Name of Title: 	Testing with PHPUnit
VidName: Annotations and Data Providers
Estimated Length:	10 minute
Author Name:	Kristian Secor

Chapter/Video:	04_09

Recording Location:

Video Objective: Setting up our server environment.

Introductory Statement: So let’s say we’re good little programmers and want follow best practices. Our code can get rather bulky as shown by
Note
A doc comment in PHP must start with /** and end with */. Annotations in any other style of comment will be ignored.
@author
The @author annotation is an alias for the @group annotation (see the section called “@group”) and allows to filter tests based on their authors.

@after
The @after annotation can be used to specify methods that should be called after each test method in a test case class.

class MyTest extends PHPUnit_Framework_TestCase
{
 /**
 * @after
 */
 public function tearDownSomeFixtures()
 {
 // ...
 }

 /**
 * @after
 */
 public function tearDownSomeOtherFixtures()
 {
 // ...
 }
}
@afterClass
The @afterClass annotation can be used to specify static methods that should be called after all test methods in a test class have been run to clean up shared fixtures.

class MyTest extends PHPUnit_Framework_TestCase
{
 /**
 * @afterClass
 */
 public static function tearDownSomeSharedFixtures()
 {
 // ...
 }

 /**
 * @afterClass
 */
 public static function tearDownSomeOtherSharedFixtures()
 {
 // ...
 }
}
@backupGlobals
The backup and restore operations for global variables can be completely disabled for all tests of a test case class like this

/**
 * @backupGlobals disabled
 */
class MyTest extends PHPUnit_Framework_TestCase
{
 // ...
}
The @backupGlobals annotation can also be used on the test method level. This allows for a fine-grained configuration of the backup and restore operations:

/**
 * @backupGlobals disabled
 */
class MyTest extends PHPUnit_Framework_TestCase
{
 /**
 * @backupGlobals enabled
 */
 public function testThatInteractsWithGlobalVariables()
 {
 // ...
 }
}
@backupStaticAttributes
The backup and restore operations for static attributes of classes can be completely disabled for all tests of a test case class like this

/**
 * @backupStaticAttributes disabled
 */
class MyTest extends PHPUnit_Framework_TestCase
{
 // ...
}
The @backupStaticAttributes annotation can also be used on the test method level. This allows for a fine-grained configuration of the backup and restore operations:

/**
 * @backupStaticAttributes disabled
 */
class MyTest extends PHPUnit_Framework_TestCase
{
 /**
 * @backupStaticAttributes enabled
 */
 public function testThatInteractsWithStaticAttributes()
 {
 // ...
 }
}
@before
The @before annotation can be used to specify methods that should be called before each test method in a test case class.

class MyTest extends PHPUnit_Framework_TestCase
{
 /**
 * @before
 */
 public function setupSomeFixtures()
 {
 // ...
 }

 /**
 * @before
 */
 public function setupSomeOtherFixtures()
 {
 // ...
 }
}
@beforeClass
The @beforeClass annotation can be used to specify static methods that should be called before any test methods in a test class are run to set up shared fixtures.

class MyTest extends PHPUnit_Framework_TestCase
{
 /**
 * @beforeClass
 */
 public static function setUpSomeSharedFixtures()
 {
 // ...
 }

 /**
 * @beforeClass
 */
 public static function setUpSomeOtherSharedFixtures()
 {
 // ...
 }
}
@codeCoverageIgnore*
The @codeCoverageIgnore, @codeCoverageIgnoreStart and @codeCoverageIgnoreEnd annotations can be used to exclude lines of code from the coverage analysis.

For usage see the section called “Ignoring Code Blocks”.

@covers
The @covers annotation can be used in the test code to specify which method(s) a test method wants to test:

/**
 * @covers BankAccount::getBalance
 */
public function testBalanceIsInitiallyZero()
{
 $this->assertEquals(0, $this->ba->getBalance());
}
If provided, only the code coverage information for the specified method(s) will be considered.

Table B.1 shows the syntax of the @covers annotation.

Table B.1. Annotations for specifying which methods are covered by a test

Annotation	Description
@covers ClassName::methodName	Specifies that the annotated test method covers the specified method.
@covers ClassName	Specifies that the annotated test method covers all methods of a given class.
@covers ClassName<extended>	Specifies that the annotated test method covers all methods of a given class and its parent class(es) and interface(s).
@covers ClassName::<public>	Specifies that the annotated test method covers all public methods of a given class.
@covers ClassName::<protected>	Specifies that the annotated test method covers all protected methods of a given class.
@covers ClassName::<private>	Specifies that the annotated test method covers all private methods of a given class.
@covers ClassName::<!public>	Specifies that the annotated test method covers all methods of a given class that are not public.
@covers ClassName::<!protected>	Specifies that the annotated test method covers all methods of a given class that are not protected.
@covers ClassName::<!private>	Specifies that the annotated test method covers all methods of a given class that are not private.
@covers ::functionName	Specifies that the annotated test method covers the specified global function.

@coversDefaultClass
The @coversDefaultClass annotation can be used to specify a default namespace or class name. That way long names don't need to be repeated for every @covers annotation. See Example B.1.

Example B.1: Using @coversDefaultClass to shorten annotations

<?php
/**
 * @coversDefaultClass \Foo\CoveredClass
 */
class CoversDefaultClassTest extends PHPUnit_Framework_TestCase
{
 /**
 * @covers ::publicMethod
 */
 public function testSomething()
 {
 $o = new Foo\CoveredClass;
 $o->publicMethod();
 }
}
?>

@coversNothing
The @coversNothing annotation can be used in the test code to specify that no code coverage information will be recorded for the annotated test case.

This can be used for integration testing. See Example 11.3 for an example.

The annotation can be used on the class and the method level and will override any @covers tags.

@dataProvider
A test method can accept arbitrary arguments. These arguments are to be provided by a data provider method (provider() in Example 2.5). The data provider method to be used is specified using the @dataProvider annotation.

See the section called “Data Providers” for more details.

@depends
PHPUnit supports the declaration of explicit dependencies between test methods. Such dependencies do not define the order in which the test methods are to be executed but they allow the returning of an instance of the test fixture by a producer and passing it to the dependent consumers. Example 2.2 shows how to use the @depends annotation to express dependencies between test methods.

See the section called “Test Dependencies” for more details.

@expectedException
Example 2.9 shows how to use the @expectedException annotation to test whether an exception is thrown inside the tested code.

See the section called “Testing Exceptions” for more details.

@expectedExceptionCode
The @expectedExceptionCode annotation, in conjunction with the @expectedException allows making assertions on the error code of a thrown exception thus being able to narrow down a specific exception.

class MyTest extends PHPUnit_Framework_TestCase
{
 /**
 * @expectedException MyException
 * @expectedExceptionCode 20
 */
 public function testExceptionHasErrorcode20()
 {
 throw new MyException('Some Message', 20);
 }
}
To ease testing and reduce duplication a shortcut can be used to specify a class constant as an @expectedExceptionCode using the "@expectedExceptionCode ClassName::CONST" syntax.

class MyTest extends PHPUnit_Framework_TestCase
{
 /**
 * @expectedException MyException
 * @expectedExceptionCode MyClass::ERRORCODE
 */
 public function testExceptionHasErrorcode20()
 {
 throw new MyException('Some Message', 20);
 }
}
class MyClass
{
 const ERRORCODE = 20;
}
@expectedExceptionMessage
The @expectedExceptionMessage annotation works similar to @expectedExceptionCode as it lets you make an assertion on the error message of an exception.

class MyTest extends PHPUnit_Framework_TestCase
{
 /**
 * @expectedException MyException
 * @expectedExceptionMessage Some Message
 */
 public function testExceptionHasRightMessage()
 {
 throw new MyException('Some Message', 20);
 }
}
The expected message can be a substring of the exception Message. This can be useful to only assert that a certain name or parameter that was passed in shows up in the exception and not fixate the whole exception message in the test.

class MyTest extends PHPUnit_Framework_TestCase
{
 /**
 * @expectedException MyException
 * @expectedExceptionMessage broken
 */
 public function testExceptionHasRightMessage()
 {
 $param = "broken";
 throw new MyException('Invalid parameter "'.$param.'".', 20);
 }
}
To ease testing and reduce duplication a shortcut can be used to specify a class constant as an @expectedExceptionMessage using the "@expectedExceptionMessage ClassName::CONST" syntax. A sample can be found in the section called “@expectedExceptionCode”.

@group
A test can be tagged as belonging to one or more groups using the @group annotation like this

class MyTest extends PHPUnit_Framework_TestCase
{
 /**
 * @group specification
 */
 public function testSomething()
 {
 }

 /**
 * @group regresssion
 * @group bug2204
 */
 public function testSomethingElse()
 {
 }
}
Tests can be selected for execution based on groups using the --group and --exclude-group options of the command-line test runner or using the respective directives of the XML configuration file.

@large
The @large annotation is an alias for @group large.

If the PHP_Invoker package is installed and strict mode is enabled, a large test will fail if it takes longer than 60 seconds to execute. This timeout is configurable via the timeoutForLargeTests attribute in the XML configuration file.

@medium
The @medium annotation is an alias for @group medium. A medium test must not depend on a test marked as @large.

If the PHP_Invoker package is installed and strict mode is enabled, a medium test will fail if it takes longer than 10 seconds to execute. This timeout is configurable via the timeoutForMediumTests attribute in the XML configuration file.

@preserveGlobalState
When a test is run in a separate process, PHPUnit will attempt to preserve the global state from the parent process by serializing all globals in the parent process and unserializing them in the child process. This can cause problems if the parent process contains globals that are not serializable. To fix this, you can prevent PHPUnit from preserving global state with the @preserveGlobalState annotation.

class MyTest extends PHPUnit_Framework_TestCase
{
 /**
 * @runInSeparateProcess
 * @preserveGlobalState disabled
 */
 public function testInSeparateProcess()
 {
 // ...
 }
}
@requires
The @requires annotation can be used skip tests when common preconditions, like the PHP Version or installed extensions, are not met.

A complete list of possibilities and examples can be found at Table 7.3

@runTestsInSeparateProcesses
Indicates that all tests in a test class should be run in a separate PHP process.

/**
 * @runTestsInSeparateProcesses
 */
class MyTest extends PHPUnit_Framework_TestCase
{
 // ...
}
Note: By default, PHPUnit will attempt to preserve the global state from the parent process by serializing all globals in the parent process and unserializing them in the child process. This can cause problems if the parent process contains globals that are not serializable. See the section called “@preserveGlobalState” for information on how to fix this.

@runInSeparateProcess
Indicates that a test should be run in a separate PHP process.

class MyTest extends PHPUnit_Framework_TestCase
{
 /**
 * @runInSeparateProcess
 */
 public function testInSeparateProcess()
 {
 // ...
 }
}
Note: By default, PHPUnit will attempt to preserve the global state from the parent process by serializing all globals in the parent process and unserializing them in the child process. This can cause problems if the parent process contains globals that are not serializable. See the section called “@preserveGlobalState” for information on how to fix this.

@small
The @small annotation is an alias for @group small. A small test must not depend on a test marked as @medium or @large.

If the PHP_Invoker package is installed and strict mode is enabled, a small test will fail if it takes longer than 1 second to execute. This timeout is configurable via the timeoutForSmallTests attribute in the XML configuration file.

Note
By default, all tests are considered to be small if they are not marked as @medium or @large. Please note, however, that --group and the related options will only consider a test to be in the small group if it is explicitly marked with the appropriate annotation.
@test
As an alternative to prefixing your test method names with test, you can use the @test annotation in a method's DocBlock to mark it as a test method.

/**
 * @test
 */
public function initialBalanceShouldBe0()
{
 $this->assertEquals(0, $this->ba->getBalance());
[bookmark: _GoBack]}

Speaking Points:

•
Conclusion: Let’s get started

Exercise Files:

None
