windows Phone 8 Development with Cordova 141

FFiigguurree 1100..22 Windows Phone Developer Registration: Connected Device

When you click the Register button, you are prompted to log in with your Microsoft account. Once you
are logged in, you are taken to a screen similar to the one shown in Figure 10.3.

FFiigguurree 1100..33 Windows Phone Developer Registration Completed

At this point, the device is registered with Microsoft and can be used to test your Cordova applications.

ptg11524036

142 Chapter 10: Windows Phone 8 Development with Cordova

RRuunnnniinngg aa CCoorrddoovvaa AApppplliiccaattiioonn UUssiinngg VViissuuaall
SSttuuddiioo
To work with a Cordova application on Windows Phone 8, you must first create Cordova project
using the steps outlined in “Creating a Cordova Project” in Chapter 4, “Using the Cordova
Command-Line Interface.” Once you have the application created, in a terminal window navigate to
the project folder and issue the following command:
cordova platform add wp8

This command downloads a Windows Phone 8 project and extracts it to the project’s platforms\wp8\
folder. Make whatever changes you want to make to the web application’s content in the Cordova
project’s www folder, then issue the following command:
cordova prepare wp8

The CLI copies the web content over into the platforms/wp8/www folder. You can see an example of
the files that are created in Figure 10.4.

FFiigguurree 1100..44 Cordova Windows Phone 8 Platform Folder

Notice from the figure that the Visual Studio project is a Visual C# project (hello_cordova.csproj).
Even though the default project type for Windows Phone 8 is a hybrid project, for Cordova applications
it’s a C# project. Because of this, developers of Cordova applications cannot leverage the web
application debugging capabilities of Visual Studio; instead, they must use the console object and
weinre (described in Chapter 6) to debug their Cordova applications for Windows Phone 8. There is
also a third-party remote JavaScript debugger called Aardwolf (http://lexandera.com/aardwolf), which
may prove useful. I’ve not tested it, but it looks like it’s one solution for debugging Cordova
applications on Windows Phone.

(http://lexandera.com/aardwolf

ptg11524036

Chapter 10: Windows Phone 8 Development with Cordova 143

Now that you have created a Cordova project for Windows Phone 8, open Visual Studio 2012 Express
for Windows Phone. When the development environment opens, it displays a screen similar to the one
shown in Figure 10.5.

FFiigguurree 1100..55 Visual Studio Express 2012 for Windows Phone

To open the Cordova project, click the Open Project link shown on the left of Figure 10.5, or open the
File menu and select Open Project. Visual Studio displays the Open Project dialog shown in Figure
10.6. Navigate to the project folder, shown in Figure 10.4, and open the Microsoft Visual Studio
Solution file, as shown in Figure 10.6.

ptg11524036

144 Chapter 10: Windows Phone 8 Development with Cordova

FFiigguurree 1100..66 Visual Studio: Open Project Dialog

When the project opens, the Solution Explorer will show you all of the files in the project, as shown in
Figure 10.7. From here you can open the different web content files generated by the CLI; keep in
mind, though, that the files shown here are copied from the Cordova project’s www folder. Any
changes you make to the web application content here must be copied back to the Cordova project’s
www folder before they can be applied to other platform projects.

To test applications in Visual Studio, use the options highlighted at the top of Figure 10.7. Click the
green play symbol to run the application. The drop-down list to the right of the Play icon allows you to
select the emulator or a physical device where the application will run.

ptg11524036

Chapter 10: Windows Phone 8 Development with Cordova 145

FFiigguurree 1100..77 Cordova Application Project Open in Visual Studio

To run the application on a physical device, make sure the device is powered on, unlocked, and
connected to the development system using a USB cable. When running on an emulator, the emulator
window will open, start the emulated OS, and run the application, as shown in Figure 10.8. The
emulator looks and works like a regular device. You can swipe, click, and work with the application
just as you would on a physical device.

ptg11524036

146 Chapter 10: Windows Phone 8 Development with Cordova

FFiigguurree 1100..88 Windows Phone 8 Emulator

The icons to the right of the figure provide developers with some additional control over the emulator.
You can change the orientation of the device, expand the size of the emulated device, or change the
zoom level. The double brackets (>>) icon at the bottom of the list is used to open an Additional Tools
window, which provides some additional capabilities for manipulating the emulator.

The Accelerometer pane of the Additional Tools window is shown in Figure 10.9; it allows you to
manipulate the orientation of the emulator along three axes. You can hold the primary mouse button
down over the orange dot in the middle of the device image and move it around to position the
emulated device. You can also select preset orientations or play back recorded orientation changes. This
is a simple way to test mobile applications that leverage the accelerometer.

ptg11524036

Chapter 10: Windows Phone 8 Development with Cordova 147

FFiigguurree 1100..99 Emulator Additional Tools: Accelerometer

Figure 10.10 shows the Location pane; from here you can manipulate the emulator’s location. You can
search for a specific location or address and push it into the emulated device’s GPS coordinates. You
can also play back recorded trips.

ptg11524036

148 Chapter 10: Windows Phone 8 Development with Cordova

FFiigguurree 1100..1100 Emulator Additional Tools: Location

When writing documentation for your application, you can easily grab device screenshots using options
in the Screenshot pane.

WWrraapp--UUpp
In this chapter, I showed you how to use the free developer tools from Microsoft to test your Cordova
applications for Windows Phone 8. Due to the implementation of Cordova framework on Windows
Phone 8, you can’t leverage the debugging tools available through Visual Studio, but the tools still
provide a great way to perform initial testing of a Cordova application.

ptg11524036

Chapter 11: Using PhoneGap Build 149

11
Using PhoneGap Build

Before the Cordova CLI became available, building Cordova applications for multiple device
platforms was a challenge. You had to install the native SDK for each mobile device platform you
were supporting and copy your Cordova application’s web application content from project to project.
You couldn’t build or test multiple apps simultaneously. The CLI fixes much of that, but there are
still limitations. The PhoneGap Build service provides the means to build PhoneGap applications in
the cloud, without the need to install a bunch of software on a developer workstation. All you have to
do is write your web applications using your web content editor of choice, then upload the files to the
cloud and let PhoneGap Build do the rest.

In this chapter, I show you how to set up and use the PhoneGap Build service to package your Cordova
applications and share those applications with others. There’s a lot to PhoneGap Build, so I won’t be
able to cover it all here. This chapter focuses on the Build service and how to use it, not on the device
platform–specific intricacies.

WWhhaatt IIss PPhhoonneeGGaapp BBuuiilldd??
PhoneGap Build (https://build.phonegap.com) is a cloud-based build service for PhoneGap
applications. It is a commercial offering from Adobe; there’s a free version of the service plus for-fee
options that offer more capabilities.

With Build, a developer loads a web application into an Application definition on the Build server, and
the service automatically builds a native application for each of the supported mobile device platforms.
Figure 11.1 illustrates how the build service works.

https://build.phonegap.com

ptg11524036

150 Chapter 11: Using PhoneGap Build

XML HTML

Web Application

Javascript
Files CSS

Config.xml

PhoneGap Project

Other
Content

Developer
Workstation

Git or Subversion
Repository

Upload archive

Use repo

FFiigguurree 1111..11 PhoneGap Build Overview

PhoneGap Build currently supports packaging applications for the following mobile device platforms:

▪ Android

▪ BlackBerry

▪ iOS

▪ Symbian

▪ webOS

▪ Windows Phone

Currently, the service is a little behind on BlackBerry version support, but hopefully, BlackBerry 10
support will be available by the time you read this book. If not, don’t worry—you can still work with
BlackBerry 10 using the BlackBerry NDK and the Cordova CLI.

There are numerous features of the service, many of which are described later in the chapter. For
developers evaluating using the service, there are a few key ones, which are discussed in the following
sections.

ptg11524036

Chapter 11: Using PhoneGap Build 151

 MMyy TTaakkee oonn PPhhoonneeGGaapp BBuuiilldd
PhoneGap Build was in beta when I wrote PhoneGap Essentials, but I used it heavily throughout
the preparation of that book’s manuscript. It simply made it too easy for me to spin up a quick
web application and make it available on multiple devices or emulators. I still had to install every
SDK so I could write about them, but every application in the book was built and tested using
PhoneGap Build. I found the service to be very slow and pretty buggy (don’t forget, it was in
beta), but regardless of those limitations, it still provided more benefits than pain.

Now that we have the Cordova CLI, and you can manage and test application projects for
multiple mobile device platforms simultaneously, I’m not sure I see the value for PhoneGap
Build. It’s cool and a big time saver, but for free I can install the supported mobile device
platform SDKs locally and use the CLI to orchestrate them seamlessly. That plus the fact the
Build service doesn’t support all plugins and is generally behind on releases make it a less
interesting offering for me.

QQuuiicckk PPrroottoottyyppiinngg
PhoneGap Build allows a developer to quickly build a web application and deploy it into native
applications for multiple mobile device platforms without installing any mobile device SDKs. This
gives designers a quick way to flush out a concept without having to spend the time downloading and
configuring mobile SDKs. While this prototyping can be easily done using a mobile web browser, if
it is a requirement that the application be distributed in the Cordova (or PhoneGap) container,
PhoneGap Build helps jumpstart the process.

Once a concept has been validated, the web application source code can be passed onto a developer to
add data integration and other complex aspects of the application later. The developer can continue to
use the Build service or can switch over to the CLI and local copies of the native SDKs for continued
development.

CCoollllaabboorraattiioonn
While version control systems allow developers to collaborate on their development projects on-
premise or in the cloud, Build allows you to configure a project so others can work on the same
PhoneGap Build project with you. You have the ability to define testers who get read-only access and
developers who get read/write access.

This feature allows you to provide a private, hidden area of Build where you can collaborate with others
and give them access to build results so they can easily test your applications as you develop them.

CCoonntteenntt RReeffrreesshh tthhrroouugghh HHyyddrraattiioonn
One of the reasons many developers use Build is so that they can provide testers with a quick and
simple mechanism for updating an application they are testing. Mobile application testers are used to
having to update native applications on their test device as they move from app version to app
version, but PhoneGap Build makes this process simpler through a feature called Hydration
(https://build.phonegap.com/docs/advanced-hydration).

When a developer enables Hydration on a PhoneGap Build application, the Build service creates a
version of the application that receives its web content from the build server instead of having its web
content packaged within the application. This feature significantly improves application build time and
allows web content updates to be repeatedly deployed to the PhoneGap application over the air,
whenever the application launches and a new version is available.

https://build.phonegap.com/docs/advanced-hydration

ptg11524036

152 Chapter 11: Using PhoneGap Build

When a developer uploads a new version of the web application content to the Build service, the
content is packaged for delivery (instead of the whole native application being packaged). The next
time the user opens the application, the application will notify the user that a new version of the
application’s content is available. Users can download the update or continue to work with the version
of the application they already have.

The Hydration feature is really designed to support the testing process for mobile applications; you
shouldn’t try to use this feature with your production applications. For enterprise applications that need
this feature, you may want to take a look at the SAP Mobile Platform (SMP); its Kapsel component
provides an over-the-air web content update for production applications.

Hydration is supported in PhoneGap 2.0 and higher, and the capability is available for Android and iOS
applications.

UUssiinngg PPhhoonneeGGaapp BBuuiilldd
In this section, I show you how to use the PhoneGap Build service. I start by showing you how to create
a PhoneGap Build account. Then I walk you through a quick example of creating a PhoneGap
application using Build and show you how to leverage more of the configuration options for the service.

It all starts by opening your browser of choice and pointing it to the Build service at
http://build.phonegap.com, as shown in Figure 11.2.

FFiigguurree 1111..22 PhoneGap Build Website

If you have an existing Adobe Creative Cloud account, you can sign in using the credentials you
already have. If not, you can create a new account or sign in using your GitHub account credentials.

http://build.phonegap.com

ptg11524036

Chapter 11: Using PhoneGap Build 153

AA QQuuiicckk EExxaammppllee
Before I show you all of the intricacies of PhoneGap Build, I thought I’d throw together a quick
example. At the barest minimum, all PhoneGap Build needs to have in order to create a mobile
application for each supported mobile device platform is just a single HTML file. To prove this, I
created a quick HTML5 application, shown in Listing 11.1.

Listing 11.1 Sample Single File Web Application

<!DOCTYPE HTML>
<html>
 <head>
 <title>Sample Application</title>
 </head>
 <body>
 <h1>Sample Application</h1>
 <p>This is a sample web application.</p>
 </body>
</html>

Next, I signed into the PhoneGap Build website. If you don’t have any applications defined on the
system, then PhoneGap Build will open to a page where you can create your first application.
Otherwise, click the + new app button on the Build home page to create a new application.

In either case, the Build service will open the page, shown in Figure 11.3; here you can either provide a
URI for a Git repository or upload a file. In this case, the upload button label is mislabeled (and I’ve
suggested to the Adobe folks that they fix this) because you can upload more than a zip file—you can
also upload the .html file I just showed you. Regardless of which approach you want to use, you have to
make sure Build has access to the application file(s) you want packaged into a Cordova application.

FFiigguurree 1111..33 PhoneGap Build: Creating a New Application

ptg11524036

154 Chapter 11: Using PhoneGap Build

For this example, I simply clicked Upload a .zip file and pointed to the .html file I created. As soon as I
finished that process, the Build service opened the new page shown in Figure 11.4. Since I didn’t
provide a configuration file (more on that later), Build set a default application name of PG Build App,
as shown in the figure. You should change the application name and provide a brief description for your
application so you and others will be able to easily recognize it later.

FFiigguurree 1111..44 PhoneGap Build: New Application

If you check the Enable debugging checkbox, PhoneGap Build enables weinre debugging in the
packaged application; weinre was discussed in Chapter 6, “The Mechanics of Cordova Development.”
If you check the Enable hydration checkbox, Build enables the Hydration feature described earlier in
the chapter. Figure 11.5 shows the application definition with a more appropriate name and description.

FFiigguurree 1111..55 PhoneGap Build: New Sample Application

ptg11524036

Chapter 11: Using PhoneGap Build 155

When you have the application settings set the way you want them, click the Ready to build button to
start the packaging process. Build will begin the process and display the page shown in Figure 11.6.
What the service does at this point is spawn off a bunch of tasks to build native Cordova applications
for each supported mobile platform using the web application content you have provided.

FFiigguurree 1111..66 PhoneGap Build: Sample Application Being Built

The page will show the platform icon for each supported mobile device platform; you should be able to
easily recognize them. The HP logo is for webOS, and the stylized “i” is for Symbian. Platforms that
are being built will be grayed out as the build process progresses. The applications with blue icons have
completed, and red icons indicate that the build has failed. I’ll explain why the build failed in a minute.

The build process fails sometimes because of glitches with the Build service. Simply click the Rebuild
all button to redo the build, and it usually fixes itself. In this example, though, the build is failing for a
specific reason: the application signing keys needed to complete the build process have not been
defined for this application.

If you click on the application title in Figure 11.6, or on one of the mobile platform icons toward the
bottom of Figure 11.6, the Build service will open a page similar to the one shown in Figure 11.7. From
this page, you can see more details about the particular application. In this example, you can see where
applications have been built successfully and where the build has failed.

ptg11524036

156 Chapter 11: Using PhoneGap Build

FFiigguurree 1111..77 PhoneGap Build: Application Details

If you click one of the red Error buttons, the page will expand an area beneath the button and display
the error that caused the build to fail; an example of the iOS failure is shown in Figure 11.8. In Figure
11.7, both the iOS and BlackBerry builds have failed because of signing key problems.

FFiigguurree 1111..88 PhoneGap Build: iOS Build Error Details

Most mobile device platforms have some sort of signing process that must be completed before an
application can be deployed to a device or into an app store. Apple is much more restrictive than other
platforms, so you can’t accomplish anything here without providing keys. Most other platforms either
don’t require a key, or they allow you to build with or without one.

For BlackBerry, Build used to use their own keys to sign a BlackBerry application and allow you to add
yours later; in this example, the build is failing because of a password problem with the default keys.
Either there is something wrong with the keys, or you can’t build BlackBerry applications anymore
without providing your own signing keys.

All you have to do to resolve these build issues is provide the necessary signing keys and rebuild the
application. To do this, click the appropriate drop-down menus next to the operating systems that have
failed, shown in Figure 11.7, and add your keys to the project. Some keys are global—BlackBerry keys,
for example, can be used to sign any application—and some keys are more restrictive, as is the case
with iOS application signing.

When you create the keys, you’re able to provide a title for the key set. This allows developers who
work for multiple customers to define signing key settings for different projects or customers and select
the appropriate key(s) depending on the scenario.

ptg11524036

Chapter 11: Using PhoneGap Build 157

When you have the appropriate keys added to the project, simply click the individual Rebuild buttons
or the Rebuild all button to start the process of rebuilding the application.

DDeeppllooyyiinngg PPhhoonneeGGaapp BBuuiilldd AApppplliiccaattiioonnss
When the build process completes, it will provide you with access to the packaged applications for
each of the supported mobile device platforms. You can deploy these applications to mobile devices
in different ways, depending on what is supported by the device manufacturer and even the mobile
carrier. In this section of the chapter, I show you in general how to deploy the applications; you will
have to refer to the specific documentation for each mobile device platform to determine which
options are appropriate for the platform.

The simplest way to deploy an application built using PhoneGap Build is to grab a compatible device
and use a code-scanning application on the device to scan the Quick Response (QR) code, shown in the
upper right corner of Figure 11.7. The code-scanning application will convert the scanned code into a
URL and open the web page on the mobile device. All the user has to do is follow the instructions on
the web page to initiate the application download and installation.

Each mobile device platform has restrictions on what can be loaded directly onto a device, so you may
have to change settings on the device to allow this. Android, for example, has an issue with
downloading applications from unknown sources, but a quick configuration change can enable it. The
setting is typically in the Security area of the Settings application and should refer to Unknown
Sources. You can see an example of the setting in Figure 11.9.

ptg11524036

158 Chapter 11: Using PhoneGap Build

FFiigguurree 1111..99 Enabling Unknown Sources on Android

If you need to make your application available to other users, you can use the Collaborators settings for
the application to allow other users to access your packaged applications. You can define collaborators
for your application by clicking the Collaborators button, shown in the middle of Figure 11.7, and
following the steps that appear, defining an email address for each authorized collaborator. Those users
can log in to the PhoneGap Build website using the specified email address and download the
applications they’re authorized to access.

In some cases, you will want to have access to the native application executable file. In this case, you
can download the packaged application directly to your development system. If you take another look
at Figure 11.7, you’ll see that there are blue buttons to the right of each mobile device platform shown
at the bottom of the figure. If you click the button for a particular mobile device platform, the browser
will download the appropriate files for the platform, downloading a .xap file for a Windows application,
an .apk file for Android, and so on.

You can also click the Install button immediately below the QR code shown in Figure 11.7 to be taken
to another page where you can download all of the application files directly, as shown in Figure 11.10.

ptg11524036

Chapter 11: Using PhoneGap Build 159

FFiigguurree 1111..1100 PhoneGap Build: Install Page

Once you have the application files downloaded, you can distribute the applications to others and
deploy the applications directly to supported devices.

To test these applications on one or more device simulators, you can open the mobile browser on the
simulator, then navigate and log in to the PhoneGap Build service using your credentials. If the
simulator supports it, you can click the Install link and download the application’s files directly to the
device from the site.

When you install the application, you may be prompted to enable features of the application, as shown
in Figure 11.11. Even though I’ve built only a simple application that doesn’t even use any of the
PhoneGap APIs, since I didn’t tell the Build service what to enable or disable, it enables all features by
default. I’ll show you in the next section how to configure a PhoneGap Build project so you can
leverage a lot more features of the service.

ptg11524036

160 Chapter 11: Using PhoneGap Build

FFiigguurree 1111..1111 Android Application Security Prompt

At this point, you have all of the information you need to get started with PhoneGap Build. In the next
section, I show you how to configure an application to make better use of the platform.

CCoonnffiigguurriinngg aa PPhhoonneeGGaapp BBuuiilldd AApppplliiccaattiioonn
As shown in the previous section, PhoneGap Build will use default settings such as application icon,
splash screen, security settings, and more unless you tell it differently. To configure application-
specific settings for your PhoneGap application, PhoneGap Build uses the config.xml file defined as
part of the W3C Widget Packaging and XML Configuration specification.

ptg11524036

Chapter 11: Using PhoneGap Build 161

In the previous example, I uploaded just a single HTML file to the service, and it built the application
for me. If I create a properly configured config.xml and include it in a .zip file with all of the web
application’s content, the service will use the config.xml file to set many of the properties and security
settings for the application. The .zip file can contain just the index.html I used in the previous example,
or it can be a complete web application with .html files, JavaScript code, CSS files, and more. It doesn’t
matter what the complexity of the app is; as long as it is packaged into a standard .zip file with the
config.xml, the Build service should be able to package it into native Cordova applications for you.

The CLI will generate a config.xml file for you automatically when it creates a Cordova project. Listing
11.2 shows the config.xml file created by the CLI for the HelloWorld4 application highlighted in
Chapter 5, “Anatomy of a Cordova Application.”

Listing 11.2 Default Cordova Project Config.xml File

<?xml version='1.0' encoding='utf-8'?>
<widget id="com.cordovaprogramming.HelloWorld4" version="0.0.1"
 xmlns="http://www.w3.org/ns/widgets"
 xmlns:cdv="http://cordova.apache.org/ns/1.0">
 <name>Hello World 4</name>
 <description>A sample Apache Cordova application that
 responds to the deviceready event.</description>
 <author email="dev@callback.apache.org" href="http://cordova.io">
 Apache Cordova Team
 </author>
 <access origin="*" />
 <preference name="fullscreen" value="true" />
 <preference name="webviewbounce" value="true" />
</widget>

The example config.xml file lists a limited amount of information needed to describe the application
and a little bit about the application’s preferences. If you updated the application name and author
information in that file, packaged the config.xml into an archive, and uploaded it to PhoneGap Build,
you would see that the new application project would be created using those settings.

If you remember from Chapter 8, “BlackBerry 10 Development with Cordova,” I showed how the
BlackBerry platform also uses the Widget specification for its applications, and the sample config.xml
in Listing 8.1 shows that there’s a whole bunch of additional information provided in the file to help
configure security permissions and more for the application. Since the Build service has to
accommodate a wider range of mobile platforms and their specific project settings, the PhoneGap Build
config.xml file can be pretty complicated. It has to contain settings that apply across multiple device
platforms, such as settings for application icons, splash screen graphics, and more. It also has to
accommodate specific security settings that need to be enabled depending on which PhoneGap APIs are
used.

Initially, PhoneGap Build supported only a small catalog of plugins. With the release of PhoneGap 3.0,
PhoneGap Build added support for a much larger catalog of plugins, along with the ability for
developers to publish their plugins to the service so others can use them. This caused a change in the
way plugins were identified in the config.xml. Instead of describing all of the config.xml options here,
the topic is well covered in the PhoneGap Build documentation at https://build.phonegap.com/docs
/config-xml. On that page, you’ll find a detailed description of each of the options for the file plus a

https://build.phonegap.com/docs/config-xml
https://build.phonegap.com/docs/config-xml

ptg11524036

162 Chapter 11: Using PhoneGap Build

pointer to a sample config.xml file you can use for reference or as a starting point for your own
applications.

WWrraapp--UUpp
In this chapter, I showed you how you can use the PhoneGap Build service to package and deploy
your web applications into the PhoneGap container. You should look at leveraging this service if you
don’t want to worry about managing multiple SDK installations or if you need an easy way to build
and share your applications with a distributed audience of testers.

ptg11524036

Chapter 12: Working with the Cordova APIs 163

12
Working with the Cordova

APIs

So far I’ve shown you a lot about Cordova: how to set up a Cordova development environment and
use the tools provided by the Cordova team and the mobile platform vendors. Now it’s time, in this
chapter and the two that follow, to talk more about how to build Cordova applications. In this chapter,
I introduce you to the Cordova APIs and show you how to use them in your applications.

I’m not going to go super deep into each of the APIs and how they work; the Cordova documentation is
a lot better than it used to be, but I will show you how to use them in your applications. In Chapter 13,
“Creating Cordova Plugins,” I show you how to write your own Cordova plugins and wrap it all
together in a complete Cordova application in Chapter 14, “Building a Cordova Application.”

TThhee CCoorrddoovvaa CCoorree AAPPIIss
Hybrid applications become much more powerful when they can do things that simply cannot be
done within the mobile browser directly. As mentioned in the first chapter, one of the purposes
behind Cordova was to provide mobile web applications running within the Cordova container access
to native APIs. Cordova provides access to only a subset of the APIs available on a mobile device;
the APIs are

▪ Accelerometer

▪ Camera

▪ Capture

▪ Compass

▪ Connection

▪ Contacts

▪ Device

▪ Events

▪ File

▪ Geolocation

▪ Globalization

ptg11524036

164 Chapter 12: Working with the Cordova APIs

▪ InAppBrowser

▪ Media

▪ Notification

▪ Splashscreen

▪ Storage

In some cases, an API mimics a capability that is already provided in modern mobile browsers. In most
cases, applications simply use the API exposed through the native browser, WebView, embedded in the
Cordova container. For devices for which their browser does not expose the API, the Cordova team will
implement the API so it is available across all supported mobile device platforms. You can see
examples of this in the Cordova Geolocation, File and Storage APIs; they’re pretty much standard on
most mobile devices, so there’s little the Cordova team has to do with them. As an example, take a look
at the documentation for the Geolocation API:

This API is based on the W3C Geolocation API Specification. Some devices (Android, BlackBerry, bada,
Windows Phone 7 and webOS, to be specific) already provide an implementation of this spec. For those devices,
the built-in support is used instead of replacing it with Cordova’s implementation. For devices that don’t have
geolocation support, the Cordova implementation adheres to the W3C specification.

Because the File and Storage APIs are standards that are already available in the mobile browser, I
don’t cover them in this chapter. The Geolocation API falls into the same category, but the “Hardware
APIs” section of the chapter covers other APIs that work just like it, so Geolocation gets some coverage
there as well. The Contacts API is also based on a standard, but I’ll give it some coverage here as it’s
unique in how it works compared to other Cordova APIs.

As mentioned in previous chapters, instead of APIs being readily available to any Cordova application,
beginning with Cordova 3.0, all of the core APIs have been removed from the Cordova container and
implemented as plugins. So, before your Cordova application can use any of the Cordova APIs, you
must add the associated plugin to your project using a command similar to the following:
cordova plugin add path_to_plugin

So, for example, to use the Camera API in your Cordova application, you must add the camera
capabilities using the following command:
cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-plugin-camera.git

This will pull the camera plugin files from the public Git repository; if you want to use the camera
plugin from a local repository, you can pass in instead the local file path pointing to where the plugin
files are located, as shown below:
cordova plugin add d:\cordova\cordova-3.0.0\cordova-plugin-camera

You can find more information about how to use the CLI to manage plugins in Chapter 4, “Using the
Cordova Command-Line Interface.”

WWoorrkkiinngg wwiitthh tthhee AAPPII CCoorrddoovvaa DDooccuummeennttaattiioonn
As I mentioned earlier, the Cordova API documentation is pretty good. Just as there is a team
working full time on the Cordova container, APIs, and plugins, there is also a dedicated team working
very hard on the docs. As soon as I finish this manuscript, I plan on joining them as well. Because of

ptg11524036

Chapter 12: Working with the Cordova APIs 165

all of this effort, the docs are pretty good, and you will need to spend a fair amount of time with them
as you build your Cordova applications; I’ll explain why in a little bit.

To access the Cordova API documentation, point your browser of choice to www.cordova.io and look
for the documentation link at the bottom of the page. When I select that link, I am redirected to
http://cordova.apache.org/docs/en/3.0.0, which points to the appropriate language (English) version
plus points me to the latest and greatest released version of the framework.

From the documentation page, use the drop-down shown in the upper right corner of Figure 12.1 to
switch Cordova versions. The drop-down provides access to the documentation for the current Cordova
version, previous versions, and even one future release of the framework.

FFiigguurree 1122..11 Cordova Documentation: API Quirks

When working with the APIs, you will want to pay special attention to the quirks section of the
documentation for each exposed API; an example is shown on the Notification API page in Figure 12.1.
Many of the APIs display different behavior on specific hardware platforms. As hard as the Cordova
development team works to ensure consistency across all platforms, on some platforms an API needed
to implement some feature simply isn’t available or doesn’t work as needed for the Cordova API. If
you’re trying something with a Cordova API and it is not working as you expect it to, go check out the
quirks for the particular API you’re working with.

SSeettttiinngg AApppplliiccaattiioonn PPeerrmmiissssiioonnss
Because most of the Cordova APIs leverage native APIs and many of them have security restrictions
placed on them, in order to protect the user and/or device, developers using some Cordova APIs must
set special application configuration settings for their applications before deploying them to devices.
These settings configure the native application container so that it informs the mobile OS during
installation that it uses specific restricted APIs. This causes the mobile OS for some platforms to
prompt the user of the application during installation to allow or disallow the restricted API or APIs
for the application.

http://www.cordova.io
http://cordova.apache.org/docs/en/3.0.0

ptg11524036

166 Chapter 12: Working with the Cordova APIs

As an example of how this will appear for users, take a look at Figure 12.2, which shows the security
prompt displayed for users when installing the default HelloCordova application (described in Chapter
5, “Anatomy of a Cordova Application”) on an Android device.

FFiigguurree 1122..22 Android Application Permissions Settings Dialog

 WWaarrnniinngg
On many mobile device platforms, if a particular API or feature isn’t enabled for a Cordova application
as shown in this section, or if the user disables the feature through the dialog shown in Figure 12.1,
the portion of the application that uses the feature will simply fail silently when the application runs.

You would think that the application would throw some sort of error when your application tries to use
a disabled or restricted API, but that’s not the case—the application simply skips the execution of the
API and you’re left scratching your head as to why the feature isn’t working. If you’ve implemented a
feature and it’s simply not working and not telling you why, be sure to check your application
permissions. In Chapter 14, I’ll show you a trick you can use to catch those errors.

To find out what configuration settings must be set for each of the Cordova APIs your application uses,
you must refer to the specific APIs documentation. Figure 12.3 shows a portion of the documentation
page for the Camera API. The page contains a section called “Accessing the Feature,” which describes
how to add the API plugin to the project and what configuration settings must be set for the API to
work in your applications.

ptg11524036

Chapter 12: Working with the Cordova APIs 167

FFiigguurree 1122..33 Cordova API Documentation: Configuration Settings

As you can see from the figure, for each supported mobile platform, it describes the configuration file
that must be updated and shows the content that must be included in the file to enable this feature. It’s
usually a config.xml file, but the location for the file will vary across platforms.

The good news is that the Cordova CLI manages setting application permissions for you. If you add the
camera API to a Cordova application using the CLI commands highlighted earlier in the chapter, the
CLI will make the appropriate configuration changes for you across all of the mobile OS targets you
have added to the application project. So, when you add the camera API to an application project, the
appropriate settings will make it into the Android config.xml file, as shown in Listing 12.1.

Listing 12.1 Android Project config.xml File

<?xml version='1.0' encoding='utf-8'?>
<widget id="io.cordova.helloCordova" version="2.0.0" xmlns="http://www.w3.org/ns/widgets">
 <name>Hello Cordova</name>
 <description>A sample Apache Cordova application that
 responds to the deviceready event.</description>
 <author email="dev@cordova.apache.org"
 href="http://cordova.io">Apache Cordova Team</author>
 <content src="index.html" />
 <feature name="App">
 <param name="android-package"
 value="org.apache.cordova.App" />
 </feature>

ptg11524036

168 Chapter 12: Working with the Cordova APIs

 <feature name="Camera">
 <param name="android-package"
 value="org.apache.cordova.camera.CameraLauncher" />
 </feature>
 <access origin="*" />
 <preference name="useBrowserHistory" value="true" />
 <preference name="exit-on-suspend" value="false" />
 <preference name="fullscreen" value="true" />
 <preference name="webviewbounce" value="true" />
</widget>

Okay, now that I’ve covered all of the background information, let’s start talking about the APIs

CCoorrddoovvaa OObbjjeeccttss
Some of the Cordova APIs are not necessarily APIs; instead they’re useful objects that are exposed to
a Cordova application through the plugin. In this section, I describe the connection and device
objects and show you how to use them in your Cordova applications.

CCoonnnneeccttiioonn TTyyppee
There are times when a mobile application needs to know what type of network connection it has
available to it. With many mobile carriers capping data usage, the application should be careful when
doing large updates to make sure it is doing its update, for example, on a lower cost (free) Wi-Fi
connection rather than a cellular connection. As a best practice, mobile developers should categorize
an application’s data usage patterns and write their code in order to minimize the impact on the
device and the device user’s data plan costs.

To accommodate this, the Cordova framework exposes a connection object, which can be used to
determine the network connection type currently in effect. To leverage the information exposed by the
connection object, you must first add the network information plugin to your project by opening a
terminal window and issuing the following CLI command from the Cordova project folder:
cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-plugin-network-
information.git

With that in place, a Cordova application can determine the connection type by executing the following
JavaScript code:
var ct = navigator.connection.type;

Next, you can compare the value of ct against the possible connection types exposed through the
following properties:

▪ Connection.CELL

▪ Connection.CELL_2G

▪ Connection.CELL_3G

▪ Connection.CELL_4G

ptg11524036

Chapter 12: Working with the Cordova APIs 169

▪ Connection.ETHERNET

▪ Connection.NONE

▪ Connection.UNKNOWN

▪ Connection.WIFI

So, if you want to make sure the application has a network connection before you do something
networky, your application can do something like this:
ct = navigator.connection.type;

if (ct != Connection.NONE) {

 console.log("You have a connection");

 //Do whatever you want to do with the connection

} else {

 //Warn the user that they can't do that without a

 //network connection

 alert("No connection available!");

}

 WWaarrnniinngg
Your application has to query the connection object every time it wants to know what the
current network status is. The ct variable shown in the previous example won’t maintain a valid
status value as the network status changes. When I cover events later in the chapter, you will
see how you can monitor network connectivity.

Or, if you are looking for a specific network type, your application can do something like this:
ct = navigator.connection.type;

if (ct == Connection.WIFI) {

 console.log("You have a WI-FI connection");

 //Do whatever you want to do over the connection

} else {

 //Warn the user that they can't do that without a WI-FI

 //network connection

 alert("Function requires WI-FI network connection!");

}

An application can also monitor the network status in real time using the online and offline events
described later in the chapter.

DDeevviiccee
The Cordova framework also exposes a device object, which can be used to determine a limited
amount of information about the device. The available device properties are shown in the following
list:

ptg11524036

170 Chapter 12: Working with the Cordova APIs

▪ device.name

▪ device.cordova

▪ device.platform

▪ device.uuid

▪ device.version

▪ device.model

To leverage the information exposed by the device object, you must first add the device plugin to your
project by opening a terminal window and issuing the following CLI command from the Cordova
project folder
cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-plugin-device.git

To see an example of the device object in action, take a look at the HelloWorld3 application described
in Chapter 5.

AAlleerrttiinngg tthhee UUsseerr
There are often times when a developer will want to notify application users of some activity. A web
application can display some information on a page within the application or even open up an HTML
popup, but in both cases, the management of the notification (and its removal from view) is the
responsibility of the developer. To make this easier, the Cordova API includes some JavaScript
functions a developer can use to provide a notification to users. There are two types of notifications,
what I call hardware notifications and visual notifications. Each is described in the following two
sections.

HHaarrddwwaarree NNoottiiff iiccaattiioonnss
Any modern smartphone provides an API that allows a developer to have an application make the
device beep or vibrate; Cordova also exposes methods an application can call to make the device beep
or vibrate as well.

To leverage hardware notifications in your Cordova applications, you must first add the vibration
plugin to your project by opening a terminal window and issuing the following CLI command from the
Cordova project folder:
cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-plugin-vibration.git

BBeeeepp
To cause a mobile device to beep, a Cordova application should make a call to the
navigator.notification.beep method. To have the device vibrate, a Cordova application should
make a call to the navigator.notification.vibrate method. Each takes a parameter that controls
how many times or for how long the notification lasts, as shown in the following examples.

The beep method accepts a parameter that controls how many times the device beeps when the method
is called:
navigator.notification.beep(quantity);

ptg11524036

Chapter 12: Working with the Cordova APIs 171

To have a device beep three times, simply pass in a 3:
navigator.notification.beep(3);

VViibbrraattee
The vibrate method accepts a duration parameter instead, which controls how long the vibration lasts:
navigator.notification.vibrate(duration);

Duration is expressed in milliseconds, so to make the device vibrate for half a second, you pass a value
of 500 to the vibrate method:
navigator.notification.vibrate(500);

To make the device vibrate for 1 second, do the following:
navigator.notification.vibrate(1000);

VViissuuaall NNoottiiff iiccaattiioonnss
Cordova exposes a number of methods a web application can call to allow the application to interact
with the user. Web developers have always had access to the synchronous JavaScript alert(),
confirm(), and prompt() methods, which can be used to interact with the user, but the Cordova
versions of these functions are asynchronous and allow for additional control over the content in the
dialog that is displayed to users.

To leverage visual notifications in your Cordova applications, you must first add the dialogs plugin to
your project by opening a terminal window and issuing the following CLI command from the Cordova
project folder:
cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-plugin-dialogs.git

AAlleerrtt
To display an alert dialog in a web application, a web developer can have an application execute the
following JavaScript code:
alert("This is a JavaScript alert.");

When the code runs in a Cordova application, you will see something similar to Figure 12. 4.

FFiigguurree 1122..44 JavaScript alert Results

If you instead use the Cordova alert() method by executing the following code:
navigator.notification.alert("This is a Cordova Alert.",

 myCallback, "Alert Test", "Click Me!")

ptg11524036

172 Chapter 12: Working with the Cordova APIs

you will see a dialog similar to the one shown in Figure 12.5.

FFiigguurree 1122..55 Cordova alert Results

Notice that I was able to set the title for the dialog (instead of the Cordova application reporting
index.html, as shown in Figure 12.4) as well as the text on the button the user taps to close the alert.

I mentioned that the JavaScript alert was synchronous and the Cordova alert was asynchronous; this
means that the JavaScript alert will likely display immediately, but the Cordova alert will display
whenever the Cordova container gets around to rendering it. This is an oversimplification of what’s
going on, but you can read more about it in an article I wrote here:
www.johnwargo.com/index.php/mobile-development/phonegap-alerts.html.

Now, in that example, I didn’t tell you a lot about the format of the call to alert; in the following
example, you can see the descriptive names of the parameters:
navigator.notification.alert(message, callback, [title], [buttonLabel])

Notice the callback parameter; it’s there to allow you to define the function that is executed when the
user taps the button on the alert dialog. The way you use the Cordova alert is to execute the alert
method, then use the callback function to continue program execution after the user taps the button.
What happens is that any code you have after the call to alert is executed, perhaps finishing out the
code in a JavaScript function, and the application will sit idle until the user taps the button; then the
code in the callback function executes.

In the earlier example, I passed in a null value for the callback parameter. In this scenario, by not
telling alert what function to call after the user taps the button, the Cordova container will render the
specified alert dialog, then continue executing the JavaScript code that follows the call to alert and not
wait for the user to tap the button.

The values for title and buttonLabel are optional; the value for title passed to the method will be
used as the title for the dialog, and the buttonLabel value will be used as the text on the single button
on the dialog.

CCoonnffiirrmm
The Cordova confirm method is similar to alert except that it allows you to specify more than one
button label, and the callback function is passed a numeric value indicating which button was
tapped by the application user. Here’s the method signature:
navigator.notification.confirm(message, callback, [title],

 [buttonLabels]);

The following code snippet shows how to use the Cordova confirm method:

http://www.johnwargo.com/index.php/mobile-development/phonegap-alerts.html

ptg11524036

Chapter 12: Working with the Cordova APIs 173

navigator.notification.confirm('Do you want to continue?',

 doContinue, 'Please confirm', 'Yes, No');

function doContinue(buttonNum){

 navigator.notification.alert('You chose option #' +

 buttonNum + '?', null, 'Really?','Yes');

};

The value passed to the callback function is a numeric value indicating which button was tapped. The
callback function will receive a 1 if the first button was clicked, a 2 for the second button, and so on.
Figure 12.6 shows confirm in action on iOS.

FFiigguurree 1122..66 Cordova confirm Dialog

Figure 12.7 shows the results of the doContinue function being executed, indicating that the No button
was tapped in Figure 12.6.

FFiigguurree 1122..77 Showing confirm Results

PPrroommpptt
A Cordova application often needs to collect information from the application user outside of a web
form; Cordova provides the prompt method to accommodate this requirement. The method works just
like the other methods discussed in this section and has the following method signature:
navigator.notification.prompt(message, callback, [title],

 [buttonLabels], [defaultText]);

The parameters in brackets are optional. To use prompt in your Cordova applications, make a call to
the prompt method and provide the necessary callback function to process the user’s input:
navigator.notification.prompt('Please enter your nickname',

ptg11524036

174 Chapter 12: Working with the Cordova APIs

 gotData, 'Nickname?', ['Cancel', 'OK'], 'Jimmy');

function gotData(res) {

 navigator.notification.alert('You chose option #' +

 res.buttonIndex + '\nYou entered: ' + res.input1, null,

 'Results', 'OK');

};

 NNoottee
Notice that prompt uses a different format for button labels than confirm uses. prompt expects
an array of strings, as shown in the previous example, and confirm expects a single string with
the button labels separated by a comma.

Figure 12.8 shows the example code in action on an Android emulator.

FFiigguurree 1122..88 Cordova prompt Dialog

Figure 12.9 shows the results displayed by gotData function.

FFiigguurree 1122..99 Cordova prompt Results

ptg11524036

Chapter 12: Working with the Cordova APIs 175

CCoorrddoovvaa EEvveennttss
The Cordova framework exposes a set of events a developer can use to react to certain things that
happen on the device running the Cordova application. In some cases, the exposed events deal with
hardware-related activities such as changes in the battery status or a physical button press by the user.
In other cases, the exposed events deal with application status changes such as the application being
paused or resumed. The purpose of these events is to expose to a web application the same device
status events that are available to native applications.

The complete list of supported events is provided in Table 12.1.

Table 12.1 CCoorrddoovvaa EEvveennttss

CCoorrddoovvaa EEvveenntt DDeessccrriippttiioonn

backbutton Fired when the device’s back button is pressed by the user.

batterycritical Fired when the device battery reaches critical status. What is
considered critical varies across mobile device platforms.

batterylow Fired when the device battery reaches low status. What is
considered low varies across mobile device platforms.

batterystatus Fires when the battery status changes by at least 1% (up or
down).

deviceready
Fires when the Cordova container has finished initialization and is
ready to be used.

endcallbuton Fires when the user presses the phone’s end call button.

menubutton Fires when the user presses the device’s menu button.

offline Fires when a device that has a network connection loses that
connection.

online
Fires when a device goes online, when it switches from not having
network connectivity to having network connectivity.

pause

Fires when the Cordova application is suspended. This typically
happens when the device user switches to another application
and the native OS pushes the current application to the
background.

resume Fires when a paused application is brought to the foreground.

searchbutton Fires when the device user presses the search button.

startcallbutton Fires when the device user presses the start call button.

volumedownbutton Fires when the device user presses the volume decrease button.

volumeupbutton Fires when the device user presses the volume increase button.

 RReeggaarrddiinngg BBuuttttoonnss
Older devices had physical menu buttons and physical buttons to start and end phone calls. On
newer devices, those buttons have been removed and replaced with virtual buttons that appear
only when needed (like the menu and search buttons) or are specific to an application (like the
phone buttons).

ptg11524036

176 Chapter 12: Working with the Cordova APIs

Most of the listed events are built into the Cordova container. Only battery status is implemented as a
plugin. To enable an application to monitor battery events, you must first add the battery status plugin
to your project by issuing the following CLI command from the Cordova project folder:
cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-plugin-battery-status.git

The devicready event was discussed at length in Chapter 5; to see examples of that event in action,
refer to the HelloWorld applications highlighted in that chapter.

To monitor one of these events, you simply have to have an application register a listener for the
particular event.
document.addEventListener("eventName", eventFunction);

As an example, to listen for the loss of network connectivity, you would register an offline event
listener using the following code:
document.addEventListener("offline", isOffline);

function isOffline() {

 //Do whatever you want to do when the device goes offline

}

The isOffline function is called whenever the Cordova application that has a network connection
detects that it has lost the network connection.

 WWaarrnniinngg
The events might not fire exactly when you expect them to on different mobile platforms. Be
sure to test your application on different physical devices to make sure your application works as
expected.

HHaarrddwwaarree AAPPIIss
Cordova exposes a few APIs that allow developers to build applications that interact with common
hardware components found in most modern smartphones. These APIs help make Cordova
applications feel more like native applications, as they let a Cordova application interact with the
outside world in some way.

There’s no specific grouping of these APIs in the Cordova documentation; bundling them together
under the banner of hardware APIs is just my way of keeping things organized. The following APIs are
discussed in this section:

▪ Accelerometer

▪ Camera

▪ Capture

▪ Compass

▪ Geolocation

ptg11524036

Chapter 12: Working with the Cordova APIs 177

The Accelerator, Compass, and Geolocation APIs all work in essentially the same manner; your
application can measure the current value for the particular metric, or you can set up a watch that allows
your application to monitor the particular metric as it changes over time. The Camera and Capture APIs
both allow you to capture photographs using the device camera, but they operate differently, plus the
Capture API allows you to record video and audio files as well.

The World Wide Web Consortium has worked on defining specifications for some of these capabilities.
The Compass API is defined at http://dev.w3.org/2009/dap/system-info/compass.html, the Geolocation
API specification is defined at http://dev.w3.org/geo/api/spec-source.html, and the Device Orientation
specification is defined at http://dev.w3.org/geo/api/spec-source-orientation.

What you’ll find is that some of the Cordova APIs align closely with the W3C specifications and others
do not. For example, the Cordova Compass API has a getCurrentHeading method, while the W3C
specification uses getCurrentOrientation. I assume that the Cordova APIs will align with the
standards over time; you will need to monitor progress and update your applications accordingly.

In the sections that follow, I show you a little about how each of the APIs operates. Some of the APIs
support a lot of options, so deep coverage is beyond the scope of this book; you can find complete
examples of how to use each of these APIs in PhoneGap Essentials (www.phonegapessentials.com).

AAcccceelleerroommeetteerr
The Cordova Accelerometer API allows an application to determine the device’s orientation in a
three-dimensional space (using a three-dimensional Cartesian coordinate system). The Cordova
documentation still says, “Captures device motion in the x, y, and z direction”; but that doesn’t make
sense to me, as it’s not motion that the device is reporting, but orientation. If you hold the device
steady in a particular orientation, the Accelerometer API will still report its orientation even though
it’s not moving.

To enable an application to use the Accelerometer API, you must first add the device motion plugin to
your project by opening a terminal window and issuing the following CLI command from the Cordova
project folder:
cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-plugin-device-motion.git

The API exposes three methods:

▪ accelerometer.getCurrentAcceleration

▪ accelerometer.watchAcceleration

▪ accelerometer.clearWatch

The getCurrentAcceleration method allows an application to query the device’s current orientation.
The watchAcceleration and clearWatch methods are used to allow an application to capture device
orientation over a period of time, taking repeated measurements from the accelerometer at a specific
time interval.

To measure the device’s current orientation, you use something like the following in your application:
navigator.accelerometer.getCurrentAcceleration(onSuccess,

 onFailure);

In this example, the call to getCurrentAcceleration includes the names of two functions:
onSuccess is executed when the orientation has been successfully measured, and onFailure is

http://www.phonegapessentials.com
http://dev.w3.org/2009/dap/system-info/compass.html
http://dev.w3.org/geo/api/spec-source.html
http://dev.w3.org/geo/api/spec-source-orientation

ptg11524036

178 Chapter 12: Working with the Cordova APIs

executed when an error occurs; following are examples of some functions that can be used for this
purpose:
function onSuccess(res) {

 x = res.x;

 y = res.y;

 z = res.z;

 var d = new Date(res.timestamp);

 timestamp = d.toLocaleString();

}

function onFailure() {

 alert('I have no idea why this failed, but it did.');

}

The onSucess function is passed an object that represents the different parts of the accelerator
measurement. The X, Y, and Z values represent the device’s orientation in a three-dimensional
coordinate system, and the timestamp value indicates the date/time that the measurement was made. If
you write those values out to an application’s screen, you will see something similar to what is shown
in Figure 12.10, captured on an Android emulator.

FFiigguurree 1122..1100 Accelerator Measurement Results

On an Android device, with the device lying flat on a tabletop, the accelerometer will return
approximately the following values: X:0, Y:0, Z:10. As the device is flipped so it’s standing on its left
edge, the values will adjust to approximately X:10, Y:0, Z:0. If you instead move the device so it’s
standing on its bottom edge, the values will adjust to approximately X:0, Y:10, Z:0. Standing the device
on its top edge will result in approximate accelerometer values of X:0, Y:-10, Z:0. An application uses
these values to determine how a user is holding the device and is most useful for games and interactive
applications.

Unfortunately, Cordova doesn’t tell you anything about any errors that occur when onFailure function
is called and nothing is passed to it (an error code or error message), which can be used to identify the
source of the error. So, it either works or it doesn’t, but as the app is talking directly to a physical
device API that doesn’t have much complexity, if you try to determine the orientation and the call fails,
it’s most likely because the device doesn’t have an accelerometer.

getCurrentAcceleration is useful if you want a quick check of a device’s orientation before doing
something within your application. If you want to monitor a device’s orientation over time, in a game,
for example, getCurrentAcceleration isn’t that useful. To use it in a game, you would have to write
code that checks the orientation periodically. To help developers in this situation, the Cordova API

ptg11524036

Chapter 12: Working with the Cordova APIs 179

allows a developer to periodically read the accelerometer by watching it using the
accelerometer.watchAcceleration method.

To use accelerometer.watchAcceleration, an application sets up a watch using the following code:
var options = {frequency : 1000};

watchID = navigator.accelerometer.watchAcceleration(onSuccess,

 onFailure, options);

In this particular example, the code uses the same onSuccess and onFailure functions from the
previous example. The options object defines the frequency of the accelerator measurement in
milliseconds. So, to measure the current accelerometer values every 1 second, you would use 1000, as
shown in the example. To measure every half second, use a frequency of 500.

In the code, the result of the call to watchAcceleration is assigned to a variable called watchID,
which is used later to cancel the watch, as shown here:
navigator.accelerometer.clearWatch(watchID);

With all of this in place, the application will read the accelerometer every second and pass the values to
the onSuccess function to process the results.

CCoommppaassss
The compass API allows a developer to read the mobile device’s heading (using the device compass
if available). The API works almost the same as the Accelerometer API; you can either query the
heading value once or define a watch to periodically measure the heading value. The only differences
between the two are in the results object, which is passed to the onSuccess function, and options
that can be set when creating a watch.

To enable an application to read the heading, you must first add the device orientation plugin to your
project by opening a terminal window and issuing the following CLI command from the Cordova
project folder:
cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-plugin-device-
orientation.git

Like the Accelerator API, the Compass API exposes three methods:

▪ compass.getCurrentHeading

▪ compass.watchHeading

▪ compass.clearWatch

The getCurrentHeading method allows an application to query the compass’s current orientation. The
watchHeading and clearWatch methods are used to allow an application to capture compass headings
over a period of time, taking repeated measurements from the compass at a specific time interval.

To measure the compass’s orientation, you use something like the following in your application:
navigator.compass.getCurrentHeading(onSuccess, onFailure);

In this example, the call to getCurrentHeading includes the names of two functions: onSuccess is
executed when the heading has been successfully measured, and onFailure is executed when an error
occurs; following are examples of some functions that can be used for this purpose:

ptg11524036

180 Chapter 12: Working with the Cordova APIs

function onSuccess(res) {

 magneticHeading = res.magneticHeading;

 trueHeading =res. res.trueHeading;

 headingAccuracy = res.headingAccuracy

 var d = new Date(res.timestamp);

 timestamp = d.toLocaleString();

}

function onFailure(err) {

 alert("Error: " + err.code);

}

The heading object (res in the example) returned to the onSuccess function has the properties
described in Table 12.2.

Table 12.2 CCoommppaassss RReessuullttss VVaalluueess

PPrrooppeerrttyy DDeessccrriippttiioonn

magneticHeading The compass heading in degrees from 0 to 359.

trueHeading
The compass heading relative to the geographic North Pole in
degrees from 0 to 259. A negative value indicates that the true
heading cannot be determined.

headingAccuracy
The difference in degrees between the magnetic heading and the
true heading values.

timestamp
The date and time that the measurement was made (number of
milliseconds since midnight January 1, 1970)

When an error occurs, the onFailure function is passed an error code, which can be queried to
determine the cause of the error. Possible values are CompassError.COMPASS_INTERNAL_ERR and
CompassError.COMPASS_NOT_SUPPORTED.

To use compass.watchHeading, an application sets up a watch using the following code:
var options = {frequency : 1000};

watchID = navigator.compass.watchHeading(onSuccess, onFailure,

 options);

In this particular example, the code uses the same onSuccess and onFailure functions from the
previous example. The options object defines the frequency of the accelerator measurement in
milliseconds. So, to measure the current heading values every 1 second, you would use 1000, as shown
in the example. To measure every half second, use a frequency of 500. You can also specify a filter
value, which defines a minimum degree value change, which must occur before the watch is fired.
Because compass values fluctuate pretty rapidly, you will want to set a filter to reduce the number of
times heading measurement is made (and returned to your program) so your program can respond only
to more dramatic changes in heading.

In the code, the result of the call to watchHeading is assigned to a variable called watchID, which is
used later to cancel the watch, as shown in here:
navigator.compass.clearWatch(watchID);

ptg11524036

Chapter 12: Working with the Cordova APIs 181

With all of this in place, the application will read the compass every second and pass the values to the
onSuccess function to process the results. To see a complete application using the Compass API, refer
to Chapter 14.

GGeeoollooccaattiioonn
The Cordova Geolocation API allows an application to determine the physical location of the device
running an application. The API is based on the W3C’s Geolocation API and works almost the same
as the Accelerometer and Compass APIs; you can either query the location once or define a watch to
periodically calculate the location. The only differences between them are in the results object,
which is passed to the onSuccess function, and options that can be set when creating a watch.

To enable an application to determine the device’s location, you must first add the Geolocation plugin
to your project by opening a terminal window and issuing the following CLI command from the
Cordova project folder:
cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-plugin-geolocation.git

The Geolocation API exposes three methods:

▪ compass.getCurrentPosition

▪ compass.watchPosition

▪ compass.clearWatch

The getCurrentPosition method allows an application to determine the device’s current location.
The watchPosition and clearWatch methods are used to allow an application to periodically
calculate the device’s location over a period of time, making repeated calculations at a specific time
interval.

When the Geolocation API returns a location object, the object exposes coordinates and timestamp
properties. The timestamp property contains the date and time that the measurement was made in
number of milliseconds since midnight January 1, 1970. The coordinates property is another object
that includes the properties described in Table 12.3.

Table 12.3 CCoooorrddiinnaatteess PPrrooppeerrttiieess

PPrrooppeerrttyy DDeessccrriippttiioonn

accuracy The accuracy of the latitude and longitude coordinates in meters.

altitude
The device’s height in meters above the ellipsoid
(http://tinyurl.com/nje9d2o).

altitudeAccuracy The accuracy of the altitude coordinate in meters.

heading The device heading (direction of travel) in degrees.

latitude The latitude portion of the location in decimal degrees.

longitude The longitudinal portion of the location in decimal degrees.

speed The device’s current speed in meters per second.

Refer to the Accelerator and Compass sections for details on how this API works.

http://tinyurl.com/nje9d2o

ptg11524036

182 Chapter 12: Working with the Cordova APIs

CCaammeerraa
The Cordova framework provides two APIs for working with the device camera. One is the Camera
API, which provides developers with direct access to the native camera APIs, and the other is the
Media Capture API described in the next section. The difference between the two options is that the
Camera API exposes only the ability to take pictures with the camera, while the Media Capture API
provides an interface to the camera that includes photos as well as videos plus the ability to record
audio files. In this section, I show you how to use the Camera API to capture pictures from a Cordova
application; refer to the section “Capturing Media Files” for information on the other options.

To enable an application to take photos using the Camera API, you must first add the Camera plugin to
your project by opening a terminal window and issuing the following CLI command from the Cordova
project folder:
cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-plugin-camera.git

From a programming standpoint, getting a Cordova application to take a picture is pretty simple; all
you have to do is have the program call the Camera API using the following code:
navigator.camera.getPicture(onCameraSuccess, onCameraError);

To show how this works, I created a simple camera application that makes that call to getPicture then
displays the data returned from the camera. You can see a screenshot of the application in Figure 12.11.

FFiigguurree 1122..1111 Camera Demo Application

As soon as you click the Take Photo button, the device’s native camera application opens, as shown in
Figure 12.12. Manipulate the camera and image any way you want, then take the picture; in this
example, you would click the camera aperture image on the right. What you will see here will vary
depending on the mobile device platform the on which the application is running.

ptg11524036

Chapter 12: Working with the Cordova APIs 183

FFiigguurree 1122..1122 Device Camera Application: Confirming Photo

Notice in Figure 12.12 that there isn’t a way to cancel taking the photo. Even if you decide not to
capture a photo, you will have to snap one here; then you can cancel it in the next step.

Depending on the mobile device, you may be prompted to approve the photo, as shown in Figure 12.13.
In this example, you can tap the checkmark to select the photo and return to the Cordova application;
tap the X in the bottom right to cancel, returning the photo information to the Cordova application; or
click the camera icon on the lower left to discard this photo and take another one. No, I’m not sure why
the photo is rotated in the screen shot.

FFiigguurree 1122..1133 Device Camera Application: Approving a Photo

ptg11524036

184 Chapter 12: Working with the Cordova APIs

When you accept a photo by tapping the checkmark icon, the device camera application will close and
return information about the selected photo to the Cordova application, as shown in Figure 12.14. In
this case, since I didn’t tell getPicture anything about how to take the picture or what to do with it,
the API used its default settings and simply returned a file URI pointing to the image file. At this point,
the Cordova application can access the file using the URI it received from the API and render the image
on the screen, upload it to a server, or do anything else it wants.

FFiigguurree 1122..1144 Camera Demo Application: Photo Results

If you choose to cancel the photo you’ve taken, the Camera API will return an error message, “Camera
Cancelled,” to the Cordova application.

Now that’s not all there is to the Camera API—I was just showing you the API’s default behavior. You
can also call getPicture and pass in an options object, which tells the API what to do and how to do it.
Here’s an alternative way to call getPicture:
navigator.camera.getPicture(onCameraSuccess, onCameraError,

 cameraOptions);

The cameraOptions shown in the example is a JavaScript object, which can look like the following
example from the Cordova documentation:
var options = {

 quality : 75,

 destinationType : Camera.DestinationType.DATA_URL,

 sourceType : Camera.PictureSourceType.CAMERA,

 allowEdit : true,

 encodingType: Camera.EncodingType.JPEG,

 targetWidth: 100,

 targetHeight: 100,

 popoverOptions: CameraPopoverOptions,

 saveToPhotoAlbum: false

};

ptg11524036

Chapter 12: Working with the Cordova APIs 185

 WWaarrnniinngg
Different platforms ignore some of these properties, so be sure to check the quirks section in
the Cordova documentation before using them in your applications.

A developer will use some or all of these properties to control the picture capture process using the
Camera API. Each of the possible options is described in Table 12.4.

Table 12.4 CCaammeerraa OOppttiioonnss

PPrrooppeerrttyy DDeessccrriippttiioonn

allowEdit

Boolean value: Specifies whether the photo can be edited by the
user before being returned to the Cordova application. Not all
mobile device platforms support this option, nor will many users
expect it depending on your application.

cameraDirection

Numeric value: Directs the API on which camera (front or back) to
use to take the photo. Use
navigator.camera.Direction.FRONT for front-facing camera
(screen side) and, wait for it,
navigator.camera.Direction.BACK to use the camera on the

back of the device.

correctOrientation Boolean value: Instructs the API to rotate the image to correct for
the orientation of the device when the picture is taken.

destinationType

Numeric value: Specifies how the API will return the captured
image. Options are Camera.DestinationType.FILE_URI, which
is the default option and illustrated in the earlier example;
Camera.DestinationType.DATA_URL, which returns the image
as a base64-encoded string; and
Camera.DestinationType.NATIVE_URI, which returns a native

URI for the image file.

Be careful using DATA_URL because JavaScript simply isn’t
capable of dealing with the image as an encoded string. Your app
may crash if a high-resolution image is returned as a string to your
program.

encodingType

Numeric value: Specifies the output format for the photo. Specify
Camera.EncodingType.JPEG to have the API return a JPEG
image or Camera.EncodingType.PNG to have the API return a

PNG file.

mediaType

Numeric value: When SourceType is set to PHOTOLIBRARY or
SAVEDPHOTOALBUM, this property specifies what type of files can
be selected by the application user. Use
Camera.MediaType.PICTURE to allow selection of photos only,
Camera.MediaType.VIDEO to allow video files to be selected,
and Camera.MediaType.ALLMEDIA to allow any supported media

file to be selected.

When VIDEO is selected, the API will only return a File URI;
otherwise, the API will return the image information in the format
specified by the destinationType property.

ptg11524036

186 Chapter 12: Working with the Cordova APIs

PPrrooppeerrttyy DDeessccrriippttiioonn

quality

Numeric value: Used to control the quality of the captured image
as a percentage of image quality from 0 to 100%. A value of 100
refers to full image quality with no compression.

One of the reasons you would reduce the quality is to reduce the
overall file size for the captured photo to make it easier to
manipulate within your application.

saveToPhotoAlbum
Boolean value: Instructs the API to save images to the device’s
photo album after capture.

sourceType

Numeric value: Specifies where the image should come from.
Possible values are Camera.PictureSourceType.CAMERA
(default), Camera.PictureSourceType.PHOTOLIBRARY, and
Camera.PictureSourceType.SAVEDPHOTOALBUM. The behavior
of this option will vary depending on the mobile device the
application is running on, as some devices do not expose photo
libraries or photo albums.

targetHeight
Numeric value: Used to specify the target height of the captured
image (in pixels). This is a weird one; see the note that follows the
table for more information.

targetWidth
Numeric value: Used to specify the target width of the captured
image (in pixels). This is a weird one; see the note that follows the
table for more information.

 NNoottee
The camera options targetHeight and targetWidth properties have always perplexed me;
when I wrote PhoneGap Essentials more than a year and a half ago I wrote the following:

The targetHeight & targetWidth parameters are supposed to control the height and
width of the image obtained using getPicture. In my testing though, the parameters
did not affect the resulting picture. The documentation says as well that the
parameters must be used in conjunction with each other and that aspect ratio is
maintained. This further reinforces that these options cannot work as documented
(which my testing has proven) since it doesn’t make sense that you have to set both
height and width while at the same time maintaining an aspect ratio for the picture. If
it truly was maintaining aspect ratio, then I’d expect that only one of the values
would be able to be set.

As I wrote this section, I posted a question on the Cordova dev list, and from the responses I got
back, it was clear that it wasn’t known how this should work. So, I committed to retest all of this
and post the results. I’ll either update the Cordova documentation so it makes more sense or the
Cordova developers will take a look at making this work more as expected based on what I
learn. Stay tuned.

Since the camera is a separate, independent application and an application user could take several
photos before finally getting the one he or she wants to return to the Cordova application, there could be
quite a few photos left lying around. In PhoneGap Essentials, I described how a developer could go
into the file system and clean up the orphan photos manually. Since then, the Cordova team has added a

ptg11524036

Chapter 12: Working with the Cordova APIs 187

cleanup method, which can be used to clean up the orphaned photos. To use this method, call the
method and pass in the names of success and failure callback functions, as shown in the following
example:
navigator.camera.cleanup(onCameraCleanupSuccess,

 onCameraCleanupError);

Unfortunately, the method is currently supported only on iOS. When you try to perform the cleanup on
an Android device, you will receive an “Invalid action” error message.

CCaappttuurriinngg MMeeddiiaa FFiilleess
The Capture API is like the Camera API in that you can use it to capture photographs, but you can also
use it to capture video and audio files. The API was originally based on the W3C Media Capture API
(www.w3.org/TR/media-capture-api), but at the time, the PhoneGap team didn’t or weren’t able to
implement some of the APIs features. The W3C stopped work on that specification as the Device API
Working group focused instead on the Media Capture and Streams API
(http://dev.w3.org/2011/webrtc/editor/getusermedia.html), which isn’t like the Capture API at all.

To enable an application to use the Capture API, you must first add the Media Capture plugin to your
project by opening a terminal window and issuing the following CLI command from the Cordova
project folder:
cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-plugin-media-capture.git

The API exposes the following methods:

▪ capture.captureAudio

▪ capture.captureImage

▪ capture.captureVideo

▪ MediaFile.getFormatData

The first three work exactly the same—I’ll show you how in a minute. The getFormatData is
supposed to allow you to retrieve information about a media file, but because of limitations on mobile
devices, very little or no information is available through this method.

To use the Capture API is pretty simple: you make a call to one of the three capture methods (audio,
image, video) using the following method signature:
navigator.device.capture.captureAudio(onSuccess, onFailure,

 options);

Like many of the other APIs discussed in this chapter, the onSuccess and onFailure functions are
called after the capture has completed successfully or when it fails.

The onSuccess function is passed a fileList object, which can be iterated through to access the path
pointing to each captured file, as shown in the following example:
function onSuccess(fileList) {

 var len, I, path;

 //See how many files are listed in the array

 len = fileList.length;

 //Make sure we had a result; it should always be

http://www.w3.org/TR/media-capture-api
http://dev.w3.org/2011/webrtc/editor/getusermedia.html

ptg11524036

188 Chapter 12: Working with the Cordova APIs

 //at least greater than 0, but you never know!

 if(len > 0) {

 //Media files were captured, so let’s process them...

 for(i = 0, len; i < len; i += 1) {

 //Get the path to the file

 path = fileList[i].fullPath;

 //Do something with the file here

 }

 } else {

 //This will probably never execute

 alert("Error: No files returned.");

 }

}

Once you have the path to each media file, you can upload the file to a server, play or display it within
the app, and more.

When called, the onFailure function will be passed an error object, which can be queried to
determine the error code, as shown in the following example:
var onError = function(error) {

 alert('Capture error: ' + error.code);

};

The possible error codes are

▪ CaptureError.CAPTURE_INTERNAL_ERR

▪ CaptureError.CAPTURE_APPLICATION_BUSY

▪ CaptureError.CAPTURE_INVALID_ARGUMENT

▪ CaptureError.CAPTURE_NO_MEDIA_FILES

▪ CaptureError.CAPTURE_NOT_SUPPORTED

The optional options parameter controls how many media files are captured and, for audio captures, a
duration property dictating the length of the audio capture.
var options = { limit: 3, duration: 10 };

Some platforms ignore some options, so be sure to check the quirks section of the Cordova Capture API
documentation and test on an appropriate sampling of devices to make sure you understand how this
API works.

GGlloobbaalliizzaattiioonn
Many mobile applications target audiences who speak and read different languages. If you create a
popular Cordova app, it probably won’t be long before you need to make it available in multiple
languages. To make the globalization of a mobile application easier for developers, the Cordova team
added a Globalization API that allows an application to query the OS for locale settings. Developers
can use this API to determine the user’s preferred language, then load the content in the appropriate

ptg11524036

Chapter 12: Working with the Cordova APIs 189

language, and can also use methods in the API to better understand how to display dates, times,
numbers, and currency appropriately for the user’s preferred language.

To enable an application to leverage this API, you must first add the Globalization plugin to your
project by opening a terminal window and issuing the following CLI command from the Cordova
project folder:
cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-plugin-globalization.git

The globalization object’s methods all work in a similar manner; like most of the Cordova APIs,
they’re asynchronous, so you call the method and pass in success and failure functions, as shown in the
following example:
navigator.globalization.getPreferredLanguage(onGPLSuccess, onGPLFailure);

The success function is passed an object your application can query to access the value or values that
are returned from the method. For most generic methods, such as the preceding
getPreferredLanguage method, the method returns a string value that can be passed as shown in the
following example:
function onGPLSuccess(lang) {

 alert("Preferred language: " + lang.value);

}

In this example, when the call to getPreferredLanguage is made, the onGPLSuccess function
executes and displays the dialog shown in Figure 12.15.

FFiigguurree 1122..1155 Results of getPreferredLanguage

Finishing out the getPreferredLanguage example, the failure function is passed an error object,
which can be queried to determine an error code and an error message, as shown in the following
example:
function onGPLFailure(err) {

 alert("Error: " + err.code + " - " + err.message);

}

The possible error codes are

▪ GlobalizationError.UNKNOWN_ERROR

▪ GlobalizationError.FORMATTING_ERROR

▪ GlobalizationError.PARSING_ERROR

▪ GlobalizationError.PATTERN_ERROR

ptg11524036

190 Chapter 12: Working with the Cordova APIs

Table 12.5 lists all of the Globalization API methods as well as the parameters passed to the method
and the results that are returned.

Table 12.5 GGlloobbaalliizzaattiioonn MMeetthhooddss aanndd PPaarraammeetteerrss

MMeetthhoodd AAcccceeppttss RReettuurrnnss

dateToString
JavaScript Date
value, options

String value representing the date formatted
based on options and user’s current language
settings.

getCurrencyPattern Currency Code
Pattern object that describes currency format
and components of a currency value based on
the user’s current language settings.

getDateNames Options
An array of month or day names, narrow or wide
versions, depending on options and user’s
current language settings.

getDatePattern Options
Pattern object that describes the format of a date
value based on the user’s current language
settings.

getFirstDayOfWeek
Numeric value indicating the first day of the
week based on the user’s current calendar
settings.

getLocaleName
String representation of the user’s current locale
as an ISO 3166 country code
(http://tinyurl.com/7xhpa9m).

getNumberPattern Options
Pattern object that describes the format of a
numeric value based on the user’s current
language settings.

getPreferredLanguage
String representation of the user’s preferred
language as an ISO 639-1 two-letter code
(http://tinyurl.com/l55ttxf).

isDayLightSavingsTime Date
String value indicating whether or not Daylight
Savings Time is in effect.

numberToString Number, Options
String value representing the number formatted
using options and user preferences.

stringToDate String, Options
Parses a date string into individual components
based on options and user’s preferences.

stringToNumber String, Options
Parses a number string into individual
components based on options and user’s
preferences.

As you can see from the table, some of the methods accept a properties object, which allows a
developer to control how a method operates. For example, to use the dateToString method to convert
a date object into a string, a Cordova application would do something similar to the following:

http://tinyurl.com/7xhpa9m
http://tinyurl.com/l55ttxf

ptg11524036

Chapter 12: Working with the Cordova APIs 191

var d = new Date();

navigator.globalization.dateToString(d, onSuccess, onFailure);

The onSuccess function is called after the date conversation has completed and is passed an object that
can be queried to display the result, as shown in the following example.

function onSuccess(res) {

 alert("Result: " + res.value);

};

When the application runs on the on the Android platform, it displays a result similar to the one shown
in Figure 12.16.

FFiigguurree 1122..1166 Displaying Results from dateToString Using Default Options

The dateToString method supports an options parameter, which a developer can use to change the
format of the output, as shown in the following example.
var d = new Date();

var options = {

 formatLength : 'short',

 selector : 'date'

};

navigator.globalization.dateToString(d, onSuccess, onFailure,

 options);

In this example, the options object is specifying formatLength and selector properties, which are
used to control how long the resulting string is and whether it should include date and/or time values (in
this case, I’m asking for only date). When the application runs, you will see a dialog similar to the one
shown in Figure 12.17.

ptg11524036

192 Chapter 12: Working with the Cordova APIs

FFiigguurree 1122..1177 Displaying Results from dateToString with Options (Short Date)

You can use an options object to specify long format, as shown in the following example:
var options = {

 formatLength : 'long',

 selector : 'date

}

Using long date format changes the application’s output to that shown in Figure 12.18.

FFiigguurree 1122..1188 Displaying Results from dateToString with Options (Long Date)

 WWaarrnniinngg
In my testing, on iOS you get the same results no matter what you pass in for options.

In this example, the success function is passed an object with only a single property: value, but several
methods will return an object with multiple properties. The stringToDate method, for example,
returns an object with separate properties for each date component, as shown here:
{

 "month":7,

 "second":0,

 "millisecond":0,

ptg11524036

Chapter 12: Working with the Cordova APIs 193

 "day":31,

 "year":2013,

 "hour":10,

 "minute":47

}

When you use the Globalization API in your applications, refer to Table 12.5 and the corresponding
Cordova documentation to understand exactly what each method accepts and what is returned.

WWoorrkkiinngg wwiitthh tthhee CCoonnttaaccttss AApppplliiccaattiioonn
The Cordova Contacts API allows a developer to build an application that interacts with the address
book or contacts application on a mobile device. The Cordova Contacts API is based on the W3C
Contacts API (www.w3.org/TR/2010/WD-contacts-api-20100121). You would use this API if you
wanted to build an application that reads from the contacts list and uses contact data within the
application or uses data from within the application to write a new contact to the contacts list.

To enable an application to access a device’s contact list, you must first add the Contacts plugin to your
project by opening a terminal window and issuing the following CLI command from the Cordova
project folder:
cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-plugin-contacts.git

The Contacts API is sometimes challenging to use because the contacts capabilities available on each
mobile platform differ; so some of the contact fields you might use on an Android device will differ
from what you would use on iOS. Additionally, the implementation of the Contacts is a little different
than what we’ve seen with the other APIs.

The Contacts API essentially exposes two methods and a contacts object. The methods are used to
create new contacts objects and search for contacts on a device, and the contacts object is the
representation of a contact record on the device.

To create a new contact, an application makes a call to the API’s create method, as shown in the
following example:
var newContact = navigator.contacts.create();

Unlike the other API methods we’ve discussed so far, this particular call is synchronous, so instead of
having to provide success and failure callbacks, this operation happens immediately. However, this
method call doesn’t actually create a contact in the device’s contacts application; instead, all it does is
create a new contact object, nothing more. In this example, it’s creating a new, empty contact object
called newContact; nothing is saved to the contacts application until you call the object’s save method,
which I describe a little later.

You can also populate the contact object during the creation process by passing in a contact object to
the create method, as shown in the following example:
var newContact = navigator.contacts.create(

 {"displayName": "John M. Wargo"});

In this example, I’m populating the contact object’s displayName property when I create the new
contact object.

The contact object consists of the following properties; you can set some or all of these properties for
a contact:

http://www.w3.org/TR/2010/WD-contacts-api-20100121

ptg11524036

194 Chapter 12: Working with the Cordova APIs

▪ addresses: An array containing of all the contact’s different addresses

▪ birthday: The contact’s birthday

▪ categories: An array containing all of the user-defined categories associated with the contact

▪ displayName: The display name for the contact

▪ emails: An array containing all of the email addresses for the contact

▪ id: A globally unique identifier for the contact

▪ ims: An array containing all of the contact’s instant messaging addresses

▪ name: An object representing each of the components of the contact’s name

▪ nickname: The nickname for the contact

▪ note: Any notes associated with the contact

▪ organizations: An array containing all of the organizations associated with the contact

▪ phoneNumbers: An array containing all of the phone numbers associated with the contact

▪ photos: An array containing images associated with the contact

▪ urls: An array containing the web pages associated with the contact

Notice that some of the properties are arrays of other properties. A contact can typically have two or
more mailing addresses, home and work at a minimum. Additionally, many contacts have more than
one email address, so the contact object has to be able to accommodate a dynamic number of
properties.

 NNoottee
I could spend about 10 pages here describing all of the different arrays that are associated with
the contact object, but that’s really beyond the scope of this chapter. Instead, let me show you
how to save the contact, then I’ll show you how to search for contacts and dump the contact
information to the console so you can more easily see how the contact object looks in the real
world on different devices.

There are some inconsistencies in how different mobile devices store contact information, so
seeing this in real-world scenarios is better anyway.

You can populate the contact object when you create the object, as shown in the earlier example, or
you can create the contact object, then populate the object’s properties, as shown in the following
example:
var newContact = navigator.contacts.create();

//Populate the contact object with values

var fullName = "John M. Wargo";

newContact.displayName = fullName

newContact.nickname = "John";

ptg11524036

Chapter 12: Working with the Cordova APIs 195

//Populate the Contact's Name entries

var tmpName = new ContactName();

tmpName.givenName = "John";

tmpName.familyName ="Wargo";

tmpName.formatted = fullName;

//Then add the name object to the contact object

newContact.name = tmpName;

In this example, I’ve created a new contact object, then started populating it with values. When it
comes to populating the contact’s name information, the code populates a ContactName object (defined
within the Contacts API), then adds it to the newContact object. The ContactName object includes the
following properties:

▪ familyName

▪ formatted

▪ givenName

▪ honorificPrefix

▪ honorificSuffix

▪ middleName

There are many different object types and arrays of objects that can be added to a contact record; I’ve
shown only a small example of what can be done. Be sure to use the Contacts API documentation for
details on all of the supported options.

Once you have all of the contact object properties set, you must call the contact object’s save
method to write the changes to the actual contact record:
newContact.save(onSuccess, onError);

The save method accepts the typical success and failure functions that you’ve seen with most of the
other Cordova APIs. The failure function is passed an error object you can use to identify the cause of
an error and respond accordingly, as shown in the following example:
function onError(err) {

 console.log("Error Saving Contact: " + err.code);

};

To manipulate an existing contact, you can use the Contacts API find method to locate the record, as
shown in the following example:
navigator.contacts.find(contactFields, onSuccess, onError, options);

In this example, the contactFields object represents an array of field names, as shown in the
following example:
var contactFields = ["displayName", "name", "phoneNumbers", "emails", "addresses"]

The find method defines which field values are returned in the search results; it does not define which
fields are searched. Not what you expected, right? Me too!

The options object defines parameters around how the search is performed; a sample options object
is shown here:
var options = {filter: "Wargo", multiple: true};

ptg11524036

196 Chapter 12: Working with the Cordova APIs

The filter property is used to provide the find method with the search string to use when searching
records. The multiple property is a Boolean value that controls whether only a single (false) contact
is returned or multiple (true) contacts are returned.

Let’s take a look at a complete example. The following code sample shows how to call find and pass
in a list of contact fields and search options. In the onSuccess function, the code simply writes the
contact details to the console.
function findContact() {

 var contactFields = ["displayName", "name", "phoneNumbers", "emails",

 "addresses"];

 var contactOptions = {

 filter : "Wargo",

 multiple : true

 };

 navigator.contacts.find(contactFields, onSuccess, onError,

 contactOptions);

}

function onSuccess(contacts) {

 for (var i = 0; i < contacts.length; i++) {

 console.log("Contact[" + i + "]: " + JSON.stringify(contacts[i]));

 }

}

Remember that I mentioned that there was a way to see how every aspect of a contact record was
structured? Well, the following chuck of JSON is the result (slightly modified to hide my real identity)
of the previous example code running against the contacts database on my personal Android device.
You can run the application, search for a particular contact, then grab the JSON text returned from the
call to find and analyze it to see how to populate these fields within your application.

{"id":"1370", "rawId":"109", "displayName":"Wargo, John M.", "name":{"middleName":"M.",
"familyName":"Wargo", "formatted":"John M. Wargo", "givenName":"John"}, "nickname":"John",
"phoneNumbers":[{"type":"mobile", "value":"(555) 555-3333", "id":"58", "pref":false},
{"type":"work", "value":"(555) 555-4444", "id":"59", "pref":false}, {"type":"home",
"value":"(555) 555-6666", "id":"12860", "pref":false}], "emails":[{"type":"custom",
"value":john@somedomain.com ,"id":"901", "pref":false}],
"addresses":[{"region":"CA","streetAddress":"99 Cordova lane ", "id":"902", "formatted":"99
Cordova Lane\nSan Francisco, CA 99215\nUnited States of America", "postalCode":"99215",
"locality":"San Francisco", "type":"home", "pref":false, "country":"United States of
America"}, {"region":"CA", "streetAddress":"One Sybase Drive", "id":"12861",
"formatted":"One Sybase Drive\nDublin, CA 94568\nUnited States of America",
"postalCode":"94568", "locality":"Dublin", "type":"work", "pref":false, "country":"United
States of America"}], "ims":null, "organizations":null, "birthday":null, "note":null,
"photos":null, "categories":null, "urls":"www.johnwargo.com"}

You can see, for example, how phone numbers are managed within the contacts application in this
example:
"phoneNumbers":[

 {"type":"mobile", "value":"(555) 555-3333", "id":"58", "pref":false},

 {"type":"work", "value":"(555) 555-4444", "id":"59", "pref":false},

 {"type":"home", "value":"(555) 555-6666", "id":"12860", "pref":false}

]

ptg11524036

Chapter 12: Working with the Cordova APIs 197

Each phone number has a specific type, value, ID, and preferred status value. ID should be created
automatically when adding the phone number to the contact record.

Different mobile device platforms manage contact data differently, so be sure to test the contact format
on each mobile device you will be supporting—you might have to deal with each platform differently.

Once you have a contact object returned from the call to find, you can change the properties of the
object and write the changes back to the contacts application using the save method discussed earlier.
To remove the contact, first get a handle to the contact object and make a call to remove:
foundContact.remove(onSuccess, onFailure);

There’s a lot more to the Contacts API. I’ve only touched the surface—be sure to leverage the Cordova
documentation for more information.

PPllaayyiinngg//RReeccoorrddiinngg MMeeddiiaa FFiilleess
The Cordova APIs include a Media API an application can use to record and play media files. This is
the API you would use to play audio files in the background of a smartphone or tablet video game, for
example.

To enable an application to work with media files, you must first add the media plugin to your project
by opening a terminal window and issuing the following CLI command from the Cordova project
folder:
cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-plugin-media.git

The Media API is like most of the other Cordova APIs in that the API’s methods are asynchronous, but
what triggers the callback functions is a little different. To use this API, an application starts by creating
a Media object using code similar to the following:
var mediaObj = new Media(srcFile, onSuccess, onError, onStatus);

What this code does is create a mediaObj object that points to the media file specified in the srcFile
parameter shown in the example. The application doesn’t open or connect to the file yet; it merely
creates an object that refers to the file, nothing more. Some methods I’ll show you in a little while are
used to actually play the file.

The onSuccess and onFailure functions shown in the example are the success and failure callback
functions you should be familiar with by now, but they don’t fire when you might expect. Since the
code I’ve shown is only creating an object, there are no real callback functions that need to be executed
as part of that process. The onSuccess, onFailure, and onStatus callback functions shown in the
example are actually called when any of the following methods are called against the media object just
created:

▪ getCurrentPosition

▪ getDuration

▪ pause

▪ play

▪ release

▪ seekTo

ptg11524036

198 Chapter 12: Working with the Cordova APIs

▪ setVolume

▪ startRecord

▪ stop

▪ stopRecord

So, to play a media file called soundtrack.mp3, an application would execute the following code:
srcFile = 'soundtrack.mp3';

var mediaObj = new Media(srcFile, onSuccess, onError, onStatus);

mediaObj.play();

function onSuccess() {

 console.log("Media: Success");

}

function onError(error) {

 alert('Media Error: ' + error.code + ': ' + error.message);

}

function onStatus(statCode) {

 console.log("Media Status: " + statCode);

}

To stop a media file from playing, simply call mediaObj.stop();.

As you can see in the example, the onStatus function is passed a status code parameter that allows an
application to understand what’s currently going on with media playback or recording. The possible
status codes are

▪ Media.MEDIA_NONE

▪ Media.MEDIA_STARTING

▪ Media.MEDIA_RUNNING

▪ Media.MEDIA_PAUSED

▪ Media.MEDIA_STOPPED

With all of the methods and callbacks available with the Media API, you can build a complete media
player application, or you can simply load up an audio file and play it without any UI; the API provides
the flexibility a developer needs to do either.

 WWaarrnniinngg
The location where a Cordova application stores the media files packaged with the application
varies across the different mobile device platforms. Android files are located in the
/android_asset folder, whereas on iOS, files are located within the root of the application’s file
area.

ptg11524036

Chapter 12: Working with the Cordova APIs 199

IInnAAppppBBrroowwsseerr
The InAppBrowser is a more recent edition to the Cordova APIs. It allows a web application to load
content into a separate window. Originally created as independent Cordova plugins called
ChildBrowser for Android and iOS, it was added to the Cordova project as InAppBrowser, then
expanded to support other mobile device platforms.

Say, for example, that you want to show your application users additional web content. You could
easily load additional content within your application and manage transitions to and from the content
within your application, but sometimes you want a different experience for your users. You can also
load the content in the system browser, but on iOS, for example, the user would have to perform
manual steps to navigate back to your application after looking at the content in the browser.
InAppBrowser loads web content in such a way that your application users can more easily return
directly to the main application.

To enable an application to use the InAppBrowser, you must first add the InAppBrowser plugin to your
project by opening a terminal window and issuing the following CLI command from the Cordova
project folder:
cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-plugin-inappbrowser.git

LLooaaddiinngg CCoonntteenntt
With the plugin added to your project, you can now open web content in a window using the
following code:
var ref = window.open('http://www.johnwargo.com', '_blank',

 'location=yes');

In this example, the application will open my personal website and return an object that represents the
browser window. You can later use the returned object to interact with the browser window.

You could also create the browser window, but not display it, by using the following code:
var ref = window.open('http://www.johnwargo.com', '_blank',

 'hidden=yes');

Later on, when you’re ready to display the browser window, you can open it using:
ref.show();

Notice that there are no callback functions that we’re used to seeing with the Cordova APIs.

Of the parameters passed to the call to window.open, the _blank tells the application to open the
content in its own window; you could also use _self, which tells it to open the page within the current
window, and _system, which tells it to open the content in the system’s default web browser.

The problem with a target of _self is that the page that is being loaded replaces the current web
content for the application. For application users, this means that there’s no going back—there isn’t an
iOS button to use for that, anyway, and on Android, the escape button won’t take you back either.

The 'location=yes' tells the InAppBrowser to display the page location within the browser window.
There are several other options that can be used when loading a page, but the options vary depending on
the mobile device platform; refer to the Cordova documentation for more information.

If you run the application on an Android device, you will see a screen similar to the one shown in
Figure 12.19; I’ve cropped the screen to show only the top portion of the window. In this case, the

ptg11524036

200 Chapter 12: Working with the Cordova APIs

browser window opens with an address bar a user can use to navigate to other sites as well. The user
should tap the Done button to return to the original program.

FFiigguurree 1122..1199 InAppBrowser Opening an External Web Page with an Address Bar on Android

When the same application is executed on an iOS device, the user will see the web page, and at the
bottom, iOS will display the page address (without the ability to manipulate it or navigate to other sites)
plus the Done button to close the window, as shown in Figure 12.20.

FFiigguurree 1122..2200 InAppBrowser Opening an External Web Page with an Address Bar on iOS

Figure 12.20 highlights one of the key benefits of using InAppBrowser on an iOS device. When done
reading the content, all the user has to do here is tap the Done button to return to the main application.
If the page were loaded by spawning the system browser to open the page, the user would have to
double-tap the device’s Home button to bring up a list of running applications, then tap on the
application name to return to the application—not the best user experience.

To turn off display of the page address, open a page with the following code:
var ref = window.open('http://www.johnwargo.com', '_blank',

 'location=no');

On Android, the page will load like in the previous examples but will not display the address bar, as
shown in Figure 12.21.

FFiigguurree 1122..2211 InAppBrowser Opening an External Web Page without an Address Bar on
Android

ptg11524036

Chapter 12: Working with the Cordova APIs 201

On iOS, the Done button remains, but the page address is removed, as shown in Figure 12.22.

FFiigguurree 1122..2222 InAppBrowser Opening an External Web Page without an Address Bar on iOS

You can also use InAppBrowser to load local content, as shown in the following example:
var ref = window.open('help.html', '_blank');

In this case, I’ve added an HTML file called help.html to the Cordova project’s www folder. The
Cordova prepare command makes sure the file is copied over to the right location for each supported
mobile platform project and is available to be loaded by the application as needed. You can see an
example of the page loading on an Android device in Figure 12.23.

FFiigguurree 1122..2233 InAppBrowser Opening a Local Web Page

Notice that the location bar is loaded by default, since I didn’t specify one in the call to window.open,
and that the file’s location on Android is in the android_asset/www folder.

To close an InAppBrowser window, simply call the close method on the window object:
ref.close();

As fun an interesting as it is to load web content into another window, there are also ways that an
application can interact with the window. In the next few sections, I highlight the different ways for
interacting with the browser window from within a Cordova application.

BBrroowwsseerr WWiinnddooww EEvveennttss
There are many scenarios in which an application will want to know what is going on within an
InAppBrowser window. To accommodate those requirements, the InAppBrowser API fires different
events at different times in the InAppBrowser window lifecycle. The supported events are

ptg11524036

202 Chapter 12: Working with the Cordova APIs

▪ loadstart: Fires when the InAppBrowser begins to load a URL

▪ loadstop: Fires when the InAppBrowser completes loading a URL

▪ loaderror: Fires when the InAppBrowser encounters an error while loading a URL

▪ exit: Fires when the InAppBrowser window is closed (either by the user or by the application
calling the close method)

To flesh out my example from earlier, here’s a block of code that opens a local HTML file using
InAppBrowser, then defines event listeners for each of the new window’s events:
var ref = window.open('help.html', '_blank');

ref.addEventListener('loadstart', onEvent);

ref.addEventListener('loadstop', onEvent);

ref.addEventListener('loaderror', onLoadError);

ref.addEventListener('exit', onEvent);

Notice that instead of having a separate event callback function for each, I have only implemented two
callback functions, one for errors and another for everything else. This is because when anything but an
error event fires, the callback function is passed an event object that describes the event that was fired,
as is illustrated in the following code:
function onEvent(event) {

 console.log('Type: ' + event.type);

 console.log('URL: ' + event.url);

 //Do something based on event.type

}

Developers can query event.type and do whatever is appropriate for the particular event that has fired
and dramatically simplify the code being executed.

When an error occurs, the error callback function is passed an object that includes code and message
properties, as illustrated in the following code. Developers can then query event.code and display an
appropriate error message or perform the appropriate recovery steps as needed.
function onLoadError(event) {

 console.log('onLoadError: ' + event.code + ' - ' + event.message));

}

EExxeeccuuttee SSccrriippttss
There are times when simply loading web content in a separate window isn’t enough; you might need
to modify content or execute some JavaScript within the page. To accommodate this need, the
InAppBrowser includes a method that allows an application to execute JavaScript code within the
InAppBrowser window.

To make use of this feature in your application, you have your application execute the executeScript
method, as shown in the following example:
ref.executeScript(scriptInfo, onSuccess);

The onSuccess function passed to the method is the standard success callback function you’ve seen
used throughout this chapter. The scriptInfo parameter in the example defines what JavaScript code

ptg11524036

Chapter 12: Working with the Cordova APIs 203

is executed and where the code is obtained from: either passed directly to the method or loaded from a
file.

To execute a specific piece of JavaScript code, you would pass in a JavaScript object with a property of
code and a value that consists of a string containing the JavaScript code being executed:
{code : "$('#heading').replaceWith('<h2>This is some injected text</h2>');"}

In this example, the code is using the jQuery replaceWith function to replace some of the content
within the loaded web page.

You can’t execute your JavaScript code until the page has finished loading, so you will most likely add
the call to executeScript to some part of your code that you know will execute after the page has
completed loading, such as the loadstop event listener shown in the following example:
var ref = window.open('help.html', '_blank', 'location=no');

ref.addEventListener('loadstop', function() {

 ref.executeScript({

 code : "$('#heading').replaceWith('<h2>This is some injected text</h2>');"

 }, onSuccess);

});

To illustrate this example, I added a div called heading to the top of the local help.html file used in a
previous example. Then, when the example code provided executes, after the page loads, you will see
the div’s content update, as shown in Figure 12.24.

FFiigguurree 1122..2244 InAppBrowser Showing the Results of executeScript

Instead of passing in your JavaScript code directly to the executeScript method, you can save your
code to a file and pass the file name to executeScript via the scriptInfo parameter, as shown here:
{file : "myscript.js"}

The end result is the same; only the source of the JavaScript code changes in the example code shown
earlier.

ptg11524036

204 Chapter 12: Working with the Cordova APIs

IInnsseerrtt CCSSSS
Along with the ability to execute script within an InAppBrowser window, you can also use a method
exposed by the InAppBrowser to insert CSS into its window. Say, for example, the page you’ve
loaded into the InAppBrowser window came from an external source, and you want to change the
styling of the page to match the rest of your application, y ou can easily change the CSS for the page
on the fly. To do this, code the application to call the InAppBrowser’s insertCSS method and pass in
either the CSS or a reference to a CSS file you want inserted, as shown in the following example:
ref.insertCSS(cssInfo, onSuccess);

The onSuccess function passed to the method is the standard success callback function you’ve seen
used throughout this chapter. The cssInfo parameter in the example defines what CSS is inserted and
where the CSS is obtained from: either passed directly to the method or loaded from a file.

To pass in a specific piece of CSS, you would pass in a JavaScript object with a property of code and a
value that consists of a string containing the CSS being inserted:
{code : "body {background-color:black; color:white}"}

You can’t insert your CSS until the page has finished loading, so you will most likely add the call to
insertCSS to some part of your code that you know will execute after the page has completed loading,
such as the loadstop event listener shown in the following example:
var ref = window.open('help.html', '_blank', 'location=no');

ref.addEventListener('loadstop', function() {

 ref.insertCSS({

 code : "body {background-color:black; color:white}"

 }, onSuccess);

});

Figure 12.25 shows the page loaded with the modified CSS; notice how I switched page colors, making
the background black and the text color white.

FFiigguurree 1122..2255 InAppBrowser Showing the Results of insertCSS

Instead of passing in your CSS directly to the insertCSS method, you can save it to a file and pass the
file name to insertCSS via the cssInfo parameter, as shown here:
{file : "mystuff.css"}

The end result is the same; only the source of the CSS changes in the example code shown earlier.

ptg11524036

Chapter 12: Working with the Cordova APIs 205

SSppllaasshh SSccrreeeenn
Cordova provides a Splashscreen API an application can use to display a custom splash screen when
a Cordova application launches. To enable an application to use the Splashscreen API, you must first
add the Splashscreen plugin to your project by issuing the following CLI command from the Cordova
project folder:
cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-plugin-splashscreen.git

You need to do a bit of work to create the appropriate splash screen graphic files configured and scaled
to support the variety of mobile device platforms as well as the multiple form factors per mobile OS.
There’s also some manual setup you have to do for each mobile device platform: modifying the
Android Cordova container source code. For those reasons, this particular topic is a little more
complicated than appropriate for the scope of this chapter.

From a coding standpoint, once you have the appropriate graphics created and added to your Cordova
and platform projects, you can display and hide your application’s splash screen using the following
code:
function showSplash() {

 navigator.splashscreen.show();

 setTimeout(hideSplash, 2000);

}

function hideSplash() {

 navigator.splashscreen.hide();

}

In this example, the showSplash function displays the splash screen, then sets up a timer to have the
splash screen hide itself after 2 seconds.

WWrraapp--UUpp
A lot went on in this chapter. I introduced most of the Cordova APIs and showed you how to leverage
them in your Cordova applications. I didn’t go into a lot of detail for each but tried to show you
enough for you to understand how the APIs worked and get you started with the way they’re invoked
and what the responses look like. You will need to spend some time digging into the Cordova
documentation for additional information about all of the options supported by each API.

ptg11524036

206 Chapter 13: Creating Cordova Plugins

13
Creating Cordova Plugins

So far we’ve talked a lot about the tools and plugins that are part of the Cordova framework, but what if
you want to do something within a Cordova application that isn’t exposed through one of the existing
plugins (either core plugins or third-party plugins)? Well, you will have to go it alone and build your
own plugins. In this chapter, I show you how to create your own plugins for Apache Cordova.

Cordova plugins are not new—they’ve been around for a while—but with the release of Cordova 3.0 and
the capabilities provided by plugman and the Cordova CLI, plugins have changed a bit. In this chapter, I
show you how to create a JavaScript-only plugin as well as a native plugin for both Android and iOS. The
process is essentially the same for other mobile platforms, so you need to refer to the documentation for
coverage of other platforms, such as BlackBerry 10 and Windows Phone 8.

AAnnaattoommyy ooff aa CCoorrddoovvaa PPlluuggiinn
Before I jump into how to create a plugin, I thought I’d spend some time explaining the anatomy of a
Cordova plugin: what makes a bunch of collected files a Cordova plugin. The Cordova documentation
site has great introduction documents that describe how to create plugins. The “Plugin Development
Guide” (http://tinyurl.com/ka68thu) describes how to create the JavaScript interface for your plugins,
and there are individual guides for creating the native plugin components for the different mobile
platforms linked on the bottom of the page. You can find the Android guide at
http://tinyurl.com/kwz42ln and iOS at http://tinyurl.com/kcmnp2g.

A Cordova plugin is a set of files that together extend or enhance a Cordova application’s capabilities. In
general, a developer adds a plugin to a Cordova project (using the tools discussed in Chapter 4, “Using the
Cordova Command-Line Interface”) and interacts with the plugin through an exposed JavaScript
interface. A plugin could do something without any coding by the developer, but in general, you add the
plugin to your project, then use it as you see fit by coding against the exposed API.

I mentioned that a plugin is a collection of files; it consists of a configuration file called plugin.xml, one
or more JavaScript files, plus (optionally) some native source code files, libraries, and associated content
(HTML, CSS, and other content files) that are used by the plugin.

The plugin.xml describes the plugin and tells the CLI which parts get copied where and which files are
unique to each mobile platform. There are even settings in the plugin.xml, which are used by the CLI to
set platform-specific config.xml settings. There are a lot of available options within the plugin.xml file; I
won’t cover all of them here.

A plugin has to have at least one JavaScript source file; this one file is expected to define the methods,
objects, and properties that are exposed by the plugin. Your application may wrap everything into one

http://tinyurl.com/ka68thu
http://tinyurl.com/kwz42ln
http://tinyurl.com/kcmnp2g

ptg11524036

Chapter 13: Creating Cordova Plugins 207

JavaScript file or may have several; it’s all up to you. You can also bundle in additional JavaScript
libraries (jQuery Mobile, lawnchair, mustache.js, handlebars.js, and so on) as needed for your plugin.

Beyond those first two requirements, the rest of the plugin files are anything else you need to define your
plugin. In general, a plugin includes one or more native source code files for each supported mobile
device platforms. On top of that, a plugin might include additional native libraries (in source code form or
precompiled) or content (image files, style sheets, HTML files, who knows?).

The good thing about building your own plugins is that there are a whole bunch of examples readily
available to you. Figure 13.1 shows the contents of the Cordova 3.0 download package. The .zip files that
have “plugin” in their name were created by the Cordova team; you can extract the files and analyze them
for hints on how to build your own plugins. One of the easiest ways to get started is to take an existing
plugin and modify it to suit your particular needs.

FFiigguurree 1133..11 Cordova 3.0 Installation Files

CCrreeaattiinngg aa SSiimmppllee PPlluuggiinn
A Cordova plugin does not have to have native code in it; instead it can be completely composed of
JavaScript code. I thought it would make sense to start with a simple plugin, something that shows what
a plugin is all about, before digging into plugins with native code for Android and/or iOS. In this
section, I show you how to create a plugin composed of only JavaScript code. In the sections that
follow, I expand on what we learn here and build a more complicated example plugin.

ptg11524036

208 Chapter 13: Creating Cordova Plugins

 NNoottee
The plugin I create here isn’t going to be very useful; it’s merely designed to help teach you
about the structure and format of a Cordova plugin. Here I create a plugin that calculates the
meaning of life. For those of you who are aware of Douglas Adams’s work, this will make perfect
sense to you; for the rest of you, in the Hitchhiker’s Guide to the Galaxy, the “Answer to the
Ultimate Question of Life, The Universe, and Everything” (shortened to “Meaning of Life” by me)
is 42, so the one method exposed through the plugin will simply return 42 to the calling program.
You can learn more about it here: http://en.wikipedia.org/wiki/42_(number).

The plugin I’m creating is called Meaning of Life, which I will abbreviate to MoL. To create this plugin, I
created a mol folder in my system’s dev folder. Next, I created a file called plugin.xml and placed it in the
new folder. The plugin.xml file is a simple XML file that describes the plugin for plugman and the
Cordova CLI; you can see the complete listing of the file I used in Listing 13.1; I simply copied it from
another plugin and modified it to suit my plugin’s needs.

Listing 13.1: plugin.xml

<?xml version="1.0" encoding="UTF-8"?>
<plugin xmlns="http://apache.org/cordova/ns/plugins/1.0"
id="com.cordovaprogramming.meaningoflife" version="1.0.0">
 <name>MoL</name>
 <description>Calculates the Meaning of Life (an obscure
 reference to Douglas Adams's Hitchhiker's Guide to the
 Galaxy)
 </description>
 <author>John M. Wargo</author>
 <keywords>mol, Meaning of Life</keywords>
 <license>Apache 2.0 License</license>
 <engines>
 <engine name="cordova" version="3.0.0" />
 </engines>
 <js-module src="mol.js" name="mol">
 <clobbers target="mol" />
 </js-module>
 <info>This plugin exists for no other reason but to
 demonstrate how to build a simple, JavaScript-only
 plugin for Apache Cordova.</info>
</plugin>

Some of the information in the plugin.xml file is for documentation purposes, to allow others to
understand who created the plugin and why. The other options in the file are used to drive the plugman or
the Cordova CLI plugin installation process. You can find a listing of the different plugin.xml elements in
Table 13.1.

http://en.wikipedia.org/wiki/42_(number

ptg11524036

Chapter 13: Creating Cordova Plugins 209

Table 13.1 CCoorrddoovvaa pplluuggiinn..xxmmll EElleemmeennttss

CCoommppoonneenntt DDeessccrriippttiioonn

plugin

Defines the name space, ID, and version for the plugin. Cordova 3
plugins should utilize namespace defined at
http://apache.org/cordova/ns/plugins/1.0. The ID for the plugin is what
will be displayed in the plugin list when you issue a cordova plugins
command in a terminal window from a Cordova project folder.

name Defines the name for the plugin.

description Defines the description of the plugin.

author Defines the name of the author who created the plugin.

keywords

Defines the keywords associated with the plugin. The Cordova team is
working on a public, searchable repository for plugins, and the
keywords you add here will eventually help in the discovery process if
you later add your plugin to the repository.

license
Defines the license for the plugin. In my example, I just used the
default license that Cordova uses, but you can enter anything you want
here, either a license description and/or link to license terms.

engines
Used to define the versions of Cordova the plugin supports. Add an
additional engine element for each supported Cordova version.

js-module

Refers to the file name for a JavaScript file for which a <script> tag
will be automatically added to a Cordova project’s startup page
(index.html by default). By listing your plugin’s main JavaScript files
within js-module tags, you eliminate some of the work developers
have to do to use your plugin in their Cordova applications.

The clobbers element specifies that the module.exports (mol in the
case of this plugin) is automatically added to the window object, giving
your plugin’s methods scope at the window level.

info
I added this to the file just for fun; it’s another place besides the
description element to tell developers something about your plugin.

Next, I created a JavaScript file called mol.js and placed it in the mol folder. The complete file listing is
provided in Listing 13.2, and it is only 7 lines of code. The code simply creates a mol object, then defines
within it the calculateMOL function used to calculate the Meaning of Life. The last line in the file exports
the mol object, which is what makes the object and its associated function available to Cordova
applications that use the plugin.

Listing 13.2: mol.js

var mol = {
 calculateMOL : function() {
 return 42;
 }
};

module.exports = mol;

http://apache.org/cordova/ns/plugins/1.0

ptg11524036

210 Chapter 13: Creating Cordova Plugins

That’s it—that’s all there is to creating a simple Cordova plugin. To prove that it works, I created the
simple MoL Demo application shown in Listing 13.3. First, I opened a terminal window, then navigated
to my system’s dev folder, then issued the following CLI commands:
cordova create simplePlugin com.cordovaprogramming.simplePlugin SimplePlugin

cd simplePlugin

cordova platform add android ios

cordova plugin add c:\dev\plugins\mol

With those steps completed, all I had to do was open my HTML editor of choice and enter the code in
Listing 13.3. In the application, I created a simple button, and when the button is tapped, my doMOL
function is executed, which makes the call to mol.calculateMOL() and displays the result in an alert
dialog.

Listing 13.3: MoL Demo Application (simpleplugin.html)

<!DOCTYPE html>
<html>
 <head>
 <title>Meaning of Life Demo</title>
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1, minimum-scale=1,
 width=device-width;" />
 <script type="text/javascript" charset="utf-8"
 src="cordova.js"></script>
 <script type="text/javascript" charset="utf-8">

 function onBodyLoad() {
 document.addEventListener("deviceready", onDeviceReady,
 false);
 };

 function onDeviceReady() {
 //alert("onDeviceReady");
 };

 function doMOL() {
 var res = mol.calculateMOL();
 alert('Meaning of Life = ' + res);
 }
 </script>
 </head>
 <body onload="onBodyLoad()">
 <h1>MoL Demo</h1>
 <p>
 This is a Cordova application that uses my custom
 Meaning of Life plugin.
 </p>
 <button onclick="doMOL();">
 Calculate Meaning of Life

ptg11524036

Chapter 13: Creating Cordova Plugins 211

 </button>
 </body>
</html>

That’s all there is to it. When you run the application and tap the button, you should see the results
shown in Figure 13.2.

FFiigguurree 1133..22 Calculating the Meaning of Life

CCrreeaattiinngg aa NNaattiivvee PPlluuggiinn
Now that I’ve shown you how to create a simple, JavaScript-only plugin, it’s time to go beyond that
simple example and create a plugin for Cordova that contains native code. In the next two sections, I show
you how to create a simple native plugin for Android and how to add the same functionality for iOS.

This example plugin isn’t fancy; it simply exposes some native telephony APIs to a Cordova container. For
this plugin, I just started poking around in the Android SDK documentation and found something simple
and interesting to expose, then coded the plugin. The reason I took this approach was to keep the native
API code I was exposing through this plugin as simple as possible. The purpose of this chapter is to show
you how to make plugins, not how to do native development, so that’s why the plugin is not too
complicated. What you’ll see in the next couple of sections is how to structure your plugin; adding
additional APIs or more sophisticated APIs to your plugins will be easy once you know how plugins work.

The plugin is called Carrier, and it exposes information provided by a smartphone’s carrier: the carrier
name plus the country code where the device is located or provisioned.

ptg11524036

212 Chapter 13: Creating Cordova Plugins

When I created the plugin, I created a folder for the plugin, as shown in Figure 13.3. Within that folder are
the JavaScript interface definition plus the plugin.xml. I created a subfolder called src and added android
and ios folders there to store that native code for each of the platforms. This isn’t a required structure for
your plugins but makes it easy to keep things organized.

FFiigguurree 1133..33 Plugin Folder Structure

Before I start on the native code, I have to first define the JavaScript interface that will be exposed to
Cordova applications. The way this works is through the same type of JavaScript file I created for the
MoL plugin in the previous section. In the JavaScript file I created for this plugin, I created a simple
JavaScript object called carrier and defined within it one or more methods that can be called from a
Cordova application. For this particular example, the Carrier plugin will expose the getCarrierName and
getCountryCode methods.

Now, unlike the MoL plugin, these methods will not do any calculations and return any values directly;
instead, they will make calls to a cordova.exec method, which passes control to native code I’ve created
for each target platform. This is the famous JavaScript-to-native bridge that allows Cordova applications
to execute native APIs. When the native code is finished doing what it is supposed to be doing, it calls
callback functions and passes its results back to the JavaScript object.

The method signature for cordova.exe looks like the following:
cordova.exec(successCallback, errorCallback, 'PluginObject',

 'pluginMethod', [arguments]);

The successCallback and errorCallback parameters are the names of the functions that will be
executed on success and failure of the particular plugin method call. The 'PluginObject' parameter is a
string that identifies the native object that contains the method being called, and the 'pluginMethod'
parameter is a string that identifies the method that is executed. Lastly, the arguments parameter is an
optional array of arguments that will be passed to the pluginMethod.

In this example, the getCarrierName and getCountryCode methods don’t require that any parameters be
passed to them, so the arguments parameter will be empty and represented by empty brackets: [].

Listing 13.4 shows the contents of carrier.js, the JavaScript interface file for the plugin. It begins with the
declaration of a cordova object, which refers to the loading of the cordova JavaScript library that exposes
the exec function. With that in place, the carrier object is created, and the two methods are defined.
Each calls cordova.exec and passes the necessary function names and object and method names needed
for the cordova object to locate the correct native object and methods to do the work I need done.

ptg11524036

Chapter 13: Creating Cordova Plugins 213

At the very end of the file is a module.exports assignment, which allows the carrier object to be
exposed to a Cordova application.

Listing 13.4: carrier.js

var cordova = require('cordova');

var carrier = {
 getCarrierName : function(successCallback, errorCallback) {
 cordova.exec(successCallback, errorCallback,
 'CarrierPlugin', 'getCarrierName', []);
 },

 getCountryCode : function(successCallback, errorCallback) {
 cordova.exec(successCallback, errorCallback,
 'CarrierPlugin', 'getCountryCode', []);
 }
};

module.exports = carrier;

With that in place, I am ready to begin coding the native parts of the plugin.

 NNoottee

You don’t have to define the JavaScript interface for your plugin first. If you look at the different
Cordova plugin tutorials available on the Internet, you will find that people do it either way:
define the JavaScript interface first or write the native code first. It really doesn’t matter. I
researched the required native functions first, so I already had what I needed to craft the
JavaScript interface.

If you are working with a more complicated plugin, you may find it easier to work through all of
the native functions and what they will require before crafting your plugin’s JavaScript interface.

CCrreeaattiinngg tthhee AAnnddrrooiidd PPlluuggiinn
With the JavaScript interface defined, it’s time to start working on the native part of the plugin. In this
case, I did things alphabetically, so I created the Android plugin first, then ported it to iOS later.

You can create Android plugins by creating a new Cordova project, then wiring the Java classes and
JavaScript interface file into the application. Then, when the plugin is working in the application, you can
pull it out into a separate folder for distribution as a plugin. For this work, I simply created a folder for the
plugin and did all my work there, then created a new Cordova project and used the Cordova CLI to add
my new plugin there. This allowed me to work on my plugin files separately and test the plugin.xml file at
the same time. You may find that this approach doesn’t work for you for your plugin development efforts.
It probably just depends on how complicated the plugin code is; in this case, the code was simple enough
that I didn’t have to deal with a lot of compilation errors, so working on the plugin as a standalone project
was easier for me.

ptg11524036

214 Chapter 13: Creating Cordova Plugins

On Android, the information the plugin will be returning to the Cordova application will come from the
Telephony API. To use this API, an application must import the Context and TelephonyManager
classes:
import android.content.Context;

import android.telephony.TelephonyManager;

Then, within the application, define an instance of an object that exposes the methods we need to call to
get the carrier name and country code:
tm = (TelephonyManager) getSystemService(

 Context.TELEPHONY_SERVICE);

To determine the carrier name, the plugin will make a call to tm.getSimOperatorName(), and to get the
country code, it will make a call to tm.getSimCountryIso().

Listing 13.5 lists the Java code used for the Android plugin; it defines a simple class called
CarrierPlugin that exposes the exec method, which is what is executed by the call to the JavaScript
cordova.exec highlighted in Listing 13.4.

The class defines two constants, ACTION_GET_CARRIER_NAME and ACTION_GET_COUNTRY_CODE, which
are used in determining which method was called by the Cordova application. You could hard code the
comparison deeper within the Java code, but doing it this way makes it easier to change the names later.

Next, the class defines the tm object used to give the plugin access to the Telephony APIs.

The initialize method first calls super.initialize, which allows the cordova object to be initialized
properly. Without this call, the Java code has no awareness of the Cordova container. Next, the code gets
a handle to the current application context and uses that to wire the tm object into the services exposed by
the Telephony API.

Next, the Java code overrides the exec method and implements the code that deals directly with the calls
from the Cordova application. In this implementation, I’ve implemented a single operation that
determines which action has been called (by comparing the action name passed by the call to
cordova.exec to the constants I defined earlier) and acts accordingly.

If the exec method determines that the getCarrierName action was requested, then it makes the call to
the Android getSimOperatorName method and passes the results back to the Cordova application by
calling callbackContext.success(). If the getCountryCode action was requested, then it makes a call
to the Android getSimCountryIso() and passes the results back to the Cordova application by calling
callbackContext.success().

If any part of this process fails, the code executes callbackContext.error and passes back an
appropriate error message or error object indicating what went wrong.

Listing 13.5: CarrierPlugin.java

package com.cordovaprogramming.carrier;

//Cordova imports
import org.apache.cordova.CordovaInterface;
import org.apache.cordova.CallbackContext;
import org.apache.cordova.CordovaPlugin;
import org.apache.cordova.CordovaWebView;

ptg11524036

Chapter 13: Creating Cordova Plugins 215

//Android imports
import android.content.Context;
import android.telephony.TelephonyManager;

//JSON Imports
import org.json.JSONArray;
import org.json.JSONException;

public class CarrierPlugin extends CordovaPlugin {

 //Define some constants for the supported actions
 public static final String
 ACTION_GET_CARRIER_NAME = "getCarrierName";
 public static final String
 ACTION_GET_COUNTRY_CODE = "getCountryCode";

 public TelephonyManager tm;

 public void initialize(CordovaInterface cordova,
 CordovaWebView webView) {
 super.initialize(cordova, webView);

 //The plugin doesn't have direct access to the
 //application context, so you have to get it first
 Context context =
 this.cordova.getActivity().getApplicationContext();
 //Next we initialize the tm object
 tm = (TelephonyManager)
 context.getSystemService(Context.TELEPHONY_SERVICE);
 }

 @Override
 public boolean execute(String action, JSONArray args,
 CallbackContext callbackContext) throws JSONException {
 try {
 //First check on the getCarrierName
 if (ACTION_GET_CARRIER_NAME.equals(action)) {
 callbackContext.success(tm.getSimOperatorName());
 return true;
 } else {
 //Next see if it is a getCountryCode action
 if (ACTION_GET_COUNTRY_CODE.equals(action)) {
 callbackContext.success(tm.getSimCountryIso());
 return true;
 }
 }
 //We don't have a match, so it must be an invalid action
 callbackContext.error("Invalid Action");
 return false;
 } catch (Exception e) {
 //If we get here, then something horrible has happened

ptg11524036

216 Chapter 13: Creating Cordova Plugins

 System.err.println("Exception: " + e.getMessage());
 callbackContext.error(e.getMessage());
 return false;
 }
 }
}

That’s all there is to the code; I tried to make it as simple as possible in order to allow you to focus on the
parts that are specific to Cordova plugins.

Before I can use the CLI to add this new plugin to a Cordova project, I have to create the plugin’s
plugin.xml file, shown in Listing 13.6. The file is similar to the one I used for the MoL plugin, but as
there are native components of this one, there are some extra settings to explain. First take a look at the
file; I’ll describe the contents after the listing.

Listing 13.6: plugin.xml

<?xml version="1.0" encoding="UTF-8"?>
<plugin xmlns="http://apache.org/cordova/ns/plugins/1.0" id="com.cordovaprogramming.carrier"
version="1.0.0">
 <name>Carrier</name>
 <author>John M. Wargo</author>
 <description>Exposes mobile carrier related values to a Cordova application.</description>
 <keywords>carrier</keywords>
 <license>Apache 2.0 License</license>
 <engines>
 <engine name="cordova" version="3.0.0" />
 </engines>
 <js-module src="carrier.js" name="carrier">
 <clobbers target="carrier" />
 </js-module>
 <platform name="android">
 <!-- android-specific elements -->
 <source-file src="src/android/CarrierPlugin.java" target-
dir="src/com/cordovaprogramming/carrier" />
 <config-file target="res/xml/config.xml" parent="/*">
 <feature name="CarrierPlugin" >
 <param name="android-package" value="com.cordovaprogramming.carrier.CarrierPlugin"/>
 </feature>
 </config-file>
 <config-file target="AndroidManifest.xml" parent="/*">
 <uses-permission android:name="android.permission.READ_PHONE_STATE" />
 </config-file>
 </platform>
 <platform name="ios">
 <!-- ios-specific elements -->
 </platform>
</plugin>

ptg11524036

Chapter 13: Creating Cordova Plugins 217

The file’s js-module element defines the name of the JavaScript file, which will be automatically loaded
on application startup. It defines the JavaScript interface exposed to the Cordova application. The
clobbers element specifies the JavaScript object assigned to the loaded JavaScript object. In this
example, the Carrier plugin is defined to be exposed to the Cordova application through a carrier
object.
<js-module src="carrier.js" name="carrier">

 <clobbers target="carrier" />

</js-module>

The Cordova application accesses the getCarrierName method through the carrier object:
carrier.getCarrierName(onSuccess, onFailure);

The only part of the file that is different from the earlier example (Listing 13.1) is the platform section:
<platform name="android">

 <!-- android-specific elements -->

 <source-file src="src/android/CarrierPlugin.java"

 target-dir="src/com/cordovaprogramming/carrier" />

 <config-file target="res/xml/config.xml" parent="/*">

 <feature name="CarrierPlugin" >

 <param name="android-package"

 value="com.cordovaprogramming.carrier.CarrierPlugin"/>

 </feature>

 </config-file>

 <config-file target="AndroidManifest.xml" parent="/*">

 <uses-permission

 android:name="android.permission.READ_PHONE_STATE" />

 </config-file>

</platform>

It defines settings that are particular to specific mobile device platform and contains settings related to the
native code I’ve shown you in this section. There can be one or more platform elements in a plugin.xml
file; the following one defines elements that apply to android plugin components:
<platform name="android"></platform>

Within that element is a source-file element that points to one or more Android native source code
files, which need to be installed by the CLI when the plugin is installed. The following example instructs
plugman or the CLI to copy the file called CarrierPlugin.java located in the plugin source folder’s
src/android folder to the Cordova project’s Android platform folder in the
src/com/cordovaprogramming/carrier folder:
<source-file src="src/android/CarrierPlugin.java"

 target-dir="src/com/cordovaprogramming/carrier" />

You don’t have to copy the file to that deep of a folder structure, but it’s the norm for Cordova plugins to
be installed into such a folder structure. Take a look at some of the Cordova core plugins, and you will see
what I mean.

The config-file element defines the changes that need to be made during plugin installation. In the
following example, it specifies that a feature named CarrierPlugin should be added to the Android
project’s config.xml file and should point to the Java Class
com.cordovaprogramming.carrier.CarrierPlugin:

ptg11524036

218 Chapter 13: Creating Cordova Plugins

<config-file target="res/xml/config.xml" parent="/*">

 <feature name="CarrierPlugin" >

 <param name="android-package"

 value="com.cordovaprogramming.carrier.CarrierPlugin"/>

 </feature>

</config-file>

The last element in platform defines another configuration file setting. On Android, access to the
Telephony API requires specific permissions. Any application that uses the API must add an entry to the
application’s AndroidManifest.xml file, which lists the specific permissions required by the application.
In this case, I have to add the android.permission.READ_PHONE_STATE permission to the manifest:
<config-file target="AndroidManifest.xml" parent="/*">

 <uses-permission android:name="android.permission.READ_PHONE_STATE" />

</config-file>

When you look at the application’s settings screen for an application that uses this plugin, you will see the
entry for “read phone status and identity,” shown in Figure 13.4; it shows that the permission has been set
correctly.

FFiigguurree 1133..44 Android Application Permissions

If you do not set these permissions correctly, the part of the application that uses an API that requires the
permission will fail without warning. If you forget to do this and wonder later why the Telephony API
doesn’t seem to be working, be sure to check your permissions.

To test the application, I created the simple application highlighted in Listing 13.6. To create the
application, I opened a terminal window, then navigated to my system’s dev folder and issued the
following CLI commands:
cordova create nativePlugin com.cordovaprogramming.nativePlugin NativePlugin

cd nativePlugin

cordova platform add android

cordova plugin add c:\dev\plugins\carrier

With those steps completed, all I had to do was open my HTML editor of choice and enter the code in
Listing 13.7. The application displays two buttons, one that calls getCarrierName and another that calls
getCountryCode. The same onSuccess function is executed to display the results for both methods.

Listing 13.7: index.html

<!DOCTYPE html>
<html>
 <head>

ptg11524036

Chapter 13: Creating Cordova Plugins 219

 <title>Carrier Demo</title>
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1, minimum-scale=1,
 width=device-width;" />
 <script type="text/javascript" charset="utf-8"
 src="cordova.js"></script>
 <script type="text/javascript" charset="utf-8">
 function onBodyLoad() {
 document.addEventListener("deviceready", onDeviceReady,
 false);
 };

 function onDeviceReady() {
 //Nothing to do here really
 //but I always include this just in case
 };

 function doSomething1() {
 carrier.getCarrierName(onSuccess, onFailure);
 }

 function doSomething2() {
 carrier.getCountryCode(onSuccess, onFailure);
 }

 function onSuccess(result) {
 var resStr = "Result: " + result;
 console.log(resStr);
 alert(resStr)
 }

 function onFailure(err) {
 console.log("onFailure: " + JSON.stringify(err));
 alert("Failure: " + err);
 }
 </script>
 </head>
 <body onload="onBodyLoad()">
 <h1>Carrier Demo</h1>
 <p>
 This is a Cordova application that uses my fancy new Carrier plugin.
 </p>
 <button onclick="doSomething1();">
 Get Carrier Name
 </button>
 <button onclick="doSomething2();">
 Get Country Code
 </button>
 </body>
</html>

ptg11524036

220 Chapter 13: Creating Cordova Plugins

When the application runs, it will display a screen similar to the one shown in Figure 13.5 (which I have
cropped here for the sake of page real estate).

FFiigguurree 1133..55 Carrier Demo Application

When you tap the Get Carrier Name button, the application calls the appropriate Telephony API and
returns the carrier name, as shown in Figure 13.6. I took that particular screenshot on an Android
emulator, so it returns Android rather than a particular carrier’s name. I have an Android tablet, but it’s
provisioned for data only, so the API doesn’t return anything.

FFiigguurree 1133..66 Results of getCarrierName on an Android Emulator

When you tap the Get Country Code button, the application calls the appropriate Telephony API and
returns the country code, as shown in Figure 13.7.

ptg11524036

Chapter 13: Creating Cordova Plugins 221

FFiigguurree 1133..77 Results of getCountryCode on an Android Emulator

That’s it—I now have a native plugin for Android, and it’s all ready to go.

CCrreeaattiinngg tthhee iiOOSS PPlluuggiinn
In this section of the chapter, I show you how to implement the iOS version of the native plugin
discussed in the previous section.

For the iOS version of the plugin, things are a little simpler. On Android, when you call a plugin’s
methods, cordova.exec locates the native class and executes the methods on the class. For iOS, the
plugin’s methods are executed through URL commands exposed by the plugin. To get started, I navigated
to my plugin’s src/ios folder and created two files: CarrierPlugin.h and CarrierPlugin.m. The .h file is the
iOS plugin’s Header file and defines the interface for the iOS plugin code. The .m file is the
implementation of the interface and contains the code that does the work for the plugin.

Listing 13.8 shows the content of the CarrierPlugin.h file. Here, I define the interface for CarrierPlugin
as an implementation of CDVPlugin. What this does is let the iOS device know I’m exposing the code as a
Cordova plugin. Next, the file defines the two methods that are available: getCarrierName and
getCountryCode. Sound familiar? They should—those are the methods that will be called by the plugin’s
JavaScript interface shown in Listing 13.1.

Listing 13.8: CarrierPlugin.h

#import <Cordova/CDVPlugin.h>

@interface CarrierPlugin : CDVPlugin {

}

- (void)getCarrierName:(CDVInvokedUrlCommand*)command;
- (void)getCountryCode:(CDVInvokedUrlCommand*)command;

@end

Listing 13.9 shows the contents of the CarrierPlugin.m file; this is the implementation of the interface
described in Listing 13.8. Here the code imports some of the interfaces used by the plugin, then defines
the functions that are called when the Cordova application invokes getCarrierName and
getCountryCode.

ptg11524036

222 Chapter 13: Creating Cordova Plugins

As you can see from the code, both methods leverage CTTelephonyNetworkInfo; for this plugin, neither
of the methods accepts any parameters. For both methods, the plugin first defines a netinfo object,
which is assigned to an instance of the CTTelephonyNetworkInfo class, as shown here:
CTTelephonyNetworkInfo *netinfo = [[CTTelephonyNetworkInfo alloc] init];

Next, a carrier object is created; it provides the plugin with access to the cellular provider properties:
CTCarrier *carrier = [netinfo subscriberCellularProvider];

With that in place, the carrier name is exposed to the plugin through the carrier object’s carrierName
property. At this point, the plugin simply needs to return the value to the calling program. First, the method
sets the result of the operation and assigns the return value, as shown here:
CDVPluginResult* result = [CDVPluginResult resultWithStatus:CDVCommandStatus_OK
messageAsString:[carrier carrierName]];

Then, the method calls the appropriate callback function to complete the process:
[self.commandDelegate sendPluginResult:result callbackId:[command callbackId]];

}

That’s it—that’s all there really is to the code. For the getCountryCode method, it uses the same process,
only returning the value of the carrier object’s isoCountryCode property. Listing 13.9 shows the
complete code listing for the file.

Listing 13.9: CarrierPlugin.m

#import "CarrierPlugin.h"
#import <CoreTelephony/CTTelephonyNetworkInfo.h>
#import <CoreTelephony/CTCarrier.h>

@implementation CarrierPlugin

- (void)getCarrierName:(CDVInvokedUrlCommand*)command
{
 CTTelephonyNetworkInfo *netinfo = [[CTTelephonyNetworkInfo alloc] init];
 CTCarrier *carrier = [netinfo subscriberCellularProvider];
 CDVPluginResult* result = [CDVPluginResult resultWithStatus:CDVCommandStatus_OK
messageAsString:[carrier carrierName]];
 [self.commandDelegate sendPluginResult:result callbackId:[command callbackId]];
}

- (void)getCountryCode:(CDVInvokedUrlCommand*)command
{
 CTTelephonyNetworkInfo *netinfo = [[CTTelephonyNetworkInfo alloc] init];
 CTCarrier *carrier = [netinfo subscriberCellularProvider];
 CDVPluginResult* result = [CDVPluginResult resultWithStatus:CDVCommandStatus_OK
messageAsString:[carrier isoCountryCode]];
 [self.commandDelegate sendPluginResult:result callbackId:[command callbackId]];
}

@end

ptg11524036

Chapter 13: Creating Cordova Plugins 223

With the plugin’s code in place, the last thing that has to happen is that the plugin.xml file must be
updated with the settings for the iOS portion of the plugin. To do this, I added a new platform section to
the file; the elements and attributes for this section are shown here:
<platform name="ios">

 <!-- ios-specific elements -->

 <header-file src="src/ios/CarrierPlugin.h" />

 <source-file src="src/ios/CarrierPlugin.m" />

 <config-file target="config.xml" parent="/*">

 <feature name="CarrierPlugin" >

 <param name="ios-package" value="CarrierPlugin"/>

 </feature>

 </config-file>

</platform>

For iOS plugins, the platform element adds a special element called header-file, which defines the
names of any header files (.h files) used by the plugin. In the plugin.xml file segment shown, I have added
a header-file element for the plugin’s only header file (CarrierPlugin.h) and a source-file element
for the implementation file (CarrierPlugin.m). They both get copied to the same location within a Cordova
project folder structure.

There is one config.xml file update that has to be made: we have to add the CarrierPlugin feature to the
file and point to the CarrierPlugin interface shown in Listing 13.8.

Note that there are no permission settings to be set for this plugin; iOS doesn’t require specific application
settings to use telephony features as Android does. At this point, I have everything I need defined for the
plugin. Listing 13.10 shows the complete listing for the plugin.xml file.

Listing 13.10: Completed plugin.xml File Contents

<?xml version="1.0" encoding="UTF-8"?>
<plugin xmlns="http://apache.org/cordova/ns/plugins/1.0" id="com.cordovaprogramming.carrier"
version="1.0.0">
 <name>Carrier</name>
 <author>John M. Wargo</author>
 <description>Exposes mobile carrier related values to a
 Cordova application.</description>
 <keywords>carrier</keywords>
 <license>Apache 2.0 License</license>
 <engines>
 <engine name="cordova" version="3.0.0" />
 </engines>
 <js-module src="carrier.js" name="carrier">
 <clobbers target="carrier" />
 </js-module>
 <platform name="android">
 <!-- android-specific elements -->
 <source-file src="src/android/CarrierPlugin.java"
 target-dir="src/com/cordovaprogramming/carrier" />
 <config-file target="res/xml/config.xml" parent="/*">
 <feature name="CarrierPlugin" >
 <param name="android-package"
 value="com.cordovaprogramming.carrier.CarrierPlugin"/>

ptg11524036

224 Chapter 13: Creating Cordova Plugins

 </feature>
 </config-file>
 <config-file target="AndroidManifest.xml" parent="/*">
 <uses-permission
 android:name="android.permission.READ_PHONE_STATE" />
 </config-file>
 </platform>
 <platform name="ios">
 <!-- ios-specific elements -->
 <header-file src="src/ios/CarrierPlugin.h" />
 <source-file src="src/ios/CarrierPlugin.m" />
 <config-file target="config.xml" parent="/*">
 <feature name="CarrierPlugin" >
 <param name="ios-package" value="CarrierPlugin"/>
 </feature>
 </config-file>
 </platform>
</plugin>

To test the plugin, I created a new project and added my plugin to it. When I opened Xcode and tried to
run the application, I received an error indicating that there was an undefined symbol in my project, as
shown in Figure 13.8.

FFiigguurree 1133..88 Xcode Build Error

ptg11524036

Chapter 13: Creating Cordova Plugins 225

This happened because the project didn’t have the iOS CoreTelephony framework added to the project. To
fix this error, I clicked on the project name in the Xcode project navigator, opened the Build Phases tab, and
added the framework to the Libraries section, as shown already completed in Figure 13.9.

FFiigguurree 1133..99 Xcode Project Build Phases Settings

I then clicked the plus sign highlighted in the bottom of Figure 13.9, and in the dialog that appeared, I
started to type telephony, as shown in Figure 13.10. When the CoreTelephony.framework entry appeared, as
shown in the figure, I clicked the Add button to add the framework to my project’s configuration.

ptg11524036

226 Chapter 13: Creating Cordova Plugins

FFiigguurree 1133..1100 Xcode Add Framework Dialog

With that in place, I copied over my test project’s index.html and ran the application on my iOS device, as
shown in Figure 13.11.

ptg11524036

Chapter 13: Creating Cordova Plugins 227

FFiigguurree 1133..1111 Results of getCarrierName on an iOS Device

I couldn’t test this on an iOS simulator because the simulator is not provisioned with a mobile carrier and
therefore cannot determine any carrier-specific settings, so it returns null. When I run the application on
the simulator and tap the Get Carrier Name button, I receive the results shown in Figure 13.12.

FFiigguurree 1133..1122 Results of getCarrierName on an iOS Simulator

Now, I could code the plugin’s methods so they call the onFailure callback function and pass back an
error message indicating that the carrier information was not available. Perhaps that is an enhancement
you can make to the plugin.

ptg11524036

228 Chapter 13: Creating Cordova Plugins

DDeeppllooyyiinngg PPlluuggiinnss
When it comes to deploying a custom plugin, you have several options. You can zip up the plugin
folder, the folder containing your plugin’s plugin.xml file plus all of the source files for the plugin, and
distribute the .zip file to your users. All the user would have to do is extract the files into a folder and
point to that folder when doing a cordova plugin add from a terminal window.

You can also distribute your plugins through GitHub (www.github.com). You can create your own
GitHub account and post your plugin files there. Then, once the files are up there, you can start socializing
your plugin so other developers can learn about it. The PhoneGap team has created a repository located at
https://github.com/phonegap/phonegap-plugins where you can publish information about your plugins.
The team is also working on a plugin discovery system that would allow developers to more easily locate
plugins to use in their applications.

WWrraapp--UUpp
In this chapter, I’ve shown you how to create Cordova plugins. With the information provided in this
chapter, the Cordova documentation, and the core Cordova plugins as examples to study, you have the
information you need to create your own custom plugins.

I only skimmed the surface of this topic; there is a lot more you can do with plugins. The plugin.xml
supports many more options than what I covered here. For example, if your plugin depends on another
plugin, you can configure the plugin.xml to have plugman or the Cordova CLI install the required plugins
for you. You can also link in precompiled or custom libraries into your plugin. So, if your plugin
leverages some proprietary code, you can still include it, but protect it from prying eyes.

http://www.github.com
https://github.com/phonegap/phonegap-plugins

ptg11524036

Chapter 14: Building a Cordova Application 229

14
Building a Cordova

Application

At this point in the book, I’ve shown you a lot about Cordova programming, but I’ve not done a
complete walkthrough of the process using a real application as an example. So, in this chapter, I take
a complete application and show you the steps needed to create and test the application from start to
finish.

AAbboouutt tthhee AApppplliiccaattiioonn
In PhoneGap Essentials, I created complete sample applications for each PhoneGap API; it was a
great way to highlight all of the options for each API. For this chapter, I took one of the applications
from that book and updated it for Cordova 3.0. I decided to use one of the applications I created to
demonstrate how to implement a Compass watch.

The application displays a simple screen showing an image representing a compass dial. As the user
rotates the device along a horizontal axis, the compass image rotates, and the heading is displayed on
the page below the compass image. The original application’s screen is shown in Figure 14.1.

FFiigguurree 1144..11 Sample Compass Application

ptg11524036

230 Chapter 14: Building a Cordova Application

For this chapter, I thought I’d enhance the application’s UI using jQuery Mobile plus make use of the
Cordova merges folder capability to use a different compass graphic for Android and iOS.

CCrreeaattiinngg tthhee AApppplliiccaattiioonn
To create the application, I opened a terminal window and navigated to my system’s dev folder. Next,
I issued the following commands to create the Cordova project:
cordova create compass

cd compass

cordova platform add android ios

At this point, what I have is a new Cordova project with support for the Android and iOS mobile device
platforms. I know that the application is going to need to leverage at least one Cordova core plugin,
perhaps more, so to make it easy to remember the correct syntax for adding the core plugins, I opened a
browser window and navigated to the Cordova command-line interface (CLI) guide at
http://tinyurl.com/ob9hanq. If you go to that site and scroll down toward the middle of the page, you
will see a listing containing the full command text for adding each of the Cordova plugins to a project,
as shown in Figure 14.2.

FFiigguurree 1144..22 Cordova Documentation: The Command-Line Interface Guide

http://tinyurl.com/ob9hanq

ptg11524036

Chapter 14: Building a Cordova Application 231

Knowing that I have to debug the application and therefore must write to the console, I copied the
appropriate command from the guide, shown in Figure 14.2, then added the console plugin to the
project using the following command:
cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-plugin-console.git

Since the application will be using the compass, I also added the compass plugin using the following
command:
cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-plugin-device-
orientation.git

Remember that Cordova doesn’t really show you anything as it works unless you turn on the –d flag.
So, the complete terminal window output looks like the following:
Last login: Mon Sep 9 08:27:24 on ttys000

jmw-mini:~ jwargo$ cordova create compass

jmw-mini:~ jwargo$ cd compass

jmw-mini:compass jwargo$ cordova platform add android ios

jmw-mini:compass jwargo$ cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-
plugin-device-orientation.git

jmw-mini:compass jwargo$ cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-
plugin-console.git

jmw-mini:compass jwargo$

Next, I copied the index.html from the sample project I’m using and placed it in the project’s www
folder. For your applications, you’ll simply open your text or HTML editor of choice and start coding.

The original version of this application had a very simple look to it, which was represented by the
following HTML code:
<body onload="onBodyLoad()">

 <h1>Example 13-2</h1>

 <p id="headingInfo"></p>

</body>

I wanted to spruce up this version of the application a little bit, so I decided to use jQuery Mobile to
create a more mobile phone like look for the app. The first thing I did was download jQuery
(www.jquery.com) and jQuery Mobile (www.jquerymobile.com) from their respective websites. I
copied the files over to the Cordova project’s www folder, then added the following lines to the head
portion of the application’s index.html:
<link rel="stylesheet" href="jquery.mobile-1.3.2.min.css" />

<script type="text/javascript" charset="utf-8"

 src="jquery-2.0.3.min.js"></script>

<script type="text/javascript" charset="utf-8"

 src="jquery.mobile-1.3.2.min.js"></script>

The application’s ability to rotate the image is provided by a free plugin to jQuery called jQuery Rotate;
you can find information about the plugin at http://code.google.com/p/jqueryrotate. To add the plugin, I
downloaded the plugin’s JavaScript file to the Cordova project’s www folder, then added the following
line immediately after the other script tags in the application’s index.html file:
<script type="text/javascript" charset="utf-8"

 src="jQueryRotateCompressed.js"></script>

http://www.jquery.com
http://www.jquerymobile.com
http://code.google.com/p/jqueryrotate

ptg11524036

232 Chapter 14: Building a Cordova Application

With the jQuery files in place, I updated the body section of the index.html to the following:
<body onload="onBodyLoad()">

 <div data-role="page">

 <div data-role="header">

 <h1>Compass</h1>

 </div>

 <div data-role="content">

 <div style="text-align : center;">

 <p id="headingInfo">

 Heading: 0 Degrees

 </p>

 </div>

 </div>

 <div data-role="footer" data-position="fixed">

 <h3>cordovaprogramming.com</h3>

 </div>

 </div>

</body>

jQuery Mobile uses data-role attributes within elements to style those particular elements with the
appropriate look. So, in the preceding example, I created a header div on the page and assigned it a
data-role of header and a footer div on the page and assigned it a data-role of footer. The
data-position="fixed" forces the footer to remain on the bottom of the page.

Next, I moved the content for the page into a div assigned to a data-role of content. In order to have
the compass graphic and heading text centered on the page, I added a new div and styled it with a
style="text-align : center;", as shown in the code.

 NNoottee
You may be asking why I didn’t simply add the style the attribute to the div with the data-role
of content. I probably could have done so, but I was trying to stay focused on the educational
aspect of this sample and didn’t want to clutter things up too much.

With that code in place, the look of the application is changed dramatically, as shown in Figure 14.3.

ptg11524036

Chapter 14: Building a Cordova Application 233

FFiigguurree 1144..33 The Compass Application with a jQuery Mobile Look

Now that I have the application’s user interface updated, it’s time to start looking at the application’s
JavaScript code. In the application’s index.html is a script tag that defines a few functions that are
used by the application.

The first thing you will see within the script tag is the assignment of a function to the
window.onerror event. Since I know that my code isn’t going to work right away (code never works
the first time, does it?), and since a Cordova application fails silently most of the time, I added this
assignment and the associated function to allow me to see information about every error that occurs
when the application runs. The function, shown next, essentially receives an error, the name of the
application file URL that encountered the error, and the line number that caused the error; then it
generates the appropriate error message and writes it to the log and displays it in a dialog.
//Fires whenever there is an error

window.onerror = function(msg, url, line) {
 var resStr;
 var index = url.lastIndexOf('/');
 if (index > -1) {
 url = url.substring(index + 1);
 }
 resStr = 'ERROR in ' + url + ' on line ' + line + ': ' + msg;
 console.error(appName + resStr);
 alert(resStr);
 return false;
};

Next comes the onDeviceReady function I’ve shown throughout the book. It is set up as an event
listener for the Cordova deviceready event and fires after the Cordova container has finished

ptg11524036

234 Chapter 14: Building a Cordova Application

initialization. In this function, I know that the Cordova container is ready, so I can do almost anything I
want to do. Here’s the function:
function onDeviceReady() {

 console.log('onDeviceReady fired.');

 hi = document.getElementById('headingInfo');

 //Setup the watch

 //Read the compass every second (1000 milliseconds)

 var watchOptions = {

 frequency : 1000

 };

 console.log(appName + 'Creating watch: ' +

 JSON.stringify(watchOptions));

 watchID = navigator.compass.watchHeading(onSuccess, onError,

 watchOptions);

}

The first thing the function does is define a hi variable, which points to the page element that is
assigned an ID of headingInfo. The variable is used later to replace the content within that element to
show the device’s current heading.

Next, the function defines a watchOptions variable, which is used to help set up a heading watch that
will cause the application to update the heading periodically. The watchOptions object can have either
a frequency property or a filter property assigned to it. Right now, the application is set up with the
following:
var watchOptions = {

 frequency : 1000

};

When used with a heading watch, it will cause the Compass API to report the device’s heading every
1000 milliseconds (every 1 second). The filter property is used to define the amount of heading
change (in degrees) before the Compass API will report a heading. In the following example, the
filter property instructs the Compass API to deliver a heading every time the heading changes more
than 1 degree:
var watchOptions = {

 filter : 1

};

You can specify both properties as shown here, but as soon as you specify a filter, the frequency
property is ignored by the Compass API:
var watchOptions = {

 frequency : 1000,

 filter : 1

};

With watchOptions defined, the function makes a call to watchHeading to set up the heading watch:
watchID = navigator.compass.watchHeading(onSuccess, onError,

 watchOptions);

ptg11524036

Chapter 14: Building a Cordova Application 235

As with all of the other Cordova APIs you’ve learned so far, the onSuccess function is executed
whenever the Compass API sends a heading value, and the onError function is executed whenever an
error is encountered by the Compass API.

Whenever the onSuccess function is executed, the Compass API passes it a heading object, which
contains properties indicating the device’s current heading, as shown here:
{

 "magneticHeading":0,

 "trueHeading":0,

 "headingAccuracy":0,

 "timestamp":1378738354661

}

The onSuccess function uses the magneticHeading property of the heading object to determine the
current heading, then uses that value to rotate the compass graphic by that number of degrees, as shown
in the following function:
function onSuccess(heading) {

 console.log(appName + 'Received Heading');

 console.log(appName + JSON.stringify(heading));

 var hv = Math.round(heading.magneticHeading);

 console.log(appName + 'Rotating to ' + hv + ' degrees');

 $("#compass").rotate(-hv);

 hi.innerHTML = 'Heading: ' + hv + ' Degrees';

}

Notice that the compass graphic is being rotated in the opposite direction of the device’s current
heading. That is because, since the device is rotated, the compass graphic has to rotate in the opposite
direction so that the North point on the compass graphic always points to Magnetic North.

Lastly, the application’s onError function is executed whenever the watch encounters an error. The
function uses an error object passed to the function to identify the cause of the error and display an
appropriate error message for the user. Notice that the onError function also cancels the watch, as it
makes little sense to continue watching the heading when the application is not able to measure the
heading.
function onError(err) {

 console.error(appName + 'Heading Error');

 console.error(appName + 'Error: ' + JSON.stringify(err));

 //Remove the watch since we're having a problem

 navigator.compass.clearWatch(watchID);

 //Clear the heading value from the page

 hi.innerHTML = 'Heading: None';

 //Then tell the user what happened.

 if (err.code == CompassError.COMPASS_NOT_SUPPORTED) {

 alert('Compass not supported.');

 } else if (compassError.code ==

 CompassError.COMPASS_INTERNAL_ERR) {

 alert('Compass Internal Error');

 } else {

 alert('Unknown heading error!');

ptg11524036

236 Chapter 14: Building a Cordova Application

 }

}

Notice that I’m writing to the console much more than I have for most of the other applications I’ve
highlighted in the book. I’m doing this in order to show you a more real-life example of how I build
Cordova applications. I use the console a lot to write out all of the application’s objects whenever I
encounter them; this allows me to better understand what I’m getting from the application so I can more
easily troubleshoot problems when they occur.

In my application, I defined an appName object:
var appName = "Compass - ";

Whenever the application writes to the console, I append the value for appName to the beginning of
every entry:
console.error(appName + 'some message');

When debugging applications for Android, you can use the monitor application to view the log entries
in real time. As shown in Figure 14.4, you can then filter on the value passed in appName to see only
console messages for the application.

FFiigguurree 1144..44 Android Developer Tools LogCat Window

As soon as the application is tested and found to be acceptable, I remove or comment out many of the
places where the application writes to the console.

Listing 14.1 shows the complete contents of the application’s index.html.

Listing 14.1: index.html

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <meta name="viewport" id="viewport"
 content="width=device-width, height=device-height,
 initial-scale=1.0, maximum-scale=1.0, user-scalable=no;" />
 <title>Compass</title>

ptg11524036

Chapter 14: Building a Cordova Application 237

 <link rel="stylesheet" href="jquery.mobile-1.3.2.min.css" />
 <script type="text/javascript" charset="utf-8"
 src="jquery-2.0.3.min.js"></script>
 <script type="text/javascript" charset="utf-8"
 src="jquery.mobile-1.3.2.min.js"></script>
 <script type="text/javascript" charset="utf-8"
 src="jQueryRotateCompressed.js"></script>
 <script type="text/javascript" charset="utf-8"
 src="cordova.js"></script>
 <script type="text/javascript" charset="utf-8">
 //Some variables used by the application
 var hi, watchID;
 var appName = "Compass - ";

 //Fires whenever there is an error - helps with
 //toubleshooting.
 window.onerror = function(msg, url, line) {
 var resStr;
 var idx = url.lastIndexOf('/');
 if (idx > -1) {
 url = url.substring(idx + 1);
 }
 resStr = 'ERROR in ' + url + ' on line ' + line + ': ' +
 msg;
 console.error(resStr);
 alert(resStr);
 return false;
 };

 function onBodyLoad() {
 document.addEventListener('deviceready', onDeviceReady,
 false);
 }

 function onDeviceReady() {
 console.log('onDeviceReady fired.');
 hi = document.getElementById('headingInfo');
 //Setup the watch
 //Read the compass every second (1000 milliseconds)
 var watchOptions = {
 frequency : 1000,
 filter : 1
 };
 console.log(appName + 'Creating watch: ' +
 JSON.stringify(watchOptions));
 watchID = navigator.compass.watchHeading(onSuccess,
 onError, watchOptions);
 }

 function onSuccess(heading) {
 console.log(appName + 'Received Heading');
 console.log(appName + JSON.stringify(heading));

ptg11524036

238 Chapter 14: Building a Cordova Application

 var hv = Math.round(heading.magneticHeading);
 console.log(appName + 'Rotating to ' + hv + ' degrees');
 $("#compass").rotate(-hv);
 hi.innerHTML = 'Heading: ' + hv + ' Degrees';
 }

 function onError(err) {
 console.error(appName + 'Heading Error');
 console.error(appName + 'Error: ' +
 JSON.stringify(err));
 //Remove the watch since we're having a problem
 navigator.compass.clearWatch(watchID);
 //Clear the heading value from the page
 hi.innerHTML = 'Heading: None';
 //Then tell the user what happened.
 if (err.code == CompassError.COMPASS_NOT_SUPPORTED) {
 alert('Compass not supported.');
 } else if (compassError.code ==
 CompassError.COMPASS_INTERNAL_ERR) {
 alert('Compass Internal Error');
 } else {
 alert('Unknown heading error!');
 }
 }
 </script>
 </head>
 <body onload="onBodyLoad()">
 <div data-role="page">
 <div data-role="header">
 <h1>Compass</h1>
 </div>
 <div data-role="content">
 <div style="text-align : center;">

 <p id="headingInfo">
 Heading: 0 Degrees
 </p>
 </div>
 </div>
 <div data-role="footer" data-position="fixed">
 <h3>cordovaprogramming.com</h3>
 </div>
 </div>
 </body>
</html>

ptg11524036

Chapter 14: Building a Cordova Application 239

UUssiinngg MMeerrggeess
One of the things I haven’t done yet is show you how to use the merges capability of the Cordova
CLI. In Chapter 6, “The Mechanics of Cordova Development,” I explained how it works, but here I’ll
show you an example.

The compass graphic in my original application was pretty lame; I created it in Microsoft Visio and
simply wanted a circle with an arrow pointing north. I got what I wanted, but professional grade it
wasn’t. For this upgraded version of the application, I wanted something with more panache and found
a graphic that, while not technically accurate for my compass, implied a compass theme, so I decided to
use it. To leverage the merges aspect of the CLI, I decided to make two versions of the image, one for
Android and the other for iOS, using graphics from the PhoneGap website plunked into the center of
the compass face. You can see the Android version in Figure 14.5 and the iOS version in Figure 14.6.

 FFiigguurree 1144..55 Updated Compass Image for Android

 FFiigguurree 1144..66 Updated Compass Image for iOS

Once I had the different graphics, it was time to use them to create different versions of the application
using the CLI. Notice in the application’s code that the compass image is being pulled from
images/compass.png. To allow me to use the CLI and merges, I had to create an images folder in the
Cordova project’s merges/android folder and merges/ios folder. With those folders in place, all I had to
do was copy the right image files to the right folders, making sure they both have the same file name.
So, assuming my project is in a compass folder, I copied the Android image into
compass/merges/android/images/compass.png and the iOS version into
compass/merges/ios/images/compass.png.

During the build process, for the Android application, the Cordova CLI copies the file located at
compass/merges/android/images/compass.png to
compass/platforms/android/assets/www/images/compass.png. For the iOS application, the CLI copies
the file located at compass/merges/ios/images/compass.png to
compass/platforms/ios/www/images/compass.png.

The result is that I can still maintain one set of code and switch in the right resource files only as
needed, depending on the platform. You can see the results of this process in the next section. The use
case I used here isn’t perfect, but hopefully you can see that, if you’ve themed your application
differently for different platforms, this capability provides you with the means to easily manage the
different resources for each platform.

ptg11524036

240 Chapter 14: Building a Cordova Application

TTeessttiinngg tthhee AApppplliiccaattiioonn
To test the application, I can’t use the device simulators because compass emulation isn’t a standard
feature of most simulators. When you try to run the application on an iOS simulator, for example, you
will see an error message similar to the one shown in Figure 14.7.

FFiigguurree 1144..77 Compass Application Running on an iOS Simulator

Instead, I have to test on real devices. To test on an Android device, I connected my Motorola Atrix 2 to
the computer using a USB cable, then issued the following command in a terminal window pointing to
the Cordova project folder:
cordova run android

ptg11524036

Chapter 14: Building a Cordova Application 241

The Cordova CLI will do its stuff, and 30 seconds to a minute later, the application will launch on the
device. Figure 14.8 shows the application running; I’ve cropped the image to cut away the blank
portion of the application screen.

FFiigguurree 1144..88 Compass Application Running on an Android Emulator

You should be able to run the application on an iOS device using the CLI, but for some reason, even
though it is supposed to work, it’s not currently supported, as shown in Figure 14.9. For iOS, emulate
currently works; run does not.

FFiigguurree 1144..99 Cordova CLI Error Running Compass on an iOS Device

ptg11524036

242 Chapter 14: Building a Cordova Application

To run the application on an iOS device, you must first connect the device to the computer system, then
open Xcode and open the Cordova project. With the project loaded, you can run the application as you
would run any other application. When the application loads, it will display a screen similar to the one
shown in Figure 14.10; I’ve cropped the image to cut away the blank portion of the application screen.

FFiigguurree 1144..1100 Compass Application Running on an iOS Device

Notice that the compass graphics are different between the two devices, although I didn’t code anything
to make this happen; this is only one of the cool ways the Cordova CLI enhances cross-platform
development.

WWrraapp--UUpp
This chapter wraps up the Cordova programming story by demonstrating how to do cross-platform
Cordova development from start to finish. In this chapter, you saw how to create a single application
that uses different resources depending on the mobile platform running the application. I also showed
you a complete Cordova web application and described each component. You’ve also seen more
details about how to use the Compass API in your applications.

ptg11524036

Chapter 15: Extending Cordova to the Enterprise 243

15
Extending Cordova

to the Enterprise

As demonstrated throughout this book, Apache Cordova is a great tool for allowing developers to
build mobile applications using web technologies. The Cordova team provides the native container
that runs the web applications, a suite of JavaScript APIs developers can use to allow the application
to interface with native APIs, and tooling that allows developers to manage Cordova applications and
Cordova application content.

Cordova doesn’t offer any fancy UI controls, and it implements mostly only core APIs, which will
someday become web browser standards. The Cordova team focuses on their specific goals and leaves
everything else to third-party developers.

If you think about mobile developers, there are different types of developers and developer
organizations. There are independent developers, college students, and hobbyists who create apps and
games and sell them to consumers. There are professional developers, small, medium, and large
organizations focusing on producing productivity applications and games for consumers. There are also
many companies focused on building mobile applications for businesses, delivering prebuilt
applications that address the needs of many companies, such as customer relationship management
(CRM), field service, expense management, time tracking, and more. There are even companies that
produce mobile application development platforms, which allow enterprises (a fancy name for business
customers) to more easily build mobile applications for their employees, their business partners and
even their customers.

In this short chapter, I cover the world of enterprise mobile development, describe the capabilities of
mobile application development platforms, and introduce you to the product I am involved with in my
day job as a product manager at SAP (www.sap.com). This chapter is in here because most platforms
offer some sort of hybrid application approach and several of them use Apache Cordova.

MMoobbiillee AApppplliiccaattiioonn DDeevveellooppmmeenntt PPllaattffoorrmmss
Developers building mobile applications for consumers have different needs and requirements than
developers building applications for the enterprise. To help these developers, many companies started
producing mobile platforms, a suite of tools designed to simplify one or more aspects of mobile
development.

For a long time, one of the world’s leading analysts categorized mobile development platforms on the
basis of the target audience for the applications built using the platform. Platforms for building
consumer applications were called mobile consumer application platforms (MCAPs), and platforms for

http://www.sap.com

ptg11524036

244 Chapter 15: Extending Cordova to the Enterprise

building mobile applications for the enterprise were called mobile enterprise application platforms
(MEAPs—pronounced meeps). As the different platforms added features that addressed the needs of
both platform types, the industry consolidated the two platform types into a single category called
mobile application development platforms (MADPs).

A platform typically includes a server component plus some development tools and a management
console. The server component of the platform acts as middleware and manages requests coming in
from mobile devices and acts on them, either authenticating the user against a company directory or
brokering requests for back-end data (data retrieved from internal or external application servers or
databases). Figure 15.1 shows the architecture at a high level.

Mobile Devices

Firewall

Database
Application

Server
Database

Server

Directory
Server

Middleware
Server

FFiigguurree 1155..11 MADP Architecture

A platform’s management console is used to administer the platform, manage users and applications,
and define the connections to back-end data sources.

A platform’s development tools are typically designed to simplify a mobile application’s connection to
one or more back-end data sources, exposing data from one or more data sources to an application. The
tools also help mitigate some of the problems associated with cross-platform mobile development,
either enabling a developer to write one application that runs on multiple device platforms or providing
a single API that can be consumed across multiple device platforms.

SSAAPP MMoobbiillee PPllaattffoorrmm
The SAP Mobile Platform (SMP) is an industry leading MADP as recognized by Gartner
(www.gartner.com) several years in a row. If your company has a subscription to Garter reports, you
can read the latest report at www.gartner.com/id=2570424. The platform offers capabilities for both
consumer and enterprise developers and is the consolidation of three leading platforms acquired by
SAP: the Sybase Unwired Platform, the Sybase Mobiliser platform, and the Syclo Agentry Platform.

SMP consists of multiple components:

▪ The SMP server, which provides a suite of services mobile applications can consume such as
authentication, provisioning, security, data access, and more

http://www.gartner.com
http://www.gartner.com/id=2570424

ptg11524036

Chapter 15: Extending Cordova to the Enterprise 245

▪ Multiple mobile application types specifically designed to help address cross-platform
development issues

Figure 15.2 illustrates the platform’s component architecture.

FFiigguurree 1155..22 SMP Component Architecture

The server’s Data Access Services provide connectivity to both SAP and non-SAP data sources,
connecting to those back-end data sources in different ways, as driven by the data source. The data is
exposed to mobile devices in OData format (www.odata.org), a standard data format created by
Microsoft, published as a standard, and used by many software products. This approach dramatically
simplifies how a mobile application accesses data because all data sources are exposed as OData, and
therefore the developer only has to learn one way of accessing it.

The SMP server provides many more services than what are shown in the figure. There are services for
managing the authentication of a user against a corporate directory (using Microsoft Active Directory
or LDAP, for example) as well as services for registering applications, provisioning content and
configuration settings, and more.

SMP supports multiple client types, as shown in the figure. Native applications access SMP services
using a common API, which is available across multiple device platforms. The server also exposes
many of its services as RESTful services, so if you are developing an application that isn’t directly
supported, there is still an interface your application can use to interact with the server.

For hybrid applications, SMP provides a suite of plugins called Kapsel, which is described in the
following section.

For metadata-driven applications, SMP offers the Agentry application player. Developers build
applications using the Agentry tools, and the application consists of a meta-application, the description
of an application’s screens, forms, flows, and more, abstracted into what is essentially XML. When the
metadata application is deployed into the Agentry Player application, the application’s description is
rendered in real-time on the device. This approach provides the ability to build a single version of the
application that can be run on multiple mobile device platforms.

http://www.odata.org

ptg11524036

246 Chapter 15: Extending Cordova to the Enterprise

KKaappsseell
As mentioned earlier, SAP has an industry-leading product in the MADP category called the SAP
Mobile Platform. As shown in the previous section, SMP supports hybrid application development
through Kapsel, SMP’s set of SAP plugins for Cordova. Kapsel (or a variant of it) means “container”
in several languages. SAP created Kapsel in order to make it easier for a developer to build Cordova
applications for SMP. I am currently the product manager for Kapsel.

Kapsel applications are created using the Cordova CLI. You simply create a Cordova application using
the procedures highlighted in this book, then add one or more of the Kapsel plugins. Kapsel supports
Android and iOS today, but support for other mobile device platforms is planned for future releases.

In the following sections, I highlight a few of the features of Kapsel and how they help make a Cordova
application ready for the enterprise. You can read more about Kapsel in my SCN blog at
http://scn.sap.com/blogs/johnwargo.

RReeggiissttrraattiioonn,, AAuutthheennttiiccaattiioonn,, aanndd SSiinnggllee SSiiggnn--oonn
Enterprise application development is sometimes more difficult than consumer application
development because the developer has to deal with security restrictions and back-end systems that
often contain proprietary data that must be kept from prying eyes. One of the most complicated
problems mobile developers face is application security. The process of ensuring that unauthorized
users cannot run the application and that each user of the application is recognized by the server are
core requirements for enterprise applications. Basic authentication in the web browser is fine for
some consumer applications, but more is needed for enterprise applications.

To help developers deal with this problem, SAP has implemented the Kapsel Logon plugin for
Cordova, which allows an application, using essentially a few lines of code, to determine the correct
server settings for the environment, connect to the SMP server and register the client application with
the server, deal with subsequent locking and unlocking of the application, and even share credentials
between multiple applications signed with the same certificate.

Using the Logon plugin, what could be hundreds or potentially thousands of lines of code is abstracted
down into just a few simple method calls, which dramatically simplifies the process. The plugin
consists of both JavaScript and native application code that manage the whole process.

SMP includes a Client Hub application that, when signed with a company signing key, is deployed to
mobile devices and allows Kapsel applications and other applications built with the SMP native
libraries to share credentials and stores password information in a secure data vault on the device. This
approach makes users happy because they don’t have to enter user names and passwords in all of their
applications: they do it once, and the information is shared across applications.

AApppplliiccaattiioonn UUppddaatteess
Hybrid applications are great in that you can build them using web technologies, but while it’s easy to
upgrade a web application by simply posting the updates to a web server, that doesn’t work very well
for Cordova applications. In the traditional Cordova model, when there are updates to the Cordova
application, developers must post the update to the relevant app stores and get their users to complete
the update.

With Kapsel, the initial version of an application is packaged with all of its web application content like
a normal Cordova application. Whenever updates are available for the web application, those updates
can be packaged and deployed to the SMP server for distribution to users.

http://scn.sap.com/blogs/johnwargo

ptg11524036

Chapter 15: Extending Cordova to the Enterprise 247

In this scenario, the developer or an administrator packages the complete, updated web application into
an archive (.zip file) and uploads it to the server. When the server receives the file, it unzips everything,
then compares this version of the application against the previous version and makes a package
containing only the changes from the previous version of the application.

Kapsel includes an AppUpdate plugin, which manages the application update process for the
application automatically. A developer adds the plugin to a Kapsel application, then, when the
application starts and whenever the application resumes from being suspended, the AppUpdate plugin
wakes up and checks with the server to see if there have been any updates to the application. If there is
an update available, the server sends the update package, which contains only the changes to the
application, to the Kapsel application behind the scenes. Once the Kapsel application has downloaded
the entire package, the user is prompted to apply the changes, and the application is restarted once the
update is complete.

As you can see, this is a very important feature that can benefit organizations because it can help deal
with some of the challenges associated with application lifecycle management. Having the ability to
automatically update Cordova applications without requiring an app store update or disturbing the user
helps ensure that your users are always running the latest version of your application.

OOffffll iinnee AAcccceessss aanndd DDaattaa PPrrootteeccttiioonn
With consumer applications, critical data is typically maintained on the server and only accessed
while online. For enterprise applications, users often need to be able to work with the application data
while the device is outside of network coverage or when the user is on a plane and radio is turned off.
Because of this requirement, most MADPs provide some sort of offline access for application data.
Additionally, while the data is on-device, many organizations often have a requirement that the data
be encrypted while in storage.

In Kapsel, SAP has implemented an EncryptedStorage plugin, which adds encryption to the existing
key-value pair local storage option provided by the mobile browser and Cordova. Using Kapsel,
developers can now easily save their application data locally in an encrypted format and protect it from
discovery if a device is lost or stolen.

PPuusshh NNoottiiff iiccaattiioonnss
So often, you download an app for your Android or iOS device and during installation you’re
prompted to allow the application to send push notifications to the device. As cool and interesting as
push is for consumer applications, the ability to push information to a mobile device application was
available on BlackBerry devices long before Android or the iPhone ever existed. The ability to notify
business users that something important is available within a mobile application is a very useful
feature.

With Kapsel, SAP includes a Push plugin, which allows an application to register for push notifications.
Once the device is registered, the SMP server can send push notifications to the application whenever
needed based on the appropriate triggers on the back-end. A corporate sales application can send a
notification to a mobile sales application whenever a new PO arrives, or the app can be alerted when an
order has been shipped. These types of notifications could be sent to an email account, but it’s
sometimes more useful to be able to view these things in the context of the application instead.

ptg11524036

248 Chapter 15: Extending Cordova to the Enterprise

RReemmoottee PPrroobblleemm AAnnaallyyssiiss
Enterprise application users have higher expectations regarding the type of support they expect to
receive for their corporate issued assets such as mobile phones, tablets, and associated mobile
applications. When a mobile application has issues, there could be any number of causes that exist at
any point between the mobile device and the back-end server that houses the data. System
administrators usually have access to information about everything that is going on within their
corporate firewall but don’t have the means to understand much about what is going on with the
mobile device.

Developers can build a logging mechanism that enables a debug mode within the application, causing
the application to collect information about what is happening within it and upload that data to the SMP
server for analysis by administrators or developers. Getting the user to enable the debug mode and
upload the data when ready can be a challenge.

To help developers with this scenario, Kapsel provides a Logger plugin, which a developer can use to
collect information while the application runs and upload the data to the SMP server automatically.
Applications make calls to a simple set of methods and passes in content that needs to be written to the
log. Administrators can even enable logging from the server without involving the application user in
the process.

WWrraapp--UUpp
As you can see, the plugin architecture of Cordova 3 allows organizations to easily extend the
capabilities of the Cordova container to include features needed by organizations building mobile
applications for their employees, business partners, and even customers.

	CONTENTS
	FOREWORD
	PREFACE
	ACKNOWLEDGMENTS
	1. THE WHAT, HOW, WHY, AND MORE OF APACHE CORDOVA
	Introduction to Apache Cordova
	What Is Adobe PhoneGap?
	PhoneGap History
	Cordova Going Forward
	Supported Platforms
	Cordova License
	Working with Cordova
	Designing for the Container
	Coding Cordova Applications
	Building Cordova Applications

	Cordova Plugins
	Putting Cordova to Best Use
	Getting Support
	Resources
	Hybrid Application Frameworks
	Wrap-Up

	2. INSTALLING THE CORDOVA AND PHONEGAP FRAMEWORKS
	Installing Apache Cordova
	Ant-Based Command-Line Interface
	Installing Adobe PhoneGap
	Wrap-Up

	3. INSTALLING THE CORDOVA COMMAND-LINE INTERFACE
	Installing the CLI
	Android Development Tools
	BlackBerry Development Tools
	iOS Development Tools
	Windows Phone Development Tools
	CLI Installation

	Wrap-Up

	4. USING THE CORDOVA COMMAND-LINE INTERFACE
	About the CLI
	Troubleshooting the CLI
	CLI Command Summary
	Using the CLI
	Creating a Cordova Project
	Platform Management
	Plugin Management
	Build Management
	Running Cordova Applications

	Wrap-Up

	5. ANATOMY OF A CORDOVA APPLICATION
	Hello World!
	Cordova Initialization
	Leveraging Cordova APIs
	Enhancing the User Interface of a Cordova Application
	The Generated Web Application Files
	Wrap-Up

	6. THE MECHANICS OF CORDOVA DEVELOPMENT
	Cordova Development Issues
	Dealing with API Inconsistency
	Application Graphics

	Developing Cordova Applications
	Working with a Single Mobile Device Platform
	Working with Multiple Mobile Device Platforms

	Testing Cordova Applications
	Run a Cordova Application on a Device Simulator
	Run a Cordova Application on a Physical Device

	Leveraging Cordova Debugging Capabilities
	Using Alert()
	Writing to the Console

	Debugging and Testing Using External Tools
	Debugging Applications with Weinre
	Testing Applications Using the Ripple Emulator

	Wrap-Up

	7. ANDROID DEVELOPMENT WITH CORDOVA
	Working with the Android Development Tools
	Using the ADT IDE
	Dealing with ADT IDE Memory Problems
	Editing Cordova Application Content Files
	Importing the Cordova Project
	Running Your Cordova Application
	ADT Debugging Tools

	Debugging Outside of the ADT IDE
	Grabbing a Screenshot
	Debugging on a Physical Device
	Wrap-Up

	8. BLACKBERRY 10 DEVELOPMENT WITH CORDOVA
	Configuring Your Environment for BlackBerry Development
	Configuring a BlackBerry Cordova Project
	Defining BlackBerry 10 Targets
	Defining a BlackBerry 10 Simulator Target
	Defining a BlackBerry 10 Device Target

	Debugging on a Device Simulator
	Using the BlackBerry Simulator Controller
	Using the BlackBerry Web Inspector

	Debugging on a Physical Device
	Wrap-Up

	9. IOS DEVELOPMENT WITH CORDOVA
	Working with Xcode
	Debugging iOS Applications
	Debugging on a Physical Device
	Using the Safari Web Inspector
	Wrap-Up

	10. WINDOWS PHONE 8 DEVELOPMENT WITH CORDOVA
	Getting Started with Windows Phone Development
	Configuring a Windows 8 Device for Application Testing
	Running a Cordova Application Using Visual Studio
	Wrap-Up

	11. USING PHONEGAP BUILD
	What Is PhoneGap Build?
	Quick Prototyping
	Collaboration
	Content Refresh through Hydration

	Using PhoneGap Build
	A Quick Example
	Deploying PhoneGap Build Applications
	Configuring a PhoneGap Build Application

	Wrap-Up

	12. WORKING WITH THE CORDOVA APIS
	The Cordova Core APIs
	Working with the API Cordova Documentation
	Setting Application Permissions
	Cordova Objects
	Connection Type
	Device

	Alerting the User
	Hardware Notifications
	Visual Notifications

	Cordova Events
	Hardware APIs
	Accelerometer
	Compass
	Geolocation
	Camera
	Capturing Media Files

	Globalization
	Working with the Contacts Application
	Playing/Recording Media Files
	InAppBrowser
	Loading Content
	Browser Window Events
	Execute Scripts
	Insert CSS

	Splash Screen
	Wrap-Up

	13. CREATING CORDOVA PLUGINS
	Anatomy of a Cordova Plugin
	Creating a Simple Plugin
	Creating a Native Plugin
	Creating the Android Plugin
	Creating the iOS Plugin

	Deploying Plugins
	Wrap-Up

	14. BUILDING A CORDOVA APPLICATION
	About the Application
	Creating the Application
	Using Merges
	Testing the Application
	Wrap-Up

	15. EXTENDING CORDOVA TO THE ENTERPRISE
	Mobile Application Development Platforms
	SAP Mobile Platform
	Kapsel
	Registration, Authentication, and Single Sign-on
	Application Updates
	Offline Access and Data Protection
	Push Notifications
	Remote Problem Analysis

	Wrap-Up

