Using Arrays in ActionScript - Part 1

By: Paul Newman

Arrays are a staple of ActionScript, and for that matter, ECMAScript, upon which ActionScript is based. In
this tutorial, we'll examine how to create different types of arrays, and how to loop through them using
ActionScript.

Chances are you're already familiar with using variables in ActionScript to store data. If a variable holds a
reference to a single piece of data, then we can think of an array as a variable that stores a grouping of
related data. One analogy is that an array is like an audio CD. An audio CD contains a bunch of related data
— its songs — and each song has a track number. As an example, we'll use the Beatles album Help!, which
contains 14 tracks:

. Help!

. The Night Before

. You've Got to Hide Your Love Away
.INeed You

. Another Girl

. You're Going to Lose That Girl
. Ticket to Ride

. Act Naturally

9. It's Only Love

10. You Like Me Too Much

11. Tell Me What You See

12. I've Just Seen A Face

13. Yesterday

14. Dizzy Miss Lizzie

031N Lt W IN —

If you want to play "Ticket to Ride" on your stereo, you simply choose Track 7. If you press Shuffle on
your stereo, the tracks are resorted in random order, but "Ticket to Ride" is still Track 7:

11. Tell Me What You See

3. You've Got to Hide Your Love Away
10. You Like Me Too Much

4.1 Need You

7. Ticket to Ride

12. I've Just Seen A Face

9. It's Only Love

2. The Night Before

5. Another Girl

13. Yesterday

6. You're Going to Lose That Girl
1. Help!

14. Dizzy Miss Lizzie

10f20

8. Act Naturally

In this sense, each track number represents an index for the audio CD, not unlike primary key columns in a
database. Without track numbers, there would be no way for your stereo to identify which song to play.
Arrays also have numeric indexes, which are used to identify each element of an array. Unlike CD track
numbers, however, ActionScript arrays start counting from 0, rather than 1. If we were going to represent
Help! as an ActionScript array, here is one way we might do it:

var help = new Array(Q);

help[0] = "Help!";

help[1l] = "The Night Before";

help[2] = "You've Got to Hide Your Love Away";
help[3] = "I Need You";

help[4] = "Another Girl";

help[5] = "You're Going to Lose That Girl";
help[6] = "Ticket to Ride";

help[7] = "Act Naturally";

help[8] = "It's Only Love";

help[9] = "You Like Me Too Much";

help[10] = "Tell Me What You See";

help[11l] = "I've Just Seen A Face";

help[12] = "Yesterday";
help[13] "Dizzy Miss Lizzie";

Listing 1 Defining and populating the help array object in ActionScript

On the first line, we define an array object called he1p using the new Array () constructor, and on the
subsequent lines, we populate the array with elements using the array access operator ([]).

Looping Through the Array

To see the he1p array in action, complete the following steps to display it in Flash:

Click Download Support Files at the bottom of this page.

Extract the zip file to a folder on your computer.

Open arrays.fla in Flash MX 2004 or Flash MX 2004 Professional.
Choose File > New and select ActionScript File on the General tab.
Click OK to create a blank AS file.

Copy and paste the following code into the AS file and save it as arraysl.as:

AN

2 0of 20

3 0f 20

nn

output_txt.htmlText = ;

function output(arr){
Ten = arr.length;
for(var i=0; i<len; i++){
output_txt.htmlText += "Element " + i + ": " + arr[i] +
h
output_txt.htmlText += "
";

"
";

var help = new Array(Q);

help[0] = "Help!";

help[1l] = "The Night Before";

help[2] = "You've Got to Hide Your Love Away";
help[3] = "I Need You";

help[4] = "Another Girl";

help[5] = "You're Going to Lose That Girl";
help[6] = "Ticket to Ride";

help[7] = "Act Naturally";

help[8] = "It's Only Love";

help[9] = "You Like Me Too Much";

help[10] = "Tell Me what You See";

help[11l] = "I've Just Seen A Face";
help[12] = "Yvesterday";

help[13] = "Dizzy Miss Lizzie";

outputChelp);

7. Click the arrays.fla tab on the Document window and select Control > Test Movie (or press Ctrl+Enter).

4 of 20

You should get the following result:

Using Arrays in ActionScript

Element 0: Help!

Element 1: The Might Before

Element 2: Youve Gotto Hide Your Love Sway
Element 3: I Meed You

Element 4: Another Girl

Element &: %ou're Going to Lose That Girl
Element &: Ticket to Ride

Element 7: Act Maturally

Element 8: It's Only Love

Elerment 9: %ou Like Me Too Much
Element 10: Tell Me WWhat ¥ou See
Element 11: Ive Just Seen AFace
Element 12: Yesterday

Element 13: Dizzy Miss Lizzie

Notice that the last index number is 13, even though Help! has 14 tracks. This is because ActionScript's
array index starts at zero. However, if we use the Array.length property, we can determine how many
elements are contained in the array. To do this, add the following code to the end of arraysl.as and test the

movie:

output_txt.htmlText += "Array length:

+ help.length;

This should produce the following result:

Using Arrays in ActionScript

Element 0: Help!

Element 1: The Might Before

Element 2: You'we Gotto Hide Your Love Away
Element 3: 1 Meed You

Element 4: Another Girl

Element &: %ou're Going to Lose That Girl
Element &: Ticket to Ride

Elerment 7: Act Maturally

Element 8: It's Only Love

Element 8: %ou Like Me Tao Much
Elerment 10: Tell Me Ywhat vou See
Element 11: Ive Just Seen AFace
Element 12: Yesterday

Element 13: Dizzy Miss Lizzie

Array length: 14

At this point, the completed ActionScript file looks like this:

50f20

6 of 20

output_txt.htmlText = "";

function output(arr){
len = arr.length;
for(var i=0; i<len; i++){
output_txt.htmlText += "Element " + i + ": " + arr[i] + "
";

h
output_txt.htmlText += "
";

var help = new Array(Q);

help[0] = "Help!";

help[1l] = "The Night Before";

help[2] = "You've Got to Hide Your Love Away";
help[3] = "I Need You";

help[4] = "Another Girl";

help[5] = "You're Going to Lose That Girl";
help[6] = "Ticket to Ride";

help[7] = "Act Naturally";

help[8] = "It's Only Love";

help[9] = "You Like Me Too Much";

help[10] = "Tell Me What You See";

help[11l] = "I've Just Seen A Face";
help[12] = "Yesterday";

help[13] = "Dizzy Miss Lizzie";
outputChelp);

output_txt.htmlText += "Array length: + help.length;

Listing 2 The final version of arraysli.as
If you didn't get the same results, refer to the final version of arraysl.as in the completed folder.
How the Code Works

Let's examine the code from Listing 2 in detail. The first line simply sets the value of output txt to an
empty string (" ") so that we can use the addition assignment operator (+=) to add lines to the text field. The
output function uses a for loop to loop through the array and add each array element to the text field:

for(var i=0; 1i<len; i++){
output_txt.htmlText += "Element " + i + ": " + arr[i] + "
";

}

7 of 20

This is why array indexes are so useful. If we were storing the track listings as variables, we would have to
output them like this:

output_txt.htmlText += trackl_str;
output_txt.htmlText += track2_str;
output_txt.htmlText += track3_str;

Because help is an array, we can use its index to loop through it. In the for loop, the variable i represents
the index number of each array element. Since we know that ActionScript uses zero-based arrays, we set
the initial value of i to 0. Then we tell ActionScript to loop through the array while i is /ess than the length
of the array (in this case, 14). After each for loop is executed, ActionScript increments the i variable by 1

(i++).

Just as we used the array access operator ([1) to populate the array, we can also use it to display elements
of the array:

output_txt.htmlText += "Element " + i + ": + arr[i] + "
";

Atrun-time, arr [i] evaluatestoarr[0],arr[1],arr[2], etc., depending on how many times the for
loop has executed. If it were arr [61, for example, its value would be "Ticket to Ride."

Creating an Array Using Literal Notation

Another way to create an array is to use array literal syntax. Here's an example using the same tracks from
Help! (this code should appear on a single line, even though it wraps in the listing below):

var help = ["Help!", "The Night Before", "You've Got to Hide Your
Love Away", "I Need You", "Another Girl", "You're Going to Lose That
Girl", "Ticket to Ride", "Act Naturally", "It's Only Love", "You
Like Me Too Much", "Tell Me what You See", "I've Just Seen A Face",
"Yesterday", "Dizzy Miss Lizzie"];

If you replace Listing 1 with the code above, you should get the same result when you publish the SWF file.
The main difference between this code and Listing 1, aside from brevity, is that this version doesn't use the
new Array () constructor to create the array object. Instead, we set the value of help to a
comma-separated list in brackets ([1). ActionScript recognizes the array literal syntax, implicitly creates a
new array object, and populates it with the comma-separated list. The order in which the items appear in the
list determines their index numbers. For example, enter the following code after the new version of the
help array:

output_txt.htmlText += "
Element 6: " + help[6];

You should get the following result:

Using Arrays in ActionScript

Element 0: Help!

Element 1: The Might Before

Element 2: You'we Gotto Hide Your Love Away
Element 3: 1 Meed You

Element 4: Another Girl

Element &: %ou're Going to Lose That Girl
Element &: Ticket to Ride

Elerment 7: Act Maturally

Element 8: It's Only Love

Element 8: %ou Like Me Tao Much
Elerment 10: Tell Me Ywhat vou See
Element 11: Ive Just Seen AFace
Element 12: Yesterday

Element 13: Dizzy Miss Lizzie

Array length: 14

Element 6: Ticket to Ride

8 0f 20

9 0f 20

You can even nest arrays inside arrays, to simulate a multidimensional array. For example, let's say we
wanted to include the composer and running time of each track on Help!. Here's one way to do it:

output_txt.htmlText = "";

// Version 1
function output(arr){
var len = arr.length;
for(var i=0; i<len; i++){
output_txt.htmlText += "Track " + (i+1) + "";
var len2 = arr[i].length;
for(var j=0; j<len2; j++){
output_txt.htmlText += "Element " + j + ": " + arr[i][j];
ks
output_txt.htmlText += "
";

}

// create a nested array using array literal syntax
var help = [

["Help!", "2:20", "Lennon/McCartney"],
["The Night Before", "2:36", "Lennon/McCartney"],
["You've Got to Hide Your Love Away", "2:11",
"Lennon/McCartney"],
["I Need You", "2:31", "Harrison"],
["Another Girl", "2:07", "Lennon/McCartney"],
["You're Going to Lose That Girl", "2:19", "Lennon/McCartney"],
["Ticket to Ride", "3:12", "Lennon/McCartney"],
["Act Naturally", "2:32", "Morrison/Russell"],
["It's Oonly Love", "1:58", "Lennon/McCartney"],
["You Like Me Too Much", "2:38", "Harrison"],
["Tell Me what You See", "2:39", "Lennon/McCartney"],
["I've Just Seen A Face", "2:06", "Lennon/McCartney"],
["Yesterday", "2:06", "Lennon/McCartney"],
["Dizzy Miss Lizzie", "2:53", "williams"]
1;
outputChelp);

Listing 3 Simulating a multidimensional array by nesting arrays in ActionScript
Complete the following steps to display the new array in Flash:

1. Create a new ActionScript file in Flash 2004.
2. Insert the code from Listing 3 into the AS file and save it as arrays2.as.

3. Click the arrays.fla tab on the Document window.

4. Select the actions layer and choose Window > Development Panels > Actions (or press F9) to open the Actions panel.
5. Change the first line to #include "arrays2.as" and save the file.
6. Choose File > Publish Settings (or press Ctrl+Shift+F12) and change the filename to arrays2.swf.

Publish Settings

Current prDFiIe:lFIash M Settings V| E], +] &

Formats | Flash |

Type: File:

[#]Flash {.swf) | arraysz,swf | B
[JHTML {.hkml) | atrays.htm B
[]&IF Image {.qify | arrays.gif | @
(] PEG Image {.jpa) | arrays.jpg | @
[]PmG Image {.pg) | arrays.png | @
[] windows Projector {exe) | arrays. exe | Ef.]
[IMarintash Projectar | arrays.hgx | ﬁ
[] QuickTime {.mow) | AFFays. oy | ﬁ

[IUse Default Mames]

Publish] [Ok] [Cancel

7. Click OK to close the Publish Settings dialog box.

8. Press Ctrl+Enter to test the movie.

10 of 20

11 of 20

You should get the following result:

Using Arrays in ActionScript

Track 1

Element 0: Help!

Element 1: 2:20

Element 2: LennonicCartney

Track 2

Elerment 0: The Might Before
Element 1: 2:36

Element 2: LennoniMcCartney

Track 3

Element 0: Youye Gotto Hide Your Love Sway
Element 1: 2:11

Element 2: LennonicCartney

Track 4

Element 0: | Keed You
Elerment 1: 2:31
Element 2: Harrison

As you can see, Listing 3 loops through the outer array (the track numbers), then it loops through the inner
array (the title, running time, and composer of each track). Just as the arrays are nested, so are the for
loops (edited here for clarity):

for(var i=0; i<arr.length; i++){

output_txt.htmlText += "Track " + (i+1) + "";
for(var j=0; j<arr[i].length; j++){

output_txt.htmlText += "Element " + j +

"o, "

+ arr[il1[3];
}

Notice the strange pairing of array access operators ([1) at the end of the fourth line: arr (i1 (371. In this
example, the first set of brackets identifies an element of the outer array, and the second set identifies an
element of the nested array. The first time the for loop is executed, this is how the variables are evaluated
at run-time:

for(var i=0; i<14; i++){
output_txt.htmlText += "Track " + 1 + "";
for(var j=0; j<3; j++){
output_txt.htmlText += "Element " + 0 + ": " + arr[0][0];
h

12 of 20

Online 4, arr[0] [0] evaluates to "Help!", the title of the first element in the first nested array. It might
help to think of nested arrays like rows and columns of a database, or an Excel spreadsheet:

Column 0 Column 1 Column 2
Row 0 arr[0][0] arr[0][1] arr[0][2]
Row 1 arr[1][0] arr[1][1] arr[1][2]
Row 2 arr[2][0] arr[2][1] arr[2][2]

The problem with Listing 3 is that the title, running time, and composer elements are identified merely as
Element 0, Element 1, and Element 2. To remedy this, replace the output function in Listing 3 with the
following code:

// Version 2
function output(arr){
var len = arr.length;
for(var i=0; i<len; i++){
output_txt.htmlText += "Track " + (i+1) + "";

output_txt.htmlText += "Title: " + arr[i][0];
output_txt.htmlText += "Time: " + arr[i][1];
output_txt.htmlText += "Composer: " + arr[i][2];

output_txt.htmlText += "
";

This should produce the following result:

Using Arrays in ActionScript

Track 1

Title: Helpl

Time: 2:20

Composer: LennonfficCatney

Track 2

Title: The Might Befare

Time: 2:36

Composer: LennonfcCatney

Track 3

Title: Woube Got to Hide Your Lowe Away
Time: 2:11

Composer Lennon/MoCartney

Track 4

Title: | Meed You
Time: 2:31
Composer: Harrisan

13 of 20

Now that's more like it! However, there is still an important limitation to Version 2: the index numbers of
the nested array are hard-coded. This means that if we later decide to add additional elements to the nested
array — publisher, recording date, etc. — we will have to revise the output function. The labels in the
nested array — Title, Time, Composer — are also hard-coded. If only there were a way to make arrays
self-documenting, so that the array could identify its elements by name, rather than by index numbers. Enter
associative arrays.

Using Associative Arrays

The advantage of an associative array is that it uses keys, or alphanumeric names, rather than numeric
indexes, to identify its elements. Why is this important? Let's say, for example, we want to output the
results of the he 1p array using Flash's DataGrid component. We could easily do this using the following
code (see grid.as):

// create a nested array using array literal syntax
var help = [
["Help!", "2:20", "Lennon/McCartney"],
["The Night Before", "2:36", "Lennon/McCartney"],
["You've Got to Hide Your Love Away", "2:11",
"Lennon/McCartney"],
["I Need You", "2:31", "Harrison"],
["Another Girl", "2:07", "Lennon/McCartney"],
["You're Going to Lose That Girl", "2:19", "Lennon/McCartney"],
["Ticket to Ride", "3:12", "Lennon/McCartney"],
["Act Naturally", "2:32", "Morrison/Russell"],
["It's Only Love", "1:58", "Lennon/McCartney"],
["You Like Me Too Much", "2:38", "Harrison"],
["Tell Me what You See", "2:39", "Lennon/McCartney"],
["I've Just Seen A Face", "2:06", "Lennon/McCartney"],
["Yesterday", "2:06", "Lennon/McCartney"],
["Dizzy Miss Lizzie", "2:53", "williams"]
I
// populate DataGrid component using the dataProvider property
myDG.dataProvider = help

14 of 20

This produces the following result:

Using Arrays in ActionScript

2

0

Lennaonicicartney
LennaoniMcCartney
Lennaonicicartney
Harrizon
Lennaonicicartney
LennaoniMcCartney
Lennaonicicartney
mMorrisoniRussell
Lennaonicicartney
Harrizon
Lennaonicicartney
LennaoniMcCartney
Lennaonicicartney
Williams

Helpl

The Might Before

Youhe Gotto Hide Your L
| Meed you

Another Girl

You're Going to Lose The
Ticket to Ride

At Maturally

It's Only Love

oo Like Me Too kuch
Tell Me YWhat You See
I've Just Seen A Face
Yesterday

Dy Miss Lirzie

Already there's a problem. You and I know what this grid means because we've been working with the
help array, but it won't make much sense to anyone else (except a Beatlemaniac). One workaround is to
loop through the array and populate the DataGrid using the pataGrid.addItem method. However, this
still requires hard-coding the names of the DataGrid columns. The solution, as you've probably guessed, is
to create an associative array. To illustrate this, open grid.fla and grid.as in Flash and replace the contents
of grid.as with the following code:

15 of 20

// create an associative array using object literal syntax
var help = [

{Title: "Help!", Time: "2:20", Composer: "Lennon/McCartney"},

{Title: "The Night Before", Time: "2:36", Composer:
"Lennon/McCartney"},

{Title: "You've Got to Hide Your Love Away", Time: "2:11",
composer: "Lennon/McCartney"},

{Title: "I Need You", Time: "2:31", Composer: "Harrison"},

{Title: "Another Girl", Time: "2:07", Composer:
"Lennon/McCartney"},

{Title: "You're Going to Lose That Girl", Time: "2:19",
Composer: "Lennon/McCartney"},

{Title: "Ticket to Ride", Time: "3:12", Composer:
"Lennon/McCartney"},

{Title: "Act Naturally", Time: "2:32", Composer:
"Morrison/Russell"},

{Title: "It's Only Love", Time: "1:58", Composer:
"Lennon/McCartney"},

{Title: "You Like Me Too Much", Time: "2:38", Composer:
"Harrison"},

{Title: "Tell Me what You See", Time: "2:39", Composer:
"Lennon/McCartney"},

{Title: "I've Just Seen A Face", Time: "2:06", Composer:
"Lennon/McCartney"},

{Title: "Yesterday", Time: "2:06", Composer:
"Lennon/McCartney"},

{Title: "Dizzy Miss Lizzie", Time: "2:53", Composer: "williams"}

1;

// populate DataGrid component using the dataProvider property
myDG.dataProvider = help;

Listing 4 The help array now contains 14 associative arrays

16 of 20

This produces the following result:

Using Arrays in ActionScript

Title

Composer

Helpl

The Might Before

Youhe Gotto Hide Youor Lowve
| Meed you

Anather Girl

You're Going to Lose That G
Ticket to Ride

At Maturally

It's Qnly Love

oo Like Me Too kuch

Tell Me YWhat vou See

I've Just Seen A Face
Yesterday

Dz Miss Lirzie

Now we're cooking with gas! You can even sort the results by clicking on the column headers. To loop
through the new array, insert the following code at the end of grid.as and test the movie:

LennaniMcCartney
LennaoniMcicartney
LennaniMcCartney
Harrison
LennaniMcCartney
LennaoniMcicartney
LennaniMcCartney
mMorrisonRussell
LennaniMcCartney
Harrison
LennaniMcCartney
LennaoniMcicartney
LennaniMcCartney
Williams

// loop through associative array
for(var i in help){
for(var j in help[i]){
trace(j + ": " + help[il[j]);
}

trace(newline);

}

This should produce the following results:

i * Dutpuk

1
B

Title: Dizzy HMiss Lizzie L
Time: Z:53

Composer: Williams

Title: Yesterday
Time: Z:06

Composer: Lennon/MoCartney

Title: I'we Just Zeen L Face
Time: 2:06

Comwposer: Lenhon/MoCartney

Figure 2 Tracing the new help array in the Output panel

Notice that this time, 5 evaluates to Title, Time, or Composer, rather than a number (0, 1, 2). The nested
associative arrays are actually using names, rather than numbers, to identify their elements. To illustrate
this, enter the following code at the end of grid.as and test the movie:

traceChelp[6]["Title"]);

This should print "Ticket to Ride" to Flash's Output panel.

Understanding Associative Arrays

All right, let's backtrack a little. We've introduced two new concepts here: associative arrays and object
literals. Let's examine each one more closely.

In my opinion, working with an associative array is much more intuitive than using numeric arrays. In
particular, dot notation is already a familiar concept to Flash, ASP, and ColdFusion developers:

Flash Target Path
myMovieClip.Comments_txt.text;

ASP Recordset
<%= rsGuestbook.Fields.Item("Comments").value %>

ColdFusion Query
<cfoutput>#qGuestbook.Comments#</cfoutput>

Creating and manipulating associative arrays in ActionScript is a lot like working with ColdFusion

17 of 20

structures. Here's an example of an associative array containing Track 1 of Help!:

var trackl = new Object();

trackl.Title = "Help!";
trackl.Time = "2:20";
trackl.Composer = "Lennon/McCartney";

trace(trackl.Title); // output: "Help!"

Listing 5 Creating an associative array in ActionScript

That's all there is to it.

Understanding Object Literals

Now that you know what an associative array is, you may be wondering about the curly braces ({}) in
Listing 4. Object literal syntax is a shorthand method for creating associative arrays, just as the array literal
syntax is a shortcut for writing normal arrays.

Array Literal
var beatles = ["John", "Paul", "George", "Ringo"];
trace(beatles[0]); // output: "John"

Object Literal

var trackl = {Title: "Help!", Time: "2:20", Composer:
"Lennon/McCartney"};

trace(trackl.Title); // output: "Help!"

In the first example, Flash creates a new array object named beatles. In the second example, Flash
creates an associative array named track1, using the {key: "property"} syntax. Despite the different
techniques, the object literal example and Listing 5 create exactly the same associative array. The main
advantage of using object-literal syntax is that it's less verbose, and once you're familiar with it, easier to
read.

But what about Listing 4? It creates unnamed associative arrays:

var help = [
{Title: "Help!", Time: "2:20", Composer: "Lennon/McCartney"},
{Title: "The Night Before", Time: "2:36", Composer:
"Lennon/McCartney"},

1;

How does this work? In the case of Listing 4, Flash creates what is known as anonymous objects. Each of
the 14 "rows" of the he 1p array is an associative array, and each associative array is an anonymous object.

18 of 20

You can confirm this by testing grid.fla in Flash (Control > Test Movie) and selecting Debug > List
Variables. If you scroll down the list in the Output panel, eventually you'll find the associative arrays:

Bii

i w Qutput

Varisble lewvelO.help = [cbject #122, class 'bArray'] [-~
0: [okbject #123, class 'Chiject'] |
Composer: "Lennon/ MoCartney™,

Time:"2:20",
Title:"Help!'"™

b

l:[ohiject #124, class 'Cbhject'] |
Composer: "Lennon/ MoCartney™,
Time:"2:36",
Title:"The Night EBefore"™

b

Z2:[object #1225, class 'Cbject'] |
Composer: "Lennon/ MoCartney™,
Time:T2:11",
Title:"fou've Got to Hide Your Love Away™

b

3:[object #1266, class 'Cbject'] |
Composer: "Harrison™,
Time:T2:31",
Title:"I Need You®

Fa

4:[okhject #1277, class 'Chiject'] |
Composer : "Lennon/ MeCartney™,

Time: 207", o

Figure 3 The associative arrays in Flash's Output panel

Whereas he1p is clearly identified on the first line, the associative arrays nested inside he1p are unnamed.
How is this possible? The code from Listing 4 is legal in Flash because the index numbers of the outer array
(0-13) can be used to identify each nested array, or "row":

Ten = help.length;

for(var i=0; i<len; i++){
trace("TRACK " + (i+1));
traceChelp[i].Title + "

help[i].Time + newline);

}

(" + help[i].Composer + ") - +

19 of 20

This results in the following output:

i w Dutput =
-~
TRACE 1
Help! (Lennon/MoCarthney) — 2:20
TRACE Z
The MNight Eefore [(Lennon/MoCartney] — 2:36
TRACE 3
¥You'we ot to Hide ¥Your Lowve Away
(Lennon/MeCartney) - 2:11
TRACE 4
I Need ¥ou [(Harrison) - 2:31
TRACE &
Another Girl (Lennon/MoCartney) - 2:07 v

Compare this with the output function in Listing 3 and you get an immediate appreciation for how much
easier it is to work with associative arrays.

Conclusion

I hope this tutorial gave you a sense of the power and versatility of arrays in ActionScript. In Part 2, we will
examine how to add, edit, sort, and remove array elements using the built-in methods of the array class.

Keywords
flash mx 2004, actionscript, arrays, object literal, array literal, associative array

All content ©CommunityMX 2002-2003. All rights reserved.

20 of 20

