Intro

- JavaScript is premier client-side scripting
language used in Web development

— Note especially
 Client side
* Focus on web development
« Scripting

* Part of the client-side ‘triangle’ consisting of
(X)HTML, CSS and of course JavaScript

— Manipulation of mark-up and style via the
document object model or DOM

First Look at JavaScript - Helloworld

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtmll11/DTD/xhtmlll.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>JavaScript Hello World</title>

<meta http-equiv="content-type" content="text/html;
charset=I50-8859-1" />

</head>
<body>
<hl>First JavaScript</hl>
<hr />
<script type="text/javascript">
document .write ("Hello World from JavaScript!");
</script>
</body>
</html>

Helloworld Deconstructed

» <script> tag used to delimit the script code
from the HTML

— The script tag causes the browser’s JavaScript
interpreter to be invoked, the script run and any
output produced

— The browser is considered the “host” environment
* There are other hosts for JavaScript and its variants

 The demo also shows how the script can
write back out to the document in this case
using the document.write() method

Helloworld Deconstructed

« The interplay between (X)HTML and JavaScript can be tricky at first

<script type="text/javascript">
// Careful on tag and script intermixture

document .write ("Hello World from JavaScript!");

</script>

* Instead you would do

<script type="text/javascript'">

document .write ("Hello World from JavaScript!");
</script>

e oreven

<script type="text/javascript'">

document .write ("Hello World from JavaScript! ");
</script>

Using the <script> Tag

« You can use as many <script> tags as you like in both
the <head> and <body> and they are executed
sequentially.

 <h1>Ready start</h1>

<script language="Javascript" type="text/javascript">
alert("First Script Ran");

</script>

<h2>Running...</h2>

<script language="Javascript" type="text/javascript">
alert("Second Script Ran");

</script>

<h2>Keep running</h2>

<script language="Javascript" type="text/javascript">
alert("Third Script Ran");

</script>

</h1>Stop!</h1>

</body>

<script> Tag in the <head>

« Given top-down read (and execution) often script is found in the <head> of
an (X)HTML document

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtmlll.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title>JavaScript in the Head</title>

<meta http-equiv="content-type" content="text/html;charset=I1S0-8859-1" />

<script type="text/javascript">
function alertTest () {
alert ("Danger! Danger! JavaScript Ahead");

}

</script>

</head>

<body>

<h2>Script in the Head</h2>

<hr />

<script type="text/javascript">
alertTest () ;

</script>

</body>

</html>

Script masking and <noscript>

« Script Hiding using HTML and JavaScript comments
- <T°,cript type="text/javascript">
<.__
put your JavaScript here
[[-->
</script>

— Avoids printing script onscreen in non-script aware browsers

* <hoscript> Element

— Useful to provide alternative rendering in browsers that have script off or
don’t support script

— <noscript>
Either your browser does not support JavaScript or it
is currently disabled.
</noscript>

— Next example shows a great way to keep non-JavaScript aware users
out of your site

Script masking and <noscript>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtmll11.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>

<title>JavaScript Masked</title>
<meta http-equiv="content-type" content="text/html; charset=IS0-8859-1" />

</head>

<body>

<script type="text/javascript">
<!—

document .write ("Congratulations! If you see this you have
JavaScript.");

//——>
</script>
<noscript>
<hl class="errorMsg">JavaScript required</hl>

<p>Read how to rectify this
problem</p>

</noscript>
</body>
</html>

Meta Refresh Trick with <noscript>

« Change the <head> to contain a meta refresh to automatically redirect the
user to an error page if the script is off

- Copy this into every page into your site and you can improve the chances
users have script on

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtmlll.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Needs JavaScript</title>
<meta http-equiv="content-type" content="text/html; charset=I50-8859-1" />
<noscript>
<meta http-equiv="Refresh" content="0;URL=/errors/noscript.html">
</noscript>
</head>

 Downsides
— Consider non-script aware bots
— Won't validate

Event Handlers

- (X)HTML defines a set of event handler attributes related to JavaScript events such
as onclick, onmouseover, etc. which you can bind JavaScript statements to.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtml111.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title>JavaScript Events</title>

<meta http-equiv="content-type" content="text/html; charset=I50-8859-1" />
</head>

<body onload="alert ('page loaded');">

<form action="#" method="get">

<div id="formfields">

<input type="button" value="press me" onclick="alert ('You pressed my
button!');" />

</div>
</form>
<p>Yahoo!</p>
</body>
</html>

Linked Scripts

 Like linked style sheets you can store JavaScript
code in a separate file and reference it
— Use a .js file
— Contains only JavaScript

— Store these files like images in a common directory in
your site (e.g. /scripts)

— Linked scripts can be cached and “clean up” (X)HTML
documents

— Linked scripts do have problems under some
browsers

Linked Script Example

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtmll11.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Linked Script</title>

<meta http-equiv="content-type" content="text/html; charset=I50-
8859-1" />

<script type="text/javascript" src="danger.js"></script>
</head>
<body>
<form action="#" method="get" id="forml">
<div id="formfields">
<lnput type="button" name="buttonl" i1d="buttonl"
value="press me" onclick="alertTest ();" />
</div>
</form>
</body>
</html>

Linked Script Example Contd.

* |n file danger.js you would have simply

function alertTest()

{

alert("Danger! Danger!");

}

JavaScript, (XYHTML, and CSS Link

« JavaScript very much relies on markup and CSS in
browsers, in fact it manipulates objects that are created
by the correct use of tags and style properties

« For example, the document object contains objects and
collections corresponding to many of the tags in the
(X)HTML document.

— document.forms[], document.images][],
document.links|[], eftc.

— We can always jump directly to the object using something like
document .getElementById() under a DOM compliant
browser

Basic Features Contd.

* Whitespace

— Whitespace is generally ignored in JavaScript
statements and between JavaScript
statements but not always consider

*X=X+1 sameas X =X + 1
« s = typeof Xx; Is same as s=typeof x but it not the
same as s=typeofx; or s= type of x;
— Return character can cause havoc

— Given white space support by JavaScript
some developers favor “crunching’

Basic Features Contd.

« Statements
— A script is made up of individual statements

— JavaScript statements are terminated by
returns or semi-colons (;)

— S0 X = x+1; same as X = X+1
alert(x); alert(x)

— Prefer to use semi-colons because if you
reduce returns you run into problems
x=x+1 alert(x) throws an error while
x=X+1;alert(x); does not.

Blocks

* To group together statements we can create a
block using curly braces { }. In some sense this
creates one large statement

» Blocks are used with functions as well as larger
decision structures like Iif statements

function add(x,y) if (x> 10)
{ {

var result = x+y; x= 0;
return result; y =10;

} }

Variables

« Variables store data in a program

* The name of a variable should be unique well
formed identifier starting with a letter and
followed by letters or digits

« Variable names should not contain special
characters or white space

 Variable names should be well considered

— X versus sum

— Some rules of programming might not follow on the
Web?

Variables Contd.

« Define a variable using the var statement

— var X;

e |f undefined a variable will be defined on its first
use

» Variables can be assigned at declaration time

—var x = 5;

« Commas can be used to define many variables
at once

- var x, y = 5, z;

Arrays

» Access arrays by index value

—var myArray = new Array (4)

—myArray[3] = "Hello";
 Arrays in JavaScript are 0 based given

- var myArray?2 = ["Thomas", true, 3,
-47];

— myArray2[0] is “Thomas”, myArray[1] is true
and so on

— Given new Array(4) you have an array with an
iIndex running from 0 — 3

Expressions and Operators

Make expressions using operators in JavaScript

Basic Arithmetic

— + (addition), - (subtraction/unary negation), /
(division), * (multiplication), % (modulus)

Increment decrement
— ++ (add one) -- (subtract one)

Comparison

— >, <, >=, <=, |= (inequality), == (equality), === (type
equality)

Logical

— && (and) || (or) !(not)

More Operators

 Bitwise operators (&, |,)

— Not commonly used in JavaScript except maybe
cookies?

 String Operator
— + serves both as addition and string concatenation

— document.write("JavaScript" + "is " + " great! ");
— You should get familiar with this use of +
« Be aware of operator precedence

— Use parenthesis liberally to force evaluations
—varx=4+5*8versus x = (4+5) * 8

Flow Control

 Basic program execution control handled
in JavaScript using the if statement

* if (expression) or if (expression)
true-case true-case;
else
false-
case;
if (x> 10)
alert(" x bigger than 10");
else

alert(" x smaller than 10");

More on If Statements

* You can use { } with If statements to

execute program blocks rather than single

statements
if (x > 10)
{

alert ("X is bigger than 10"y ;

alert ("ves it really 1s bigger");

}

* Be careful with ;'s and if statements
if (x > 10);

alert ("I am always run'!? ");

Switch Statements

 If statements can get messy so you might consider using a switch
statement instead

« switch (condition)

{

case (value) : statement(s)
break;

ciéfault: statement(s);

}

« The switch statement is not supported by very old JavaScript aware
browsers (pre-JavaScript 1.2), but today this is not such an
important issue

Switch Example

var Xx=3;
switch (x)
{
case 1:alert('x is 1');
break;
case 2: alert('x is 2');
break;
case 3: alert('x is 3');
break;
case 4: alert('x is 4');
break;
default: alert('x is not 1, 2, 3 or 4');

}

Loops

« JavaScript supports three types of loops: while, do/while, and for
« Syntax of while:

while(condition)
statement(s)

« Example:

var x=0;
while (x < 10)
{
document.write(x);
document.write("
");
X=X+ 1;

}

document.write("Done");

For Loop

» The most compact loop format is the for loop
which initializes, checks, and
increments/decrements all in a single statement

for (x=0; x < 10; X++)

{

document.write(x);

]

* With all loops we need to exercise some care to
avoid infinite loops. See example

For/In Loop

* One special form of the for loop is useful with looking at
the properties of an object. This is the for/in loop.

for (var aProp in window)

{

document.write(aProp)
document.write("
");

]

« We will find this construct useful later on when looking at
what we can do with a particular object we are using

Loop Control

« We can control the execution of loops with two statements:
break and continue

» break jumps out of a loop (one level of braces)

« continue returns to the loop increment

var x=0;
while (x < 10)
{
X=X+1;
if (x ==3)
continue;

document.write("X = "+X);
if (X ==15)
break;

}

document.write("Loop done");

Functions

* Functions are useful to segment code and create a set of statements
that will be used over and over again The basic syntax is

function name(parameter list)
{
function statement(s)
return;

}

« For example

function add(x, y)
{

var sum = X + V;
return sum;

}

Functions Contd.

« We can then invoke a function using the function name
with ()’s
var result = add(2, 3);
« We can also pass variable values as well as literals

var a = 3, b=5;
var result;
result = add(a,b);

« Variables are passed to function by value so you must
use return to send things back.

* You can return a value or not from a function and you
can have as many return statements as you like

Input/Output in JavaScript

« Special dialog forms
— Alert
« alert(" Hey there JavaScript coder! ");

— Confirm
« if (confirm(‘Do you like cheese?’)
alert(" Cheese lover");

else
alert(" Cheese hater");

— Prompts
 var theirname = prompt(" What’'s your name? ", " ");

Input/Output in JavaScript Contd.

Writing to the HTML document
— document.write()
— document.writeln()

Writing should be done before or as the document loads.

In traditional JavaScript the document is static after that,
though with the DOM everything is rewritable

Since we are writing to an (X)HTML document you may
write out tags and you will have to consider the white
space handling rules of (X)HTML

Comments and Formatting

« When writing JavaScript you may want to
iInclude a comment
—/* This 1s a
multiple line
style comment */

—// This is a single line comment

* You also may want to format your script
for nice reading or you may want to crunch
it for fast download?

	quizreview.pdf
	Chapter2.pdf

