Name of Title: 	Testing with PHPUnit
VidName: Assertions and Public Methods Estimated Length:	10 minutes
Author Name:	Kristian Secor

Chapter/Video:	04_08

Recording Location:

Video Objective: Introduce Assertions and public methods

Before we begin, it’s important to reiterate why we are here. To ensure that we are creating quality code for a project, it is important that the code is testable. In this first example of unit testing, we will cover assertions when we “assert” that the results produced from our code are what we expect. In testing, it is best practice to make our assertions as specific as possible, ensure the results of our code’s functionality are “specifically” what we expect.

Our first test will do nothing but generate a green success message:

<?php

namespace stats\Test;

class FirstTest extends \PHPUnit_Framework_TestCase
{
	public function testUselessness()
	{
		$this->assertTrue(true);
	}
 //
}

[image:]

Although completely useless, our testMethod matched exactly what we expected. We asserted true and indeed, the outcome was true.

Don’t get too excited about the green, it in no ways means our project has quality code if we do not write our assertions intelligently.

Now lets add a class to test. The project we’ve inherited will be a baseball stats web application, so let’s create a class that manipulates baseball statistics.

Will start with a very very simple class that has a public function names Calc average
it takes two arguments at-bats and hits inside this class, you will see in if else statement it will return the average
At this stage in the game we can only test on public methods
the method is pretty straightforward not the most brilliant piece of code in the world, method but one that's testable.
Now it's going toward test folder and open up our first baseball test. At the top we see our namespace and use statement to import the class an extension of the PHP unit framework test case

 In this stuation I would like to run and see expected results based off of plug-in data and see if it mimics our method in the class. remember unit testing forces us to analyze code. Initially one would think that an average would be the results of the number of hits divided by the number of at-bats.

 However when we make an assertion on line 21 assert equals of results with the format expected results will find that there's a mistake, a failure. this forces us to look back at the class and figure out that hey this is been formatted to three decimal places.

At that point we can make a new variable that formats the results. when we run our test will see that assert equals is not correct. What else can we run? we can always test to see if it's the same data type in there are two ways to do that. We can use asserts internal type integer or we can use the PHP's is in its around the variable that returns.

Now let's look at some other tests that we can write.
we can examine the functionality when the values are passed as strings.
we could test punctuation and basically try to break it. Just remember our goal
is to understand the method that we are testing and determine
if the method is as currently written is maintainable

Intro: http://www.sitepoint.com/getting-started-with-phpunit/

http://www.sitepoint.com/tutorial-introduction-to-unit-testing-in-php-with-phpunit/

Error condition testing
http://www.sitepoint.com/testing-error-conditions-with-phpunit/

[bookmark: _GoBack]
image1.png
Configuration read from /Applications/MAMP/htdocs/phpunit.xml

Tine: 470 ms, Memory: 3.50Mb

Kristian-Secors-MacBook: htdocs adnins ||

