I willName of Title: 	Testing with PHPUnit
VidName: The Benefits of Using Test Driven him and him and him and he Development in your projects.
Estimated Length:	1 minute
Author Name:	Kristian Secor

Chapter/Video:	02_05

Recording Location:





Video Objective: Explain when and where to test and the illustrate the difference between good and bad tests


Introductory Statement: Many new developers believe that the purpose of unit testing is to find bugs in the code. Well, it certainly can perform that function during a re-factoring process as mentioned in the last chapter. However, bug finding is usually more efficient when performing manual tasks to test an application’s performance. In the software world, this can be referred to as Automated Integration Testing or Black Box testing. When Unit Testing has been implemented at the beginning of a project’s development, these phases would take place after unit tested is completed. 
The purpose of Unit Testing is very different, taking a big picture approach and focusing on analysis of blocks of code and how they work together in the application. 
If our project were a clock, Unit testing looks at the inner workings and functionalities of the clock (hopefully while the clock was being built), where the aforementioned methods focus on the outside of the clock. This understanding is vital if we are to write good, useful tests.
In a nutshell, Unit testing is about the process of design and creation of blocks of code so that their behavior is specified, documented and analyzed through the unit tests. 

[bookmark: _GoBack]During code creation, unit tests ask does my work work the way I expected? How does it work with the other preexisting code? Better yet, well written tests created during development can be run ad infinitum to eternity every time a piece of code is altered or added ensuring that the alteration does not affect current functionalities. 

Keep in mind if current code changes even if it has been refactored, so must its Unit Test to account for these changes. For that reason, we try to write tests that focus on as specific a functionality as possible. Tests should examine only one behavior.

When we execute our tests, you will see a green result for correct test and a red result for an error. Green does not mean you’ve written a good test and red does not mean it is a bad test. This is about improving code quality and maintainability.


